1
|
Gong Y, Li J, Yuen YS, Yang NS, Li Z, Tang WK, Lu H. Daily high-frequency transcranial random noise stimulation (hf-tRNS) for sleep disturbances and cognitive dysfunction in patients with mild vascular cognitive impairments: A study protocol for a pilot randomized controlled trial. PLoS One 2024; 19:e0309233. [PMID: 39441802 PMCID: PMC11498659 DOI: 10.1371/journal.pone.0309233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Poor sleep quality is increasingly considered to be an underlying cause of cerebrovascular diseases. This is a slowly progressing condition that gradually leads to vascular cognitive impairment and stroke during ageing. At present, randomized clinical trials examining the non-pharmacological therapies in the management of this comorbidity are very limited. Transcranial current stimulation (tCS) is a non-invasive technology for promoting cognitive function and treating brain disorders. As advanced modalities of tCS, transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS), could deliver frequency-specific waveforms of currents that can modulate brain activities in a more specific manner. METHODS AND DESIGN Chinese individuals between the ages of 60 and 90 years, who are right-handed and have mild vascular cognitive impairment (VCI) with sleep disturbances, will participate in a randomized study. They will undergo a 2-week intervention period where they will be randomly assigned to one of three groups: high-frequency (hf)-tRNS, 40 Hz tACS, or sham tCS. Each group will consist of 15 participants. Before the intervention, high-resolution magnetic resonance imaging (MRI) data will be used to create a computational head model for each participant. This will help identify the treatment target of left inferior parietal lobe (IPL). Throughout the study, comprehensive assessments will be conducted at multiple time points, including baseline, 2nd week, 6th week, and 12th week. These assessments will evaluate various factors such as sleep quality, domain-specific cognitive performance, and actigraphic records. In addition, the participants' adherence to the program and any potential adverse effects will be closely monitored throughout the duration of the intervention. CONCLUSIONS The primary objective of this study is to examine the safety, feasibility, and effectiveness of hf-tRNS and 40 Hz tACS interventions targeting left IPL in individuals with mild vascular cognitive impairment (VCI) who experience sleep disturbances and cognitive dysfunction. Additionally, the study seeks to evaluate the program's adherence, tolerability, and any potential adverse effects associated with frequency-specific transcranial current stimulation (tCS). The findings from this research will contribute to a deeper understanding of the intricate relationship between oscillation, sleep, and cognition. Furthermore, the results will provide valuable insights to guide future investigations in the field of sleep medicine and neurodegenerative diseases. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06169254.
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk Shan Yuen
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natalie Shu Yang
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Zeyan Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Tokikuni Y, Watanabe A, Nakazono H, Miura H, Saito R, Miaowen D, Fuyama K, Takahashi K, Okada K, Sugawara K, Tohyama H, Yoshida S, Fong KNK, Sawamura D. Differing effectiveness of transcranial random noise stimulation and transcranial direct current stimulation for enhancing working memory in healthy individuals: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:180. [PMID: 39402554 PMCID: PMC11472542 DOI: 10.1186/s12984-024-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (DLPFC) is a promising technique for enhancing working memory (WM) performance in healthy and psychiatric populations. However, limited information is available about the effectiveness of transcranial random noise stimulation (tRNS) applied to the left DLPFC on WM. This study investigated the effectiveness of tRNS on WM compared with that of tDCS, which has established functional evidence. METHODS This randomized, double-blind, sham-controlled trial enrolled 120 healthy right-handed adults who were randomly allocated to four stimulation groups: tRNS + direct current (DC) offset, tRNS, tDCS, or sham. Each stimulus was placed over the left DLPFC and had a current intensity of 2 mA applied for 20 min during the dual n-back task. The dual n-back task was repeated thrice: pre-stimulation, during stimulation, and post-stimulation. The d-prime scores, and response times were calculated as the main outcome measures. A linear mixed model was created to identify the main effects and interactions between the groups and times, with the group and time as fixed effects, and baseline performance and the subject as a covariate and random effect, respectively. The relationships between the benefit of each stimulus and baseline WM performance were also examined. RESULTS For the d-prime score during stimulation, the tRNS group significantly performed better than the sham group at online assessment (β = 0.310, p = 0.001). In the relationships between the benefit of each stimulus and baseline WM performance, the tRNS group had significantly larger negative line slopes than the sham group for the d-prime score (β = -0.233, p = 0.038). CONCLUSIONS tRNS applied to the left DLPFC significantly improved WM performance and generated greater benefits for healthy individuals with lower WM performance. These findings highlight the potential utility of tRNS for enhancing WM performance in individuals with lower WM performance and contribute evidence for clinical application to patients with cognitive decline. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000047365) on April 1, 2022; https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000054021 .
