1
|
Deng H, Zhou P, Wang J, Zeng J, Yu C. CircRNA expression profiling of the rat thalamus in temporomandibular joint chronic inflammatory pain. Gene 2025; 934:149024. [PMID: 39433265 DOI: 10.1016/j.gene.2024.149024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Orofacial pain (OFP) induced by temporomandibular disorders (TMDs) is prevalent, affecting approximately 4.6 % of the population. One specific type of TMD is temporomandibular osteoarthritis (TMJOA), a common degenerative disease that significantly impacts patients' quality of life. Differentially expressed circular RNAs (DEcircRNAs) in the thalamus, which serves as a relay station in the orofacial pain transmission pathway, may play a crucial role and serve as potential target markers for inflammation and the progression of inflammatory pain in TMJOA. The aim of this study was to investigate the expression profile of circRNAs in the thalamus of TMJOA. We obtained the circRNA expression profile from the thalamus of a rat model of TMJOA through high-throughput sequencing (HT-seq) and further validated their expression using reverse transcription real-time polymerase chain reaction (RT-qPCR), followed by bioinformatics analysis of the expression data. A total of 425 circRNAs (DESeq2 p- value < 0.05, |log2FoldChange| > 0.0) were identified as significantly differentially expressed by RNA-Seq, comprising 188 up-regulated and 237 down-regulated circRNAs. After validation via RT-qPCR, we employed miRanda software to predict the binding sites of miRNAs for the identified circRNAs to further explore the functions of DEcircRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that DEcircRNAs were primarily enriched in pathways and functions related to synapse development, protein signaling and modification, 'Circadian entertainment', the 'MAPK signaling pathway', and 'Glutamatergic synapse'. These findings suggest that DEcircRNAs in the thalamus play a significant role in the progression of TMJOA and may serve as promising candidate molecular targets for gene therapy.
Collapse
Affiliation(s)
- Haixia Deng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pan Zhou
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Wang
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
2
|
Latypov TH, Wolfensohn A, Yakubov R, Li J, Srisaikaew P, Jörgens D, Jones A, Colak E, Mikulis D, Rudzicz F, Oh J, Hodaie M. Signatures of chronic pain in multiple sclerosis: a machine learning approach to investigate trigeminal neuralgia. Pain 2024:00006396-990000000-00789. [PMID: 39680491 DOI: 10.1097/j.pain.0000000000003497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/01/2024] [Indexed: 12/18/2024]
Abstract
ABSTRACT Chronic pain is a pervasive, disabling, and understudied feature of multiple sclerosis (MS), a progressive demyelinating and neurodegenerative disease. Current focus on motor components of MS disability combined with difficulties assessing pain symptoms present a challenge for the evaluation and management of pain in MS, highlighting the need for novel methods of assessment of neural signatures of chronic pain in MS. We investigate chronic pain in MS using MS-related trigeminal neuralgia (MS-TN) as a model condition focusing on gray matter structures as predictors of chronic pain. T1 imaging data from people with MS (n = 75) and MS-TN (n = 77) using machine learning (ML) was analyzed to derive imaging predictors at the level of cortex and subcortical gray matter. The ML classifier compared imaging metrics of patients with MS and MS-TN and distinguished between these conditions with 93.4% individual average testing accuracy. Structures within default-mode, somatomotor, salience, and visual networks (including hippocampus, primary somatosensory cortex, occipital cortex, and thalamic subnuclei) were identified as significant imaging predictors of trigeminal neuralgia pain. Our results emphasize the multifaceted nature of chronic pain and demonstrate the utility of imaging and ML in assessing and understanding MS-TN with greater objectivity.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Abigail Wolfensohn
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Faculty of Science, McGill University, Montreal, QC, Canada
| | - Rose Yakubov
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jerry Li
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Patcharaporn Srisaikaew
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
| | - Daniel Jörgens
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
| | - Ashley Jones
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Errol Colak
- Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - David Mikulis
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Frank Rudzicz
