1
|
Tokikuni Y, Watanabe A, Nakazono H, Miura H, Saito R, Miaowen D, Fuyama K, Takahashi K, Okada K, Sugawara K, Tohyama H, Yoshida S, Fong KNK, Sawamura D. Differing effectiveness of transcranial random noise stimulation and transcranial direct current stimulation for enhancing working memory in healthy individuals: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:180. [PMID: 39402554 PMCID: PMC11472542 DOI: 10.1186/s12984-024-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (DLPFC) is a promising technique for enhancing working memory (WM) performance in healthy and psychiatric populations. However, limited information is available about the effectiveness of transcranial random noise stimulation (tRNS) applied to the left DLPFC on WM. This study investigated the effectiveness of tRNS on WM compared with that of tDCS, which has established functional evidence. METHODS This randomized, double-blind, sham-controlled trial enrolled 120 healthy right-handed adults who were randomly allocated to four stimulation groups: tRNS + direct current (DC) offset, tRNS, tDCS, or sham. Each stimulus was placed over the left DLPFC and had a current intensity of 2 mA applied for 20 min during the dual n-back task. The dual n-back task was repeated thrice: pre-stimulation, during stimulation, and post-stimulation. The d-prime scores, and response times were calculated as the main outcome measures. A linear mixed model was created to identify the main effects and interactions between the groups and times, with the group and time as fixed effects, and baseline performance and the subject as a covariate and random effect, respectively. The relationships between the benefit of each stimulus and baseline WM performance were also examined. RESULTS For the d-prime score during stimulation, the tRNS group significantly performed better than the sham group at online assessment (β = 0.310, p = 0.001). In the relationships between the benefit of each stimulus and baseline WM performance, the tRNS group had significantly larger negative line slopes than the sham group for the d-prime score (β = -0.233, p = 0.038). CONCLUSIONS tRNS applied to the left DLPFC significantly improved WM performance and generated greater benefits for healthy individuals with lower WM performance. These findings highlight the potential utility of tRNS for enhancing WM performance in individuals with lower WM performance and contribute evidence for clinical application to patients with cognitive decline. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000047365) on April 1, 2022; https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000054021 .
Collapse
Affiliation(s)
- Yukina Tokikuni
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akihiro Watanabe
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| | - Hiroshi Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryuji Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Duan Miaowen
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Keita Takahashi
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061- 0293, Japan
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan.
| |
Collapse
|
2
|
Prillinger K, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L, Radev ST. Multisession tDCS combined with intrastimulation training improves emotion recognition in adolescents with autism spectrum disorder. Neurotherapeutics 2024:e00460. [PMID: 39393982 DOI: 10.1016/j.neurot.2024.e00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Previous studies indicate that transcranial direct current stimulation (tDCS) is a promising emerging treatment option for autism spectrum disorder (ASD) and its efficacy could be augmented using concurrent training. However, no intrastimulation social cognition training for ASD has been developed so far. The objective of this two-armed, double-blind, randomized, sham-controlled clinical trial is to investigate the effects of tDCS combined with a newly developed intrastimulation social cognition training on adolescents with ASD. Twenty-two male adolescents with ASD were randomly assigned to receive 10 sessions of either anodal or sham tDCS at F3/right supraorbital region together with online intrastimulation training comprising basic and complex emotion recognition tasks. Using baseline magnetic resonance imaging data, individual electric field distributions were simulated, and brain activation patterns of the training tasks were analyzed. Additionally, questionnaires were administered at baseline and following the intervention. Compared to sham tDCS, anodal tDCS significantly improved dynamic emotion recognition over the course of the sessions. This task also showed the highest activations in face processing regions. Moreover, the improvement was associated with electric field density at the medial prefrontal cortex and social awareness in exploratory analyses. Both groups showed high tolerability and acceptability of tDCS, and significant improvement in overall ASD symptoms. Taken together, multisession tDCS improved dynamic emotion recognition in adolescents with ASD using a task that activates brain regions associated with the social brain network. The variability in the electric field might diminish tDCS effects and future studies should investigate individualized approaches.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria.
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Manfred Klöbl
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Rupert Lanzenberger
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul L Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, 89073 Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, 69115 Heidelberg, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan T Radev
- Cognitive Science Department, Rensselaer Polytechnic Institute, 12180 Troy, New York, USA; Center for Modeling, Simulation and Imaging in Medicine (CEMSIM), Rensselaer Polytechnic Institute, 12180 Troy, New York, USA
| |
Collapse
|
3
|
Edgcumbe DR, Rivolta D, Nitsche MA, Thoma V. Single session and repeated anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex increases reflective thinking but not working memory updating performance. Heliyon 2024; 10:e36078. [PMID: 39253169 PMCID: PMC11382065 DOI: 10.1016/j.heliyon.2024.e36078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) has shown to have effects on different domains of cognition yet there is a gap in the literature regarding effects on reflective thinking performance. Objective The current study investigated if single session and repeated anodal tDCS over the right DLPFC induces effects on judgment and decision-making performance and whether these are linked to working memory (updating) performance or cognitive inhibition. Methods Participants received anodal tDCS over the right DLPFC once (plus sham tDCS in a second session) or twice (24 h apart). In the third group participants received a single session of sham stimulation only. Cognitive characteristic measures were administered pre-stimulation (thinking disposition, impulsivity, cognitive ability). Experimental tasks included two versions of the Cognitive Reflection Test (numeric vs verbal-CRT), a set of incongruent base-rate vignettes, and two working memory tests (Sternberg task and n-back task). Forty-eight participants (mean age = 26.08 ± 0.54 years; 27 females) were recruited. Results Single sessions of tDCS were associated with an increase in reflective thinking performance compared to the sham conditions, with stimulation improving scores on incongruent base rate tasks as well as marginally improving numeric CRT scores (compared to sham), but not thinking tasks without a numeric component (verbal-CRT). Repeated anodal stimulation only improved numeric CRT scores. tDCS did not increase working memory (updating) performance. These findings could not be explained by a practice effect or a priori differences in cognitive characteristics or impulsivity across the experimental groups. Conclusion The current results demonstrate the involvement of the right DLPFC in reflective thinking performance which cannot be explained by working memory (updating) performance or general cognitive characteristics of participants.