Collapse
Affiliation(s)
- Yukina Tokikuni
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akihiro Watanabe
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| | - Hiroshi Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryuji Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Duan Miaowen
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Keita Takahashi
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061- 0293, Japan
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan.
| |
Collapse
|
3
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Enhancement of phonemic verbal fluency in multilingual young adults by transcranial random noise stimulation. Neuropsychologia 2024; 198:108882. [PMID: 38599569 DOI: 10.1016/j.neuropsychologia.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Several studies have analyzed the effects of transcranial direct current stimulation on verbal fluency tasks in non-clinical populations. Nevertheless, the reported effects on verbal fluency are inconsistent. In addition, the effect of other techniques such as transcranial random noise stimulation (tRNS) on verbal fluency enhancement has yet to be studied in healthy multilingual populations. This study aims to explore the effects of tRNS on verbal fluency in healthy multilingual individuals. Fifty healthy multilingual (Spanish, English and Basque) adults were randomly assigned to a tRNS or sham group. Electrodes were placed on the left dorsolateral prefrontal cortex and left inferior frontal gyrus. All participants performed phonemic and semantic verbal fluency tasks before, during (online assessment) and immediately after (offline assessment) stimulation in three different languages. The results showed significantly better performance by participants who received tRNS in the phonemic verbal fluency tasks in Spanish (in the online and offline assessment) and English (in the offline assessment). No differences between conditions were found in Basque nor semantic verbal fluency. These findings suggests that tRNS on the left prefrontal cortex could help improve phonemic, yet not semantic, fluency in healthy multilingual adults.
Collapse
Affiliation(s)
| | - Leire Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | | | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
5
|
Wu PJ, Huang CH, Lee SY, Chang AYW, Wang WC, Lin CCK. The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Front Hum Neurosci 2024; 18:1415904. [PMID: 38873654 PMCID: PMC11169625 DOI: 10.3389/fnhum.2024.1415904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsu Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuenn-Yuh Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K. Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Buck O, Found T, Weldon R, Lim LW, Aquili L. Dietary tyrosine consumption modulates the effects of tDCS, but not tRNS, on planning behaviour. Brain Stimul 2024; 17:572-574. [PMID: 38648971 DOI: 10.1016/j.brs.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Oliver Buck
- College of Health and Education, School of Psychology, Murdoch University, Perth, Australia
| | - Tenielle Found
- College of Health and Education, School of Psychology, Murdoch University, Perth, Australia
| | - Rachel Weldon
- College of Health and Education, School of Psychology, Murdoch University, Perth, Australia
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Luca Aquili
- College of Health and Education, School of Psychology, Murdoch University, Perth, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Salehinejad MA, Siniatchkin M. Safety of noninvasive brain stimulation in children. Curr Opin Psychiatry 2024; 37:78-86. [PMID: 38226535 DOI: 10.1097/yco.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW Noninvasive brain stimulation (NIBS) is a promising method for altering cortical excitability with clinical implications. It has been increasingly used in children, especially in neurodevelopmental disorders. Yet, its safety and applications in the developing brain require further investigation. This review aims to provide an overview of the safety of commonly used NIBS techniques in children, including transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS). Safety data for other NIBS methods is not reported in this review. RECENT FINDINGS In line with studies from the last decade, findings in the last 2 years (2022-2023) support the safety of NIBS in children and adolescents within the currently applied protocols. Both tES and TMS are well tolerated, if safety rules, including exclusion criteria, are applied. SUMMARY We briefly discussed developmental aspects of stimulation parameters that need to be considered in the developing brain and provided an up-to-date overview of tES/TMS applications in children and adolescents. Overall, the safety profile of tES/TMS in children is good. For both the tES and TMS applications, epilepsy and active seizure disorder should be exclusion criteria to prevent potential seizures. Using child-sized earplugs is required for TMS applications. We lack large randomized double-blind trialsand longitudinal studies to establish the safety of NIBS in children. VIDEO ABSTRACT http://links.lww.com/YCO/A78 .
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Neuromdulation Group, Department of Psychology and Neurosciences, Leibniz-Institut für Arbeitsforschung an der TU Dortmund, Dortmund
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Pereira FES, Jagatheesaperumal SK, Benjamin SR, Filho PCDN, Duarte FT, de Albuquerque VHC. Advancements in non-invasive microwave brain stimulation: A comprehensive survey. Phys Life Rev 2024; 48:132-161. [PMID: 38219370 DOI: 10.1016/j.plrev.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.
Collapse
Affiliation(s)
| | - Senthil Kumar Jagatheesaperumal
- Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Ceará, Brazil; Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - Stephen Rathinaraj Benjamin
- Department of Pharmacology and Pharmacy, Laboratory of Behavioral Neuroscience, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-160, Ceará, Brazil
| | | | | | | |
Collapse
|
9
|
Contemori G, Maniglia M, Guénot J, Soler V, Cherubini M, Cottereau BR, Trotter Y. tRNS boosts visual perceptual learning in participants with bilateral macular degeneration. Front Aging Neurosci 2024; 16:1326435. [PMID: 38450381 PMCID: PMC10914974 DOI: 10.3389/fnagi.2024.1326435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Perceptual learning (PL) has shown promise in enhancing residual visual functions in patients with age-related macular degeneration (MD), however it requires prolonged training and evidence of generalization to untrained visual functions is limited. Recent studies suggest that combining transcranial random noise stimulation (tRNS) with perceptual learning produces faster and larger visual improvements in participants with normal vision. Thus, this approach might hold the key to improve PL effects in MD. To test this, we trained two groups of MD participants on a contrast detection task with (n = 5) or without (n = 7) concomitant occipital tRNS. The training consisted of a lateral masking paradigm in which the participant had to detect a central low contrast Gabor target. Transfer tasks, including contrast sensitivity, near and far visual acuity, and visual crowding, were measured at pre-, mid and post-tests. Combining tRNS and perceptual learning led to greater improvements in the trained task, evidenced by a larger increment in contrast sensitivity and reduced inhibition at the shortest target to flankers' distance. The overall amount of transfer was similar between the two groups. These results suggest that coupling tRNS and perceptual learning has promising potential applications as a clinical rehabilitation strategy to improve vision in MD patients.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padua, Italy
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Jade Guénot
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Vincent Soler
- Service d’Ophtalmologie Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marta Cherubini
- Centre National de la Recherche Scientifique, Toulouse, France
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Benoit R. Cottereau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Yves Trotter
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
10
|
Dondé C, Fivel L, Haesebaert F, Poulet E, Mondino M, Brunelin J. Mechanistic account of the left auditory cortex for tone-matching in schizophrenia: A pilot transcranial random noise stimulation (tRNS) sham-controlled study. Asian J Psychiatr 2024; 92:103879. [PMID: 38157711 DOI: 10.1016/j.ajp.2023.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Deficits in the ability to match tones following brief delay and their contribution to higher-order cognitive alterations have been repeatedly documented in schizophrenia. The aim was to explore if left fronto-temporal high-frequency transcranial random noise stimulation (hf-tRNS), with electrodes placed over brain regions involved in tone-matching would significantly modulate performances in participants with schizophrenia. METHODS In a randomized, double-blind sham-controlled study, 10 participants with schizophrenia were allocated to receive ten sessions of either active or sham hf-tRNS. The anode was placed over the left prefrontal cortex and the cathode over the left temporoparietal junction. A tone-matching task was administered before and after the hf-tRNS. RESULTS We calculated the changes in tone-matching performance before and after hf-tRNS session in each group. A significant between-group difference was observed for the difficult tone-matching conditions (W= 14.500, p = 0.032), with tone-matching improvement in the sham group and no improvement in the active group. DISCUSSION hf-tRNS could disrupt the test-retest learning effect in the tone-matching task in individuals with schizophrenia. It is likely that this disruption resulted from cathodal-induced inhibition of the functional coupling between auditory cortical areas that correlates with tone-matching performance in patients. CONCLUSION The findings contribute to our understanding of hf-tRNS effects on early auditory processing in schizophrenia.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, Grenoble institute Neurosciences, F-38000 Grenoble, France; Adult Psychiatry Department, University Hospital Grenoble Alpes, F-38000 Grenoble, France.
| | - Laure Fivel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Fréderic Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Emmanuel Poulet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France.
| |
Collapse
|
11
|
LoBue C, McClintock SM, Chiang HS, Helphrey J, Thakkar VJ, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vishal J Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
12
|
Hohenester M, Langguth B, Wetter TC, Geisler P, Schecklmann M, Reissmann A. Single sessions of transcranial direct current stimulation and transcranial random noise stimulation exert no effect on sleepiness in patients with narcolepsy and idiopathic hypersomnia. Front Psychiatry 2023; 14:1288976. [PMID: 38146280 PMCID: PMC10749348 DOI: 10.3389/fpsyt.2023.1288976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Background Hypersomnia poses major challenges to treatment providers given the limitations of available treatment options. In this context, the application of non-invasive brain stimulation techniques such as transcranial electrical stimulation (tES) may open up new avenues to effective treatment. Preliminary evidence suggests both acute and longer-lasting positive effects of transcranial direct current stimulation (tDCS) on vigilance and sleepiness in hypersomniac patients. Based on these findings, the present study sought to investigate short-term effects of single sessions of tDCS and transcranial random noise stimulation (tRNS) on sleepiness in persons suffering from hypersomnia. Methods A sample of 29 patients suffering from narcolepsy or idiopathic hypersomnia (IH) was recruited from the Regensburg Sleep Disorder Center and underwent single sessions of tES (anodal tDCS, tRNS, sham) over the left and right dorsolateral prefrontal cortex on three consecutive days in a double-blind, sham-controlled, pseudorandomized crossover trial. The primary study endpoint was the mean reaction time measured by the Psychomotor Vigilance Task (PVT) before and directly after the daily tES sessions. Secondary endpoints were additional PVT outcome metrics as well as subjective outcome parameters (e.g., Karolinska Sleepiness Scale; KSS). Results There were no significant treatment effects neither on objective (i.e., PVT) nor on subjective indicators of sleepiness. Conclusion We could not demonstrate any clinically relevant effects of single sessions of tDCS or tRNS on objective or subjective measures of sleepiness in patients with hypersomnia. However, we cannot exclude that repeated sessions of tES may affect vigilance or sleepiness in hypersomniac patients.
Collapse
Affiliation(s)
- Michaela Hohenester
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Hematology and Oncology, Krankenhaus der Barmherzigen Brüder Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | - Peter Geisler
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Andreas Reissmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Zhang JH, Liang J, Yang ZW. Non-invasive brain stimulation for fibromyalgia: current trends and future perspectives. Front Neurosci 2023; 17:1288765. [PMID: 37928733 PMCID: PMC10620708 DOI: 10.3389/fnins.2023.1288765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Fibromyalgia, a common and enduring pain disorder, ranks as the second most prevalent rheumatic disease after osteoarthritis. Recent years have witnessed successful treatment using non-invasive brain stimulation. Transcranial magnetic stimulation, transcranial direct current stimulation, and electroconvulsion therapy have shown promise in treating chronic pain. This article reviews the literature concerning non-invasive stimulation for fibromyalgia treatment, its mechanisms, and establishes a scientific basis for rehabilitation, and discusses the future directions for research and development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Jian Liang
- Laboratory of Sports Rehabilitation, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Zhong-Wei Yang
- Laboratory of Sports Rehabilitation, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Gorrino I, Canessa N, Mattavelli G. Testing the effect of high-definition transcranial direct current stimulation of the insular cortex to modulate decision-making and executive control. Front Behav Neurosci 2023; 17:1234837. [PMID: 37840546 PMCID: PMC10568024 DOI: 10.3389/fnbeh.2023.1234837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Previous neuroimaging evidence highlighted the role of the insular and dorsal anterior cingulate cortex (dACC) in conflict monitoring and decision-making, thus supporting the translational implications of targeting these regions in neuro-stimulation treatments for clinical purposes. Recent advancements of targeting and modeling procedures for high-definition tDCS (HD-tDCS) provided methodological support for the stimulation of otherwise challenging targets, and a previous study confirmed that cathodal HD-tDCS of the dACC modulates executive control and decision-making metrics in healthy individuals. On the other hand, evidence on the effect of stimulating the insula is still needed. Methods We used a modeling/targeting procedure to investigate the effect of stimulating the posterior insula on Flanker and gambling tasks assessing, respectively, executive control and both loss and risk aversion in decision-making. HD-tDCS was applied through 6 small electrodes delivering anodal, cathodal or sham stimulation for 20 min in a within-subject offline design with three separate sessions. Results Bayesian statistical analyses on Flanker conflict effect, as well as loss and risk aversion, provided moderate evidence for the null model (i.e., absence of HD-tDCS modulation). Discussion These findings suggest that further research on the effect of HD-tDCS on different regions is required to define reliable targets for clinical applications. While modeling and targeting procedures for neuromodulation in clinical research could lead to innovative protocols for stand-alone treatment, or possibly in combination with cognitive training, assessing the effectiveness of insula stimulation might require sensitive metrics other than those investigated here.
Collapse
Affiliation(s)
- Irene Gorrino
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| | - Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| |
Collapse
|
15
|
Dakwar-Kawar O, Mairon N, Hochman S, Berger I, Cohen Kadosh R, Nahum M. Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial. Transl Psychiatry 2023; 13:271. [PMID: 37528107 PMCID: PMC10394047 DOI: 10.1038/s41398-023-02547-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Non-invasive brain stimulation has been suggested as a potential treatment for improving symptomology and cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD), the most common childhood neurodevelopmental disorder. Here, we examined whether a novel form of stimulation, high-frequency transcranial random noise stimulation (tRNS), applied with cognitive training (CT), may impact symptoms and neural oscillations in children with ADHD. We conducted a randomized, double-blind, sham-controlled trial in 23 unmedicated children with ADHD, who received either tRNS over the right inferior frontal gyrus (rIFG) and left dorsolateral prefrontal cortex (lDLPFC) or sham stimulation for 2 weeks, combined with CT. tRNS + CT yielded significant clinical improvements (reduced parent-reported ADHD rating-scale scores) following treatment, compared to the control intervention. These improvements did not change significantly at a 3-week follow-up. Moreover, resting state (RS)-EEG periodic beta bandwidth of the extracted peaks was reduced in the experimental compared to control group immediately following treatment, with further reduction at follow-up. A lower aperiodic exponent, which reflects a higher cortical excitation/inhibition (E/I) balance and has been related to cognitive improvement, was seen in the experimental compared to control group. This replicates previous tRNS findings in adults without ADHD but was significant only when using a directional hypothesis. The experimental group further exhibited longer sleep onset latencies and more wake-up times following treatment compared to the control group. No significant group differences were seen in executive functions, nor in reported adverse events. We conclude that tRNS + CT has a lasting clinical effect on ADHD symptoms and on beta activity. These results provide a preliminary direction towards a novel intervention in pediatric ADHD.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noam Mairon
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Itai Berger
- Pediatric Neurology Unit, Assuta-Ashdod University Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- School of Social Work and Social Welfare, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mor Nahum
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Potok W, van der Groen O, Sivachelvam S, Bächinger M, Fröhlich F, Kish LB, Wenderoth N. Contrast detection is enhanced by deterministic, high-frequency transcranial alternating current stimulation with triangle and sine waveform. J Neurophysiol 2023; 130:458-473. [PMID: 37465880 PMCID: PMC10625838 DOI: 10.1152/jn.00465.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS.NEW & NOTEWORTHY Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS)triangle and tACSsine targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.
Collapse
Affiliation(s)
- Weronika Potok
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Sahana Sivachelvam
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Laszlo B Kish
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, United States
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| |
Collapse
|
17
|
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol Behav 2023; 261:114073. [PMID: 36608913 DOI: 10.1016/j.physbeh.2023.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The present review considers all papers published on the topic up to the end of the year 2022. Transcranial random noise stimulation (tRNS) is a non-invasive neuromodulation technique introduced about 15 years ago whose use is becoming increasingly widespread in neuroscience. It consists of the application over the scalp of a weak, white noise-like current, through electrodes having a surface of several square centimetres, for a duration ranging from seconds to minutes. Despite its relatively low spatial and temporal resolution, tRNS has well defined effects on central motor excitability, which critically depend on stimulation parameters. These effects seem to be chiefly based on an effect on neuronal membrane sodium channels and can last much longer than the stimulation itself. While the effects at the cellular level in the motor cortex are becoming progressively clear, much more studies are needed to understand the effects of tRNS on motor behaviour and performance, where initial research results are nevertheless promising, in both basic and applied research.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma "Foro Italico", Italy.
| | - Davide Rivolta
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Valerio Manippa
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
18
|
Dawood Rahimi M, Taghi Kheirkhah M, Salehi Fadardi J. Efficacy of tDCS in chronic migraine: A multiprotocol randomized controlled trial. Clin Neurophysiol 2023; 150:119-130. [PMID: 37060843 DOI: 10.1016/j.clinph.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Given the prevalence and complicated pathophysiology of migraine, unknown or varied mechanisms of action of available monotherapies or add-on therapies, and their broad range of adverse effects, it is imperative to manage migraine symptoms using a non-invasive, multifunctional, and alternate monotherapy with no negative impacts. METHODS We used a single-blind, randomized, sham-controlled design with baseline, post-test, and 24-weeks follow-up measurements to assess the efficacy of transcranial Direct Current Stimulation (tDCS) in chronic migraine. A total of 150 participants were randomly assigned to the five groups (i.e., allocation ratio of 1:1:1:1:1). Each group received tDCS-intervention for 11 consecutive-weeks (25 sessions; each session = two consecutive montages; each montage = a 20 min duration, 2000 μA intensity). RESULTS The multivariate analysis of variance showed significant (p <.05) reductions in chronic migraine symptoms in the four intervention groups. Compared with the sham (η2 < 0.18) and other protocols (two = η2 > 0.42; three = η2 > 0.40; four = η2 > 0.51), protocol one [l. anode at the right ventrolateral prefrontal cortices, cathode at the left dorsomedial and superior frontal gyrus-first montage; anode at the right primary motor area, cathode at the medial crosstalk of hemispheres-second montage] showed a larger effect size (η2 > 0.59) in the present trial. CONCLUSIONS With the applied protocols of the present trial, tDCS can be used as an effective intervention for the prophylactic and therapeutic treatment of chronic migraine. However, while the second protocol was the least effective, the first was the most effective at reducing migraine symptoms. SIGNIFICANCE To our knowledge, the present trial is the first study to cover the gaps of the earlier ones, including the parameters like the site of stimulation, electrode range distribution and field intensity, number of sessions, session design, and sample size.
Collapse
|
19
|
Sethi A, Pascual-Leone A, Santarnecchi E, Almalki G, Krishnan C. Transcranial random noise stimulation to augment hand function in individuals with moderate-to-severe stroke: A pilot randomized clinical trial. Restor Neurol Neurosci 2023; 41:193-202. [PMID: 38306067 DOI: 10.3233/rnn-231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Interventions to recover upper extremity (UE) function after moderate-to-severe stroke are limited. Transcranial random noise stimulation (tRNS) is an emerging non-invasive technique to improve neuronal plasticity and may potentially augment functional outcomes when combined with existing interventions, such as functional electrical stimulation (FES). Objective The objective of this study was to investigate the feasibility and preliminary efficacy of combined tRNS and FES-facilitated task practice to improve UE impairment and function after moderate-to-severe stroke. Methods Fourteen individuals with UE weakness were randomized into one of two groups: 1) tRNS with FES-facilitated task practice, or 2) sham-tRNS with FES-facilitated task practice. Both groups involved 18 intervention sessions (3 per week for 6 weeks). tRNS was delivered at 2 mA current between 100-500 Hz for the first 30 minutes of FES-facilitated task practice. We evaluated the number of sessions completed, adverse effects, participant satisfaction, and intervention fidelity between the two therapists. UE impairment (Fugl-Meyer Upper Extremity, FMUE), function (Wolf Motor Function Test, WMFT), participation (Stroke Impact Scale hand score, SIS-H), and grip strength were assessed at baseline, within 1 week and 3 months after completing the intervention. Results All participants completed the 18 intervention sessions. Participants reported minimal adverse effects (mild tingling in head). The two trained therapists demonstrated 93% adherence and 96% competency with the intervention protocol. FMUE and SIS-H improved significantly more in the tRNS group than in the sham-tRNS group at both timepoints (p≤0.05), and the differences observed exceeded the clinically meaningful differences for these scores. The WMFT and paretic hand grip strength improved in both groups after the intervention (p≤0.05), with no significant between group differences. Conclusion Our findings show for the first time that combining tRNS and FES-facilitated task practice is a feasible and promising approach to improve UE impairment and function after moderate-to-severe stroke.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School Boston, MA, USA
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghaleb Almalki
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Director of NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Department of Physical Therapy, University of Michigan, Flint, MI, USA
| |
Collapse
|
20
|
Smeele SJ, Adhia DB, De Ridder D. Feasibility and Safety of High-Definition Infraslow Pink Noise Stimulation for Treating Chronic Tinnitus—A Randomized Placebo-Controlled Trial. Neuromodulation 2022:S1094-7159(22)01339-3. [DOI: 10.1016/j.neurom.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
|
21
|
Bertoni S, Franceschini S, Campana G, Facoetti A. The effects of bilateral posterior parietal cortex tRNS on reading performance. Cereb Cortex 2022; 33:5538-5546. [PMID: 36336338 DOI: 10.1093/cercor/bhac440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
According to established cognitive neuroscience knowledge based on studies on disabled and typically developing readers, reading is based on a dual-stream model in which a phonological-dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, whereas an orthographic-ventral stream (left occipito-temporal and inferior frontal areas) processes known words. However, correlational neuroimaging, causal longitudinal, training, and pharmacological studies have suggested the critical role of visuo-spatial attention in reading development. In a double blind, crossover within-subjects experiment, we manipulated the neuromodulatory effect of a short-term bilateral stimulation of posterior parietal cortex (PPC) by using active and sham tRNS during reading tasks in a large sample of young adults. In contrast to the dual-stream model predicting either no effect or a selective effect on the stimulated phonological-dorsal stream (as well as to a general multisensory effect on both reading streams), we found that only word-reading performance improved after active bilateral PPC tRNS. These findings demonstrate a direct neural connectivity between the PPC, controlling visuo-spatial attention, and the ventral stream for visual word recognition. These results support a neurobiological model of reading where performance of the orthographic-ventral stream is boosted by an efficient deployment of visuo-spatial attention from bilateral PPC stimulation.
Collapse
Affiliation(s)
- Sara Bertoni
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
- Department of Human and Social Sciences, University of Bergamo , Bergamo 24129 , Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Gianluca Campana
- PercUp Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| |
Collapse
|
22
|
Mondino M, Janin D, Galvao F, Brunelin J. High-Frequency Transcranial Random Noise Stimulation for Auditory Hallucinations of Schizophrenia: A Case Series. Biomedicines 2022; 10:2698. [PMID: 36359217 PMCID: PMC9687535 DOI: 10.3390/biomedicines10112698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Transcranial electrical stimulation has been proposed as a noninvasive therapeutic approach for reducing treatment-resistant symptoms of schizophrenia-in particular, auditory hallucinations. However, the high variability observed in the clinical response leaves much room to optimize the stimulation parameters and strengthen its benefits. We proposed to investigate the effects of high-frequency transcranial random noise stimulation (hf-tRNS), which is supposed to induce larger effects than conventional direct current stimulation. Here, we present an initial case series of ten patients with schizophrenia who underwent 10 sessions of 20 min hf-tRNS (2 mA, 100-500 Hz, 1 mA offset), with the anode placed over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Patients showed a significant reduction in auditory hallucinations after the hf-tRNS sessions (-36.1 +/- 21.8%, p = 0.0059). In this preliminary, open-label study conducted in ten patients with treatment-resistant symptoms of schizophrenia, frontotemporal hf-tRNS was shown to induce a substantial improvement in auditory hallucinations. Additional sham-controlled studies are needed to further evaluate hf-tRNS as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Marine Mondino
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| | - Delphine Janin
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| | - Filipe Galvao
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Jérôme Brunelin
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
23
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
24
|
Lee C, Zhang Z, Janušonis S. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks. Front Neurosci 2022; 16:949934. [PMID: 36267232 PMCID: PMC9577023 DOI: 10.3389/fnins.2022.949934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan. Since the trajectories of serotonergic fibers can be modeled as paths of anomalous diffusion processes, in this proof-of-concept study we investigated a dropout algorithm based on the superdiffusive fractional Brownian motion (FBM). The results demonstrate that serotonergic fibers can potentially implement a dropout-like mechanism in brain tissue, supporting neuroplasticity. They also suggest that mathematical theories of the structure and dynamics of serotonergic fibers can contribute to the design of dropout algorithms in ANNs.
Collapse
Affiliation(s)
- Christian Lee
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|