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Jiwon Oh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour, Krembil Research Institute University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Pashkov A, Filimonova E, Zaitsev B, Martirosyan A, Moysak G, Rzaev J. Thalamic changes in patients with chronic facial pain. Neuroradiology 2024:10.1007/s00234-024-03508-7. [PMID: 39644395 DOI: 10.1007/s00234-024-03508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE To investigate structural alterations in the thalamus in patients with primary trigeminal neuralgia and provide a detailed perspective on thalamic remodeling in response to chronic pain at the level of individual thalamic nuclei. METHODS: We analyzed a sample of 62 patients with primary trigeminal neuralgia who underwent surgical treatment, along with 28 healthy participants. Magnetic resonance imaging (MRI) data were acquired using a 3T system equipped with a 16-channel receiver head coil. Segmentation of the thalamic nuclei was performed using FreeSurfer 7.2.0. We divided the group of patients with trigeminal neuralgia into two subgroups: those with right-sided pain and those with left-sided pain. Each subgroup was compared to a control group by means of one-way ANOVA. Associations between morphometric and clinical variables were assessed with Spearman correlation coefficient. RESULTS Our results revealed significant gray matter volume changes in thalamic nuclei among patients with trigeminal neuralgia. Notably, the intralaminar nuclei (centromedian/parafascicular) and nuclei associated with visual and auditory signal processing (lateral and medial geniculate bodies) exhibited significant alterations, contrasting with the ventral group nuclei involved in nociceptive processing. Additionally, we found no substantial volume increase in any of the studied nuclei following successful surgical intervention 6 months later. The volumes of thalamic nuclei were negatively correlated with pain intensity and disease duration. CONCLUSION The results of this study, although preliminary, hold promise for clinical applications as they reveal previously unknown structural alterations in the thalamus that occur in patients with chronic trigeminal neuralgia.
Collapse
Affiliation(s)
- Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia.
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia.
| | - Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Boris Zaitsev
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
| | - Azniv Martirosyan
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
| | - Galina Moysak
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2024:S1471-4914(24)00260-0. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Lei J, Tang LL, Jing R, You HJ. Antinociceptive role of the thalamic dopamine D3 receptor in descending modulation of intramuscular formalin-induced muscle nociception in a rat model of Parkinson's disease. Exp Neurol 2024; 379:114846. [PMID: 38879111 DOI: 10.1016/j.expneurol.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
Pain in Parkinson's disease (PD) has been validated as one of the major non-motor dysfunctions affecting the quality of life and subsequent rehabilitation. In the present study, we investigated the role of the dopamine D3 receptor in the thalamic mediodorsal (MD) and ventromedial (VM) nuclei mediated descending control of nociception and intramuscular (i.m.) 2.5% formalin-induced persistent muscle nociception. Paw withdrawal reflexes were measured in naive rats and rats subjected to PD induced by unilateral microinjection of 6 μg 6-OHDA into the rat striatum. Formalin-induced muscle nociception in phase 1, inter-phase, and phase 2 was significantly greater in PD rats compared to naive and vehicle-treated rats (P < 0.001). PD rats exhibited bilaterally mechanical hyperalgesia and heat hypoalgesia in formalin-induced muscle nociception. Microinjection of SK609, a dopamine D3 receptor agonist, at various doses (2.5-7.5 nmol/0.5 μl) into the thalamic VM nucleus dose-dependently prolonged heat-evoked paw withdrawal latencies in both naive and PD rats. Administration of SK609 to either the MD or VM nuclei had no effect on noxious mechanically evoked paw withdrawal reflexes. Pre-treatment of the thalamic MD nucleus with SK609 significantly attenuated formalin-induced nociception, and reversed mechanical hyperalgesia, but not heat hypoalgesia. Pre-treatment of the thalamic VM nucleus with SK609 inhibited formalin-induced nociception in the late phase of phase 2 (30-75 min) and heat hypoalgesia, but not mechanical hyperalgesia (P < 0.05). It is suggested that the dopamine D3 receptors in the thalamus play an antinociceptive role in the descending modulation of nociception. Activation of D3 receptors within the thalamic MD and VM nuclei attenuates descending facilitation and enhances descending inhibition in rats during PD.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Rong Jing
- Department of Rehabilitation Medicine, Affiliated Hospital of Yan'an University, Yan'an 716000, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| |
Collapse
|
8
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
9
|
Li Z, Zhang L, Zhang F, Yue L, Hu L. Deciphering Authentic Nociceptive Thalamic Responses in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0348. [PMID: 38617991 PMCID: PMC11014087 DOI: 10.34133/research.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.