Collapse
Affiliation(s)
- Daniel R Edgcumbe
- School of Psychology, University of East London, London, United Kingdom
- School of Psychological, Social and Behavioural Sciences, Faculty of Health and Life Sciences, Coventry University, United Kingdom
| | - Davide Rivolta
- Department of Education, Psychology and Communications, University of Bari Aldo, Bari, Italy
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neuroscience, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker Thoma
- School of Psychology, University of East London, London, United Kingdom
| |
Collapse
|
4
|
Zhong X, Dai Y, Xu M, Jiang C. Volleyball training improves working memory in children aged 7 to 12 years old: an fNIRS study. Cereb Cortex 2024; 34:bhae275. [PMID: 39030744 DOI: 10.1093/cercor/bhae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024] Open
Abstract
This study aimed to investigate the effect of a 12-wk extracurricular volleyball training on working memory from both behavioral and cerebral aspects. A total of 80 children were randomized assigned to (i) the experimental group, who engaged in extracurricular volleyball training for 60 min, thrice a week for 12 wk, and (ii) the control group, who maintained their regular daily routine. Working memory was evaluated in both groups using the N-back task before and after the intervention. Furthermore, functional near-infrared spectroscopy was employed to monitor the level of oxygenated hemoglobin in the prefrontal cortex. The experimental group performed better in the behavioral task than the control group, as evidenced by a shorter response time and a higher correct rate. The functional near-infrared spectroscopy results suggested that the activation of the left dorsolateral prefrontal cortex was significantly higher in the experimental group than in the control group. In addition, correlation analyses showed that the enhancement of left dorsolateral prefrontal cortex activation was significantly correlated with decreasing response time and improving response accuracy in the N-back task. These findings suggest that the left dorsolateral prefrontal cortex is likely the neural substrate for improved working memory performance elicited by 12-wk open skill exercise.
Collapse
Affiliation(s)
- Xiaoke Zhong
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
- School of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou, 350108 Fujian, China
| | - Yuanfu Dai
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| | - Mingchao Xu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| | - Changhao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| |
Collapse
|
5
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
6
|
Razza LB, De Smet S, Cornelis X, Nikolin S, Pulopulos MM, De Raedt R, Brunoni AR, Vanderhasselt MA. Dose-dependent response of prefrontal transcranial direct current stimulation on the heart rate variability: An electric field modeling study. Psychophysiology 2024; 61:e14556. [PMID: 38459778 DOI: 10.1111/psyp.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
Transcranial direct current stimulation (tDCS) of the prefrontal cortex (PFC) modulates the autonomic nervous system by activating deeper brain areas via top-down pathway. However, effects on the nervous system are heterogeneous and may depend on the amount of current that penetrates. Therefore, we aimed to investigate the variable effects of tDCS on heart rate variability (HRV), a measure of the functional state of the autonomic nervous system. Using three prefrontal tDCS protocols (1.5, 3 mA and sham), we associated the simulated individual electric field (E-field) magnitude in brain regions of interest with the HRV effects. This was a randomized, double-blinded, sham-controlled and within-subject trial, in which healthy young-adult participants received tDCS sessions separated by 2 weeks. The brain regions of interest were the dorsolateral PFC (DLPFC), anterior cingulate cortex, insula and amygdala. Overall, 37 participants were investigated, corresponding to a total of 111 tDCS sessions. The findings suggested that HRV, measured by root mean squared of successive differences (RMSSD) and high-frequency HRV (HF-HRV), were significantly increased by the 3.0 mA tDCS when compared to sham and 1.5 mA. No difference was found between sham and 1.5 mA. E-field analysis showed that all brain regions of interest were associated with the HRV outcomes. However, this significance was associated with the protocol intensity, rather than inter-individual brain structural variability. To conclude, our results suggest a dose-dependent effect of tDCS for HRV. Therefore, further research is warranted to investigate the optimal current dose to modulate HRV.
Collapse
Affiliation(s)
- Laís B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Xander Cornelis
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Andre R Brunoni
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
8
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
9
|
Li X, Zhou Y, Zhang C, Wang H, Wang X. Neural correlates of breath work, mental imagery of yoga postures, and meditation in yoga practitioners: a functional near-infrared spectroscopy study. Front Neurosci 2024; 18:1322071. [PMID: 38576867 PMCID: PMC10991824 DOI: 10.3389/fnins.2024.1322071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Objective Previous research has shown numerous health benefits of yoga, a multicomponent physical and mental activity. The three important aspects of both traditional and modern yoga are breath work, postures, and meditation. However, the neural mechanisms associated with these three aspects of yoga remain largely unknown. The present study investigated the neural underpinnings associated with each of these three yoga components in long- and short-term yoga practitioners to clarify the neural advantages of yoga experience, aiming to provide a more comprehensive understanding of yoga's health-promoting effects. Methods Participants were 40 Chinese women, 20 with a long-term yoga practice and 20 with a short-term yoga practice. Functional near-infrared spectroscopy was conducted while participants performed abdominal breathing, mental imagery of yoga postures, and mindfulness meditation. The oxygenated hemoglobin concentrations activated in the brain during these three tasks were used to assess the neural responses to the different aspects of yoga practice. The self-reported mastery of each yoga posture was used to assess the advantages of practicing yoga postures. Results Blood oxygen levels in the dorsolateral prefrontal cortex during breath work were significantly higher in long-term yoga practitioners than in short-term yoga practitioners. In the mental imagery of yoga postures task, self-reported data showed that long-term yoga practitioners had better mastery than short-term practitioners. Long-term yoga practitioners demonstrated lower activation in the ventrolateral prefrontal cortex, with lower blood oxygen levels associated with performing this task, than short-term yoga practitioners. In the mindfulness meditation task, blood oxygen levels in the orbitofrontal cortex and the ventrolateral prefrontal cortex were significantly higher in long-term yoga practitioners than in short-term yoga practitioners. Conclusion The three core yoga components, namely, yogic breathing, postures, and meditation, showed differences and similarities in the activation levels of the prefrontal cortex. Long-term practice of each component led to the neural benefits of efficient activation in the prefrontal cortex, especially in the dorsolateral prefrontal cortex, orbitofrontal cortex, and ventrolateral prefrontal cortex.
Collapse
Affiliation(s)
- Xiawen Li
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu Zhou
- Shanghai University of Sport, Shanghai, China
| | - Chenping Zhang
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongbiao Wang
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | | |
Collapse
|
10
|
Jiang S, Jones M, von Bastian CC. TDCS over PPC or DLPFC does not improve visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:20. [PMID: 39242793 PMCID: PMC11332112 DOI: 10.1038/s44271-024-00067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/13/2024] [Indexed: 09/09/2024]
Abstract
Non-invasive brain stimulation has been highlighted as a possible intervention to induce cognitive benefits, including on visual working memory (VWM). However, findings are inconsistent, possibly due to methodological issues. A recent high-profile study by Wang et al.1 reported that anodal transcranial direct current stimulation (tDCS) over posterior parietal cortex (PPC), but not over dorsolateral prefrontal cortex (DLPFC), selectively improved VWM capacity but not precision, especially at a high VWM load. Thus, in the current pre-registered conceptual replication study, we accounted for the key potential methodological issues in the original study and tested an adequate number of participants required to demonstrate the previously reported effects (n = 48 compared to n = 20). Participants underwent counterbalanced PPC, DLPFC and sham stimulation before completing 360 trials of a continuous orientation-reproduction task with a slight variation of task stimuli and setup. We found no evidence for the selective effect of PPC stimulation. Instead, our results showed that tDCS effects were absent regardless of stimulation region and VWM load, which was largely supported by substantial to strong Bayesian evidence. Therefore, our results challenge previously reported benefits of single-session anodal PPC-tDCS on VWM.
Collapse
Affiliation(s)
- Shuangke Jiang
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | - Myles Jones
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Claudia C von Bastian
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
De Smet S, Razza LB, Pulopulos MM, De Raedt R, Baeken C, Brunoni AR, Vanderhasselt MA. Stress priming transcranial direct current stimulation (tDCS) enhances updating of emotional content in working memory. Brain Stimul 2024; 17:434-443. [PMID: 38565374 DOI: 10.1016/j.brs.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex has emerged as a valuable tool in psychiatric research. Understanding the impact of affective states, such as stress at the time of stimulation, on the efficacy of prefrontal tDCS is crucial for advancing tDCS interventions. Stress-primed tDCS, wherein stress is used as a priming agent, has the potential to modulate neural plasticity and enhance cognitive functions, particularly in emotional working memory. However, prior research using stress-primed tDCS focused solely on non-emotional working memory performance, yielding mixed results. In this sham-controlled study, we addressed this gap by investigating the effects of stress-primed bifrontal tDCS (active versus sham) on both non-emotional and emotional working memory performance. The study was conducted in 146 healthy individuals who were randomly assigned to four experimental groups. The Trier Social Stress Test (TSST) or a control variant of the test was used to induce a stress versus control state. The results showed that stress priming significantly enhanced the effects of tDCS on the updating of emotional content in working memory, as evidenced by improved accuracy. Notably, no significant effects of stress priming were found for non-emotional working memory performance. These findings highlight the importance of an individual's prior affective state in shaping their response to tDCS, especially in the context of emotional working memory.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Lais B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil; Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| |
Collapse
|
12
|
Razza LB, De Smet S, Van Hoornweder S, De Witte S, Luethi MS, Baeken C, Brunoni AR, Vanderhasselt MA. Investigating the variability of prefrontal tDCS effects on working memory: An individual E-field distribution study. Cortex 2024; 172:38-48. [PMID: 38157837 DOI: 10.1016/j.cortex.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Transcranial direct current stimulation (tDCS) over the prefrontal cortex has the potential to enhance working memory by means of a weak direct current applied to the scalp. However, its effects are highly variable and possibly dependent on individual variability in cortical architecture and head anatomy. Unveiling sources of heterogeneity might improve fundamental and clinical application of tDCS in the field. Therefore, we investigated sources of tDCS variability of prefrontal 1.5 mA tDCS, 3 mA tDCS and sham tDCS in 40 participants (67.5% women, mean age 24.7 years) by associating simulated electric field (E-field) magnitude in brain regions of interest (dorsolateral prefrontal cortex, anterior cingulate cortex (ACC) and subgenual ACC) and working memory performance. Emotional and non-emotional 3-back paradigms were used. In the tDCS protocol analysis, effects were only significant for the 3 mA group, and only for the emotional tasks. In the individual E-field magnitude analysis, faster responses in non-emotional, but not in the emotional task, were associated with stronger E-fields in all brain regions of interest. Concluding, individual E-field distribution might explain part of the variability of prefrontal tDCS effects on working memory performance and in clinical samples. Our results suggest that tDCS effects might be more consistent or improved by applying personalizing current intensity, although this hypothesis should be confirmed by further studies.
Collapse
Affiliation(s)
- Lais B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Sybren Van Hoornweder
- REVAL-Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Sara De Witte
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Neurology and Bru-BRAIN, University Hospital Brussels, Brussels, Belgium; Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Matthias S Luethi
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil; Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Baetens K, Van Hoornweder S, Berger TA, Wischnewski M. ACES: Automated Correlation of Electric field strength and Stimulation effects for non-invasive brain stimulation. Brain Stimul 2024; 17:473-475. [PMID: 38621644 DOI: 10.1016/j.brs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Affiliation(s)
- Kris Baetens
- Brain, Body and Cognition, Vrije Universiteit Brussel, Belgium.
| | - Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Belgium
| | - Taylor A Berger
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN, USA
| | - Miles Wischnewski
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN, USA; Department of Experimental Psychology, University of Groningen, the Netherlands
| |
Collapse
|
14
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Soleimani G, Kuplicki R, Camchong J, Opitz A, Paulus MP, Lim KO, Ekhtiari H. Are we really targeting and stimulating DLPFC by placing transcranial electrical stimulation (tES) electrodes over F3/F4? Hum Brain Mapp 2023; 44:6275-6287. [PMID: 37750607 PMCID: PMC10619406 DOI: 10.1002/hbm.26492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In many clinical trials involving transcranial electrical stimulation (tES), target electrodes are typically placed over DLPFC with the assumption that this will primarily stimulate the underlying brain region. However, our study aimed to evaluate the electric fields (EF) that are actually delivered and identify prefrontal regions that may be inadvertently targeted in DLPFC tES. Head models were generated from the Human Connectome Project database's T1 + T2-weighted MRIs of 80 healthy adults. Two common DLPFC montages were simulated; symmetric-F4/F3, and asymmetric-F4/Fp1. Averaged EF was extracted from (1) the center of the target electrode (F4), and (2) the top 1% of voxels showing the strongest EF in individualized EF maps. Interindividual variabilities were quantified with the standard deviation of EF peak location/value. Similar steps were repeated with 66 participants with methamphetamine use disorder (MUDs) as an independent clinical population. In healthy adults, the group-level location of EF peaks was situated in the medial-frontopolar, and the individualized EF peaks were positioned in a cube with a volume of 29 cm3 /46 cm3 (symmetric/asymmetric montages). EFs in the frontopolar area were significantly higher than EF "under" the target electrode in both symmetric (peak: 0.41 ± 0.06, F4:0.22 ± 0.04) and asymmetric (peak: 0.38 ± 0.04, F4:0.2 ± 0.04) montages (Heges'g > 0.7). Similar results with slight between-group differences were found in MUDs. We highlighted that in common DLPFC tES montages, in addition to interindividual/intergroup variability, the frontopolar received the highest EFs rather than DLPFC as the main target. We specifically recommended considering the potential involvement of the frontopolar area as a mechanism underlying the effectiveness of DLPFC tES protocols.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research (LIBR)TulsaOklahomaUSA
| | - Jazmin Camchong
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Alexander Opitz
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Kelvin O. Lim
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Laureate Institute for Brain Research (LIBR)TulsaOklahomaUSA
| |
Collapse
|
16
|
Razza LB, Wischnewski M, Suen P, De Smet S, da Silva PHR, Catoira B, Brunoni AR, Vanderhasselt MA. An electric field modeling study with meta-analysis to understand the antidepressant effects of transcranial direct current stimulation (tDCS). REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 45:518-529. [PMID: 37400373 PMCID: PMC10897770 DOI: 10.47626/1516-4446-2023-3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) has mixed effects for major depressive disorder (MDD) symptoms, partially owing to large inter-experimental variability in tDCS protocols and their correlated induced electric fields (E-fields). We investigated whether the E-field strength of distinct tDCS parameters was associated with antidepressant effect. METHODS A meta-analysis was performed with placebo-controlled clinical trials of tDCS enrolling MDD patients. PubMed, EMBASE, and Web of Science were searched from inception to March 10, 2023. Effect sizes of tDCS protocols were correlated with E-field simulations (SimNIBS) of brain regions of interest (bilateral dorsolateral prefrontal cortex [DLPFC] and bilateral subgenual anterior cingulate cortex [sgACC]). Moderators of tDCS responses were also investigated. RESULTS A total of 20 studies were included (21 datasets, 1,008 patients), using 11 distinct tDCS protocols. Results revealed a moderate effect for MDD (g = 0.41, 95%CI 0.18-0.64), while cathode position and treatment strategy were found to be moderators of response. A negative association between effect size and tDCS-induced E-field magnitude was seen, with stronger E-fields in the right frontal and medial parts of the DLPFC (targeted by the cathode) leading to smaller effects. No association was found for the left DLPFC and the bilateral sgACC. An optimized tDCS protocol is proposed. CONCLUSION Our results highlight the need for a standardized tDCS protocol in MDD clinical trials.
Collapse
Affiliation(s)
- Lais B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium. Ghent Experimental Psychiatry Lab, Ghent, Belgium
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Paulo Suen
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium. Ghent Experimental Psychiatry Lab, Ghent, Belgium
| | - Pedro Henrique Rodrigues da Silva
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Beatriz Catoira
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium. Ghent Experimental Psychiatry Lab, Ghent, Belgium. Department of Psychiatry, Free University Brussels, Ixelles, Belgium
| | - André R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil. Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil. Hospital das Clínicas, USP, São Paulo, SP, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium. Ghent Experimental Psychiatry Lab, Ghent, Belgium
| |
Collapse
|
17
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
18
|
Razza L, Vanderhasselt M, Luethi M, Repple J, Busatto G, Buchpiguel C, Brunoni A, da Silva P. Cortical thickness is related to working memory performance after non-invasive brain stimulation. Braz J Med Biol Res 2023; 56:e12945. [PMID: 37878887 PMCID: PMC10591489 DOI: 10.1590/1414-431x2023e12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) probing the dorsolateral prefrontal cortex (DLPFC) has been shown to have little effect on working memory. The variability of NIBS responses might be explained by inter-subject brain anatomical variability. We investigated whether baseline cortical brain thickness of regions of interest was associated with working memory performance after NIBS by performing a secondary analysis of previously published research. Structural magnetic resonance imaging data were analyzed from healthy subjects who received transcranial direct current stimulation (tDCS), intermittent theta-burst stimulation (iTBS), and placebo. Twenty-two participants were randomly assigned to receive all the interventions in a random order. The working memory task was conducted after the end of each NIBS session. Regions of interest were the bilateral DLPFC, medial prefrontal cortex, and posterior cingulate cortex. Overall, 66 NIBS sessions were performed. Findings revealed a negative significant association between cortical thickness of the bilateral dorsolateral prefrontal cortex and reaction time for both tDCS (left: P=0.045, right: P=0.037) and iTBS (left: P=0.007, right: P=0.007) compared to placebo. A significant positive association was found for iTBS and posterior cingulate cortex (P=0.03). No association was found for accuracy. Our findings provide the first evidence that individual cortical thickness of healthy subjects might be associated with working memory performance following different NIBS interventions. Therefore, cortical thickness could explain - to some extent - the heterogeneous effects of NIBS probing the DLPFC.
Collapse
Affiliation(s)
- L.B. Razza
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - M.A. Vanderhasselt
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - M.S. Luethi
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J. Repple
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - G. Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21) e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - C.A. Buchpiguel
- Divisão de Medicina Nuclear (LIM-43), Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.R. Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Universitário, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P.H.R. da Silva
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Universitário, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
19
|
Cho JY, Van Hoornweder S, Sege CT, Antonucci MU, McTeague LM, Caulfield KA. Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. Front Neural Circuits 2023; 17:1214959. [PMID: 37736398 PMCID: PMC10510202 DOI: 10.3389/fncir.2023.1214959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Background Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL–Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Christopher T. Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Michael U. Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kevin A. Caulfield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Stanković M, Bjekić J, Filipović SR. Effects of Transcranial Electrical Stimulation on Gambling and Gaming: A Systematic Review of Studies on Healthy Controls, Participants with Gambling/Gaming Disorder, and Substance Use Disorder. J Clin Med 2023; 12:jcm12103407. [PMID: 37240512 DOI: 10.3390/jcm12103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gambling disorder (GD) and internet gaming disorder (IGD) are formally recognized behavioral addictions with a rapidly growing prevalence and limited treatment options. Recently, transcranial electrical stimulation (tES) techniques have emerged as potentially promising interventions for improving treatment outcomes by ameliorating cognitive functions implicated in addictive behaviors. To systematize the current state of evidence and better understand whether and how tES can influence gambling and gaming-related cognitive processes, we conducted a PRISMA-guided systematic review of the literature, focusing on tES effects on gaming and gambling in a diverse range of population samples, including healthy participants, participants with GD and IGD, as well as participants with substance abuse addictions. Following the literature search in three bibliographic databases (PubMed, Web of Science, and Scopus), 40 publications were included in this review, with 26 conducted on healthy participants, 6 focusing on GD and IGD patients, and 8 including participants with other addictions. Most of the studies targeted the dorsolateral prefrontal cortex, using transcranial direct current stimulation (tDCS), and assessed the effects on cognition, using gaming and gambling computerized cognitive tasks measuring risk taking and decision making, e.g., balloon analogue risk task, Iowa gambling task, Cambridge gambling task, etc. The results indicated that tES could change gambling and gaming task performances and positively influence GD and IGD symptoms, with 70% of studies showing neuromodulatory effects. However, the results varied considerably depending on the stimulation parameters, sample characteristics, as well as outcome measures used. We discuss the sources of this variability and provide further directions for the use of tES in the context of GD and IGD treatment.
Collapse
Affiliation(s)
- Marija Stanković
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Saša R Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
23
|
Nawani H, Mittner M, Csifcsák G. Modulation of mind wandering using transcranial direct current stimulation: A meta-analysis based on electric field modeling. Neuroimage 2023; 272:120051. [PMID: 36965860 DOI: 10.1016/j.neuroimage.2023.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Mind wandering (MW) is a heterogeneous construct involving task-unrelated thoughts. Recently, the interest in modulating MW propensity via non-invasive brain stimulation techniques has increased. Single-session transcranial direct current stimulation (tDCS) in healthy controls has led to mixed results in modulating MW propensity, possibly due to methodological heterogeneity. Therefore, our aim was to conduct a systematic meta-analysis to examine the influence of left dorsolateral prefrontal cortex (lDLPFC) and right inferior parietal lobule (rIPL) targeted tDCS on MW propensity. Importantly, by computational modeling of tDCS-induced electric fields, we accounted for differences in tDCS-dose across studies that varied strongly in their applied methodology. Fifteen single-session, sham-controlled tDCS studies published until October 2021 were included. All studies involved healthy adult participants and used cognitive tasks combined with MW thought-probes. Heterogeneity in tDCS electrode placement, stimulation polarity and intensity were controlled for by means of electric field simulations, while overall methodological quality was assessed via an extended risk of bias (RoB) assessment. We found that RoB was the strongest predictor of study outcomes. Moreover, the rIPL was the most promising cortical area for influencing MW, with stronger anodal electric fields in this region being negatively associated with MW propensity. Electric field strength in the lDLPFC was not related to MW propensity. We identified several severe methodological problems that could have contributed to overestimated effect sizes in this literature, an issue that needs urgent attention in future research in this area. Overall, there is no reliable evidence for tDCS influencing MW in the healthy. However, the analysis also revealed that increasing neural excitability in the rIPL via tDCS might be associated with reduced MW propensity. In an exploratory approach, we also found some indication that targeting prefrontal regions outside the lDLPFC with tDCS could lead to increased MW propensity.
Collapse
Affiliation(s)
- Hema Nawani
- Institute for Psychology, UiT The Arctic University of Norway.
| | | | - Gábor Csifcsák
- Institute for Psychology, UiT The Arctic University of Norway.
| |
Collapse
|
24
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
25
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Martin DM, Rushby JA, De Blasio FM, Wearne T, Osborne-Crowley K, Francis H, Xu M, Loo C, McDonald S. The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023; 179:108462. [PMID: 36563998 DOI: 10.1016/j.neuropsychologia.2022.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The effects of transcranial direct current stimulation (tDCS) for improving attention and working memory have been generally mixed and small, potentially due to variability between studies with montages, stimulus parameters and outcome measures. The tDCS montage is an important parameter which determines the degree and intensity of stimulation in targeted brain regions. This study aimed to examine the effects of using three different montages for modulating attention and working memory performance: Bi-frontal, Broad-frontal and Broad-parietal. Ninety-three healthy adults participated in a counterbalanced cross-over study. Participants received both active and sham tDCS with either the Bi-frontal, Broad-frontal or Broad-parietal montage during performance of both a 1- and 2-back task. TDCS montage moderated 2-back working memory reaction time performance, though not accuracy, with faster reaction times observed for active compared to sham tDCS with the Broad-frontal montage only (F (1,90) = 5.26, p = .024, η2 = 0.06). TDCS montage did not significantly moderate performance on the 1-back task. The cognitive effects of tDCS varied according to montage, task, and outcome measure. TDCS administered with the cathode placed extracephalically in a Broad-frontal montage may be beneficial for improving working memory.
Collapse
Affiliation(s)
- Donel M Martin
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia.
| | - Jacqueline A Rushby
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Frances M De Blasio
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Travis Wearne
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | | | - Heather Francis
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Colleen Loo
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| |
Collapse
|
27
|
Aksu S, Hasırcı Bayır BR, Sayman C, Soyata AZ, Boz G, Karamürsel S. Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-14. [PMID: 36630270 DOI: 10.1080/23279095.2022.2164717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Association of cognitive deficits and diabetic peripheral neuropathy (DPN) is frequent. Working memory (WM) deficits result in impairment of daily activities, diminished functionality, and treatment compliance. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) with concurrent working memory training (WMT) ameliorates cognitive deficits. Emboldening results of tDCS were shown in DPN. The study aimed to evaluate the efficacy of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) coupled with cathodal right DLPFC with concurrent WMT in DPN for the first time. The present randomized triple-blind parallel-group sham-controlled study evaluated the efficacy of 5 sessions of tDCS over the DLPFC concurrent with WMT in 28 individuals with painful DPN on cognitive (primary) and pain-related, psychiatric outcome measures before, immediately after, and 1-month after treatment protocol. tDCS enhanced the efficacy of WMT on working memory and yielded lower anxiety levels than sham tDCS but efficacy was not superior to sham on other cognitive domains, pain severity, quality of life, and depression. tDCS with concurrent WMT enhanced WM and ameliorated anxiety in DPN without affecting other cognitive and pain-related outcomes. Further research scrutinizing the short/long-term efficacy with larger samples is accredited.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Buse Rahime Hasırcı Bayır
- Department of Neurology, Health Sciences University, Haydarpaşa Numune Education and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Sayman
- Translational Neurodevelopmental Neuroscience Phd Programme, Institute of Health Science, Istanbul University, Istanbul, Türkiye
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Gökalp Boz
- Department of Psychology, Istanbul University, Istanbul, Türkiye
| | - Sacit Karamürsel
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
28
|
The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023. [DOI: 10.1016/j.neuropsychologia.2022.10846t2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Booth SJ, Brown LJE, Taylor JR, Pobric G. Experimental investigation of training schedule on home-based working memory training in healthy older adults. Front Psychol 2023; 14:1165275. [PMID: 37187566 PMCID: PMC10175577 DOI: 10.3389/fpsyg.2023.1165275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction The efficacy of working memory training (WMT) for cognitive enhancement in healthy older adults has been extensively investigated. Typically, WMT results in improved performance on the training task, but limited or no transfer of improvement to other cognitive tasks. Accordingly, there is a need to identify optimal intervention parameters to maximize training and transfer task effects of WMT. The current study aimed to investigate the effect of training schedule on training and transfer task performance of WMT in healthy older adults. A secondary aim was to examine the feasibility of participants performing the intervention online at home, unsupervised, and using their personal devices. Methods Participants (N = 71; mean age: 66 years) completed sixteen WMT or active-control sessions over eight (distributed) or four (intensive) weeks. Adaptive verbal and spatial n-back tasks were used as the WMT tasks. We tested near transfer effects to a digit-span task and far transfer effects to an abstract relational reasoning task. Results Participants successfully performed the cognitively demanding intervention using their own devices, online at home, and with minimal contact with the researcher. We observed a significant improvement in WMT task performance in the WMT group relative to active-controls, but no evidence of near or far transfer. Similar training effects were observed irrespective of the intensity of the training schedule. Discussion Our results suggest that comparable benefits could be observed when using less intensive schedules that may be more easily accommodated into everyday life.
Collapse
Affiliation(s)
- Samantha J. Booth
- Division of Psychology, Communication, and Human Neuroscience, School of Health Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Laura J. E. Brown
- Division of Psychology and Mental Health, School of Health Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Jason R. Taylor
- Division of Psychology, Communication, and Human Neuroscience, School of Health Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Gorana Pobric
- Division of Psychology, Communication, and Human Neuroscience, School of Health Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Gorana Pobric,
| |
Collapse
|
30
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
31
|
Segal O, Elkana O. The ventrolateral prefrontal cortex is part of the modular working memory system: A functional neuroanatomical perspective. Front Neuroanat 2023; 17:1076095. [PMID: 36923063 PMCID: PMC10008902 DOI: 10.3389/fnana.2023.1076095] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
For many years, the functional role of the ventrolateral Pre-Frontal Cortex (PFC) was associated with executive functions, specifically in the context of non-affective cognitive processes. However, recent research has suggested that the ventrolateral PFC is also involved in the attention system. The Ben Shalom model of the functional organization of the prefrontal cortex (2019) posits that the ventrolateral PFC selects perceptual stimuli after integration by the adjacent ventromedial PFC. This article reviews the state-of-the-art findings to better understand the role of the ventrolateral PFC in the selection of perceptual information as grounded in the Ben Shalom model. Numerous studies have reported converging evidence for the selective role of this area. However, most argue that this perceptual selection takes place through the active updating of information values linked to goal-oriented actions. These studies thus view the ventrolateral PFC as part of a system that actively manipulates and changes processed information such as the working memory function, rather than being part of the attention system. In agreement with this view, this review suggests that this area is part of a complex and modular working memory system and illustrates with reference to Diamond's work on ADD. This working memory system is functionally and anatomically dispersed and includes the dorsolateral PFC, the ACC, the parietal cortex, the basal ganglia, and the cerebellum. Hence, future research should continue to explore the specific neurofunctional roles of these areas in working memory systems, and the connections between the different subareas in this complex array.
Collapse
Affiliation(s)
- Orin Segal
- School of Behavioral Sciences, The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel
| | - Odelia Elkana
- School of Behavioral Sciences, The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel
| |
Collapse
|
32
|
Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep 2022; 12:20116. [PMID: 36418438 PMCID: PMC9684449 DOI: 10.1038/s41598-022-24618-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used noninvasive brain stimulation technique with mixed results to date. A potential solution is to apply more efficient stimulation to ensure that each participant receives sufficient cortical activation. In this four-part study, we used electric field (E-field) modeling to systematically investigate the cortical effects of conventional and novel tDCS electrode montages, with the goal of creating a new easily adoptable form of tDCS that induces higher and more focal E-fields. We computed 3000 anatomically accurate, MRI-based E-field models using 2 mA tDCS to target the left primary motor cortex in 200 Human Connectome Project (HCP) participants and tested the effects of: 1. Novel Electrode Position, 2. Electrode Size, and 3. Inter-Electrode Distance on E-field magnitude and focality. In particular, we examined the effects of placing electrodes surrounding the corticomotor target in the anterior and posterior direction (anterior posterior pad surround tDCS; APPS-tDCS). We found that electrode position, electrode size, and inter-electrode distance all significantly impact the cortical E-field magnitude and focality of stimulation (all p < 0.0001). At the same 2 mA scalp stimulation intensity, APPS-tDCS with smaller than conventional 1 × 1 cm electrodes surrounding the neural target deliver more than double the on-target cortical E-field (APPS-tDCS: average of 0.55 V/m from 2 mA; M1-SO and bilateral M1: both 0.27 V/m from 2 mA) while stimulating only a fraction of the off-target brain regions; 2 mA optimized APPS-tDCS produces 4.08 mA-like cortical E-fields. In sum, this new optimized APPS-tDCS method produces much stronger cortical stimulation intensities at the same 2 mA scalp intensity. APPS-tDCS also more focally stimulates the cortex at the intended target, using simple EEG coordinate locations and without MRI scans. This APPS-tDCS method is adoptable to any existing, commercially available tDCS device and can be used to ensure sufficient cortical activation in each person. Future directions include testing whether APPS-tDCS produces larger and more consistent therapeutic tDCS effects.
Collapse
|
33
|
Van Hoornweder S, A Caulfield K, Nitsche M, Thielscher A, L J Meesen R. Addressing transcranial electrical stimulation variability through prospective individualized dosing of electric field strength in 300 participants across two samples: the 2-SPED approach. J Neural Eng 2022; 19:056045. [PMID: 36240729 PMCID: PMC9855635 DOI: 10.1088/1741-2552/ac9a78] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Objective. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.Approach. We performed E-field modeling of three common tES montages in 300 healthy younger adults. First, permutation analyses identified the sample size required to obtain a stable group average E-field in the primary motor cortex (M1), with stability being defined as the number of participants where all group-average E-field strengths ± standard deviation did not leave the population's 5-95 percentile range. Second, this stable group average was used to individualize tES intensity in a second independent population (n = 100). The impact of individualized versus fixed intensity tES on E-field strength variability was analyzed.Main results. In the first population, stable group average E-field strengths (V/m) in M1 were achieved at 74-85 participants, depending on the tES montage. Individualizing the stimulation intensity (mA) in the second population resulted in uniform M1 E-field strength (all p < 0.001) and significantly diminished peak cortical E-field strength variability (all p < 0.01), across all montages.Significance. 2-SPED is a feasible way to prospectively induce more uniform E-field strengths in a region of interest. Future studies might apply 2-SPED to investigate whether decreased E-field strength variability also results in decreased physiological and behavioral variability in response to tES.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States of America
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bürkle de la Camp-Platz, Bochum, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Raf L J Meesen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Razza LB, da Silva PHR, Busatto GF, Duran FLDS, Pereira J, De Smet S, Klein I, Zanão TA, Luethi MS, Baeken C, Vanderhasselt MA, Buchpiguel CA, Brunoni AR. Brain Perfusion Alterations Induced by Standalone and Combined Non-Invasive Brain Stimulation over the Dorsolateral Prefrontal Cortex. Biomedicines 2022; 10:2410. [PMID: 36289672 PMCID: PMC9598449 DOI: 10.3390/biomedicines10102410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) interventions are promising for the treatment of psychiatric disorders. Notwithstanding, the NIBS mechanisms of action over the dorsolateral prefrontal cortex (DLPFC), a hub that modulates affective and cognitive processes, have not been completely mapped. We aimed to investigate regional cerebral blood flow (rCBF) changes over the DLPFC and the subgenual anterior cingulate cortex (sgACC) of different NIBS protocols using Single-Photon Emission Computed Tomography (SPECT). A factorial, within-subjects, double-blinded study was performed. Twenty-three healthy subjects randomly underwent four sessions of NIBS applied once a week: transcranial direct current stimulation (tDCS), intermittent theta-burst stimulation (iTBS), combined tDCS + iTBS and placebo. The radiotracer 99m-Technetium-ethylene-cysteine-dimer was injected intravenously during the NIBS session, and SPECT neuroimages were acquired after the session. Results revealed that the combination of tDCS + iTBS increased right sgACC rCBF. Cathodal and anodal tDCS increased and decreased DLPFC rCBF, respectively, while iTBS showed no significant changes compared to the placebo. Our findings suggest that the combined protocol might optimize the activity in the right sgACC and encourage future trials with neuropsychiatric populations. Moreover, mechanistic studies to investigate the effects of tDCS and iTBS over the DLPFC are required.
Collapse
Affiliation(s)
- Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Pedro Henrique Rodrigues da Silva
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Geraldo F. Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
| | - Fábio Luis de Souza Duran
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Izio Klein
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Tamires A. Zanão
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Matthias S. Luethi
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
- Department of Psychiatry (UZBrussel), Free University Brussels, 1090 Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium
| | - Carlos Alberto Buchpiguel
- Divisão de Medicina Nuclear (LIM-43), Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, R. Dr. Ovidio Pires de Campos 785, São Paulo 05403-000, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
- Hospital Universitário, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
35
|
Smits FM, Geuze E, de Kort GJ, Kouwer K, Geerlings L, van Honk J, Schutter DJ. Effects of Multisession Transcranial Direct Current Stimulation on Stress Regulation and Emotional Working Memory: A Randomized Controlled Trial in Healthy Military Personnel. Neuromodulation 2022:S1094-7159(22)00721-8. [DOI: 10.1016/j.neurom.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 10/16/2022]
|
36
|
Aust S, Brakemeier EL, Spies J, Herrera-Melendez AL, Kaiser T, Fallgatter A, Plewnia C, Mayer SV, Dechantsreiter E, Burkhardt G, Strauß M, Mauche N, Normann C, Frase L, Deuschle M, Böhringer A, Padberg F, Bajbouj M. Efficacy of Augmentation of Cognitive Behavioral Therapy With Transcranial Direct Current Stimulation for Depression: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:528-537. [PMID: 35442431 PMCID: PMC9021985 DOI: 10.1001/jamapsychiatry.2022.0696] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE Major depressive disorder (MDD) affects approximately 10% of the population globally. Approximately 20% to 30% of patients with MDD do not sufficiently respond to standard treatment. Therefore, there is a need to develop more effective treatment strategies. OBJECTIVE To investigate whether the efficacy of cognitive behavioral therapy (CBT) for the treatment of MDD can be enhanced by concurrent transcranial direct current stimulation (tDCS). DESIGN, SETTING, AND PARTICIPANTS The double-blind, placebo-controlled randomized clinical trial PsychotherapyPlus was conducted at 6 university hospitals across Germany. Enrollment took place between June 2, 2016, and March 10, 2020; follow-up was completed August 27, 2020. Adults aged 20 to 65 years with a single or recurrent depressive episode were eligible. They were either not receiving medication or were receiving a stable regimen of antidepressant medication (selective serotonin reuptake inhibitor and/or mirtazapine). A total of 148 women and men underwent randomization: 53 individuals were assigned to CBT alone (group 0), 48 to CBT plus tDCS (group 1), and 47 to CBT plus sham-tDCS (group 2). INTERVENTIONS Participants attended a 6-week group intervention comprising 12 sessions of CBT. If assigned, tDCS was applied simultaneously. Active tDCS included stimulation with an intensity of 2 mA for 30 minutes (anode over F3, cathode over F4). MAIN OUTCOMES AND MEASURES The primary outcome was the change in Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to posttreatment in the intention-to-treat sample. Scores of 0 to 6 indicate no depression; 7 to 19, mild depression; 20 to 34, moderate depression; and 34 and higher, severe depression. RESULTS A total of 148 patients (89 women, 59 men; mean [SD] age, 41.1 [13.7] years; MADRS score at baseline, 23.0 [6.4]) were randomized. Of these, 126 patients (mean [SD] age, 41.5 [14.0] years; MADRS score at baseline, 23.0 [6.3]) completed the study. In each of the intervention groups, intervention was able to reduce MADRS scores by a mean of 6.5 points (95% CI, 3.82-9.14 points). The Cohen d value was -0.90 (95% CI, -1.43 to -0.50), indicating a significant effect over time. However, there was no significant effect of group and no significant interaction of group × time, indicating the estimated additive effects were not statistically significant. There were no severe adverse events throughout the whole trial, and there were no significant differences of self-reported adverse effects during and after stimulation between groups 1 and 2. CONCLUSIONS AND RELEVANCE Based on MADRS score changes, this trial did not indicate superior efficacy of tDCS-enhanced CBT compared with 2 CBT control conditions. The study confirmed that concurrent group CBT and tDCS is safe and feasible. However, additional research on mechanisms of neuromodulation to complement CBT and other behavioral interventions is needed. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02633449.
Collapse
Affiliation(s)
- Sabine Aust
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva-Lotta Brakemeier
- Department of Clinical Psychology and Psychotherapy, Universität Greifswald, Greifswald, Germany
| | - Jan Spies
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana Lucia Herrera-Melendez
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tim Kaiser
- Department of Clinical Psychology and Psychotherapy, Universität Greifswald, Greifswald, Germany
| | - Andreas Fallgatter
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Christian Plewnia
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Sarah V. Mayer
- Universitätsklinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Tübingen Center for Mental Health, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Maria Strauß
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Nicole Mauche
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine & Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine & Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany
| | - Michael Deuschle
- Central Institute for Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Andreas Böhringer
- Central Institute for Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Malek Bajbouj
- Charité–Universitätsmedizin Berlin, Department of Psychiatry, Campus Benjamin Franklin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Molero-Chamizo A, Nitsche MA, Gutiérrez Lérida C, Salas Sánchez Á, Martín Riquel R, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches. BIOLOGY 2021; 10:1230. [PMID: 34943145 PMCID: PMC8698402 DOI: 10.3390/biology10121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | | | - Ángeles Salas Sánchez
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Raquel Martín Riquel
- Department of Psychology, University of Córdoba, 14071 Córdoba, Spain; (C.G.L.); (R.M.R.)
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - José Ramón Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|