Collapse
Affiliation(s)
- Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
10
|
Mandloi S, Syed M, Ailes I, Shoraka O, Leiby B, Miao J, Thalheimer S, Heller J, Mohamed FB, Sharan A, Harrop J, Krisa L, Alizadeh M. Exploring Functional Connectivity in Chronic Spinal Cord Injury Patients With Neuropathic Pain Versus Without Neuropathic Pain. Neurotrauma Rep 2024; 5:16-27. [PMID: 38249324 PMCID: PMC10797176 DOI: 10.1089/neur.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The great majority of spinal cord injury (SCI) patients have debilitating chronic pain. Despite decades of research, these pain pathways of neuropathic pain (NP) are unknown. SCI patients have been shown to have abnormal brain pain pathways. We hypothesize that SCI NP patients' pain matrix is altered compared to SCI patients without NP. This study examines the functional connectivity (FC) in SCI patients with moderate-severe chronic NP compared to SCI patients with mild-no NP. These groups were compared to control subjects. The Neuropathic Pain Questionnaire and neurological evaluation based on the International Standard Neurological Classification of SCI were utilized to define the severity and level of injury. Of the 10 SCI patients, 7 (48.6 ± 17.02 years old, 6 male and 1 female) indicated that they had NP and 3 did not have NP (39.33 ± 8.08 years old, 2 male and 1 female). Ten uninjured neurologically intact participants were used as controls (24.8 ± 4.61 years old, 5 male and 5 female). FC metrics were obtained from the comparisons of resting-state functional magnetic resonance imaging among our various groups (controls, SCI with NP, and SCI without NP). For each comparison, a region-of-interest (ROI)-to-ROI connectivity analysis was pursued, encompassing a total of 175 ROIs based on a customized atlas derived from the AAL3 atlas. The analysis accounted for covariates such as age and sex. To correct for multiple comparisons, a strict Bonferroni correction was applied with a significance level of p < 0.05/NROIs. When comparing SCI patients with moderate-to-severe pain to those with mild-to-no pain, specific thalamic nuclei had altered connections. These nuclei included: medial pulvinar; lateral pulvinar; medial geniculate nucleus; lateral geniculate nucleus; and mediodorsal magnocellular nucleus. There was increased FC between the lateral geniculate nucleus and the anteroventral nucleus in NP post-SCI. Our analysis additionally highlights the relationships between the frontal lobe and temporal lobe with pain. This study successfully identifies thalamic neuroplastic changes that occur in patients with SCI who develop NP. It additionally underscores the pain matrix and involvement of the frontal and temporal lobes as well. Our findings complement that the development of NP post-SCI involves cognitive, emotional, and behavioral influences.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isaiah Ailes
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jingya Miao
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B. Mohamed
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Li J, Zhao R, Wang C, Guo X, Song J, Chu X. Abnormal preoperative fMRI signal variability in the pain ascending pathway is associated with the postoperative axial pain intensity in degenerative cervical myelopathy patients. Spine J 2024; 24:78-86. [PMID: 37716550 DOI: 10.1016/j.spinee.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND CONTEXT The moment-to-moment variability of resting-state brain activity has been suggested to play an active role in chronic pain. PURPOSE To investigate preoperative alterations in regional blood-oxygen-level-dependent signal variability (BOLDsv) and inter-regional dynamic functional connectivity (dFC) in individuals with degenerative cervical myelopathy (DCM), and their potential association with postoperative axial pain severity. STUDY DESIGN Cross-sectional study. PATIENT SAMPLE Resting-state functional magnetic resonance imaging was obtained in 42 migraine individuals and 40 healthy controls (HCs). OUTCOME MEASURES We calculated the standard deviation (SD) of the BOLD time-series at each voxel and the SD and mean of the dynamic conditional correlation between the brain regions which showed significant group differences in BOLDsv. METHODS A group comparison was conducted using whole-brain voxel-wise analysis of the standard deviation (SD) of the BOLD time-series which was a measure of the BOLDsv. The brain areas displaying notable group discrepancies in BOLDsv were utilized to outline regions of interest (ROIs). To determine the strength/variability of the dFC, the mean and SD of the dynamic conditional correlation were calculated within these ROIs. Moreover, the postoperative axial pain (PAP) severity of patients was evaluated. RESULTS Our results revealed that DCM patients with postoperative axial pain (PAP) demonstrated considerably increased BOLDsv in the bilateral thalamus and right insular, but significantly lower BOLDsv in the right S1. By applying dynamic functional connectivity (dFC) analysis, we found that DCM patients with PAP exhibited greater fluctuation of dFC in the thalamo-cortical pathway (specifically, thalamus-S1), when compared to HCs and patients without PAP (nPAP). Lastly, we established that dysfunctional BOLDsv and dFC in the ascending pain pathway were positively associated with the severity of PAP in DCM patients. CONCLUSION Our results indicate a potential correlation between impaired pain ascending pathway and postoperative axial pain in DCM patients. These findings could potentially spark novel treatment approaches for individuals experiencing preoperative axial pain.
Collapse
Affiliation(s)
- Jie Li
- Graduate School, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Rui Zhao
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chenguang Wang
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xing Guo
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061017, China
| | - Jiajun Song
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Chu
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
12
|
Liu J, Liu W, Huang J, Wang Y, Zhao B, Zeng P, Cai G, Chen R, Hu K, Tu Y, Lin M, Kong J, Tao J, Chen L. The modulation effects of the mind-body and physical exercises on the basolateral amygdala-temporal pole pathway on individuals with knee osteoarthritis. Int J Clin Health Psychol 2024; 24:100421. [PMID: 38077287 PMCID: PMC10709058 DOI: 10.1016/j.ijchp.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024] Open
Abstract
Background/Objective To investigate the modulatory effects of different physical exercise modalities on connectivity of amygdala subregions and its association with pain symptoms in patients with knee osteoarthritis (KOA). Methods 140 patients with KOA were randomly allocated either to the Tai Chi, Baduanjin, Stationary cycling, or health education group and conducted a 12 week-long intervention in one of the four groups. The behavioral, magnetic resonance imaging (MRI), and blood data were collected at baseline and the end of the study. Results Compared to the control group, all physical exercise modalities lead to significant increases in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score (pain relief) and serum Programmed Death-1 (PD-1) levels. Additionally, all physical exercise modalities resulted in decreased resting state functional connectivity (rsFC) of the basolateral amygdala (BA)-temporal pole and BA-medial prefrontal cortex (mPFC). The overlapping BA-temporal pole rsFC observed in both Tai Chi and Baduanjin groups was significantly associated with pain relief, while the BA-mPFC rsFC was significantly associated with PD-1 levels. In addition, we found increased fractional anisotropy (FA) values, a measurement of water diffusion anisotropy of tissue that responded to changes in brain microstructure, within the mind-body exercise groups' BA-temporal pole pathway. The average FA value of this pathway was positively correlated with KOOS pain score at baseline across all subjects. Conclusions Our findings suggest that physical exercise has the potential to modulate both functional and anatomical connectivity of the amygdala subregions, indicating a possible shared pathway for various physical exercise modalities.
Collapse
Affiliation(s)
- Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Weilin Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
| | - Jia Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Yajun Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Baoru Zhao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Peiling Zeng
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Guiyan Cai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Ruilin Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Kun Hu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - YouXue Tu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Meiqin Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese, China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese, China
| |
Collapse
|
13
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Sun C, Deng J, Ma Y, Meng F, Cui X, Li M, Li J, Li J, Yin P, Kong L, Zhang L, Tang P. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol 2023; 370:114570. [PMID: 37852469 DOI: 10.1016/j.expneurol.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yifei Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
15
|
Zi‐Han X, Nan A, Rui CJ, Yong‐Long Y. Modulation of pain perceptions following treadmill running with different intensities in females. Physiol Rep 2023; 11:e15831. [PMID: 37749050 PMCID: PMC10519819 DOI: 10.14814/phy2.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to compare the effects of three intensities of treadmill running on exercise-induced hypoalgesia (EIH) in healthy individuals. We anticipated that the primary and secondary changes in pain perception and modulation may differ between running intensities. Sixty-six women were randomly assigned to one of three treadmill running intensities for 35 min: 40% reserved heart rate (HRR), 55% HRR, or 70% HRR. The effects of EIH were assessed using pressure pain thresholds (PPT) and tolerance thresholds (PPTol). We measured conditional pain modulation (CPM). Compared with baseline, PPT and PPTol significantly increased in all groups during running and at the 5-10-min follow-up. The PPT and PPTol changes in the moderate- and low-intensity groups were significantly higher than those in the high-intensity group during running and 24 h after running, while the CPM responses of the high-intensity group were significantly reduced at the 24-h follow-up. Moderate- and low-intensity running may elicit significant primary and secondary (persisting over 24 h) EIH effects and increase CPM responses in females. However, high-intensity running induced only limited analgesic effects and reduced CPM responses, which may be attributed to the activation of endogenous pain modulation.
Collapse
Affiliation(s)
- Xu Zi‐Han
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - An Nan
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - Chang Jeremy Rui
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Yang Yong‐Long
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
16
|
Ma Y, Zhan Y, Pei J, Ye G, Chen Y, Zhu W, Shen H. Involvement of 5-HT 1A receptors of the thalamic descending pathway in the analgesic effect of intramuscular heating-needle stimulation in a rat model of lumbar disc herniation. Front Neurosci 2023; 17:1222286. [PMID: 37534035 PMCID: PMC10390831 DOI: 10.3389/fnins.2023.1222286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Background Intramuscular (IM) heating-needle therapy, a non-painful thermal therapy, has been found to exert an analgesic effect via the thalamic ventromedial (VM) nucleus, solely by reducing the triggering threshold for descending inhibition; this could be modulated by intracephalic 5-hydroxytryptamine-1A (5-HT1A) receptors, rather than via the regular analgesia pathway. In this study, the effect and the potential serotonergic mechanism of IM heating-needle stimulation at 43°C were explored in the case of the pathological state of lumbar disc herniation (LDH). Methods A modified classic rat model of LDH, induced via autologous nucleus pulposus implantation, was utilized. IM inner heating-needles were applied at the attachment point of skeletal muscle on both sides of the L4 and L5 spinous processes. WAY-100635 and 8-OH-DAPT, 5-HT1A receptor antagonist and agonist, were separately injected into the bilateral thalamic mediodorsal (MD) and VM nucleus via an intrathalamic catheter. Nociception was assessed by bilateral paw withdrawal reflexes elicited by noxious mechanical and heat stimulation. Results IM heating-needle stimulation at a temperature of 43°C for 30 or 45 min significantly relieved both mechanical and heat hyperalgesia in the rat model of LDH (P < 0.05). Heat hyperalgesia was found to be significantly enhanced by administration of WAY-100635 into the thalamic VM nucleus, blocking the effect of heating-needle stimulation in a dose-dependent manner (P < 0.05), while no effects were detected after injection into the thalamic MD nucleus (P > 0.05). Injection of 8-OH-DAPT into the thalamic MD nucleus exerted no modulating effects on either mechanical or heat hyperalgesia (P > 0.05). Conclusion IM heating-needle stimulation at 43°C for 30 min may activate 5-HT1A mechanisms, via the thalamic VM nucleus, to attenuate hyperalgesia in a rat model of LDH. This innocuous form of thermal stimulation is speculated to selectively activate the descending inhibition mediated by the thalamic VM nucleus, exerting an analgesic effect, without the involvement of descending facilitation of the thalamic MD nucleus.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Traumatology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yijun Zhan
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Ye
- Department of Rehabilitation Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Yaoxin Chen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyan Zhu
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyue Shen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Feng T, Zhao C, Rao JS, Guo XJ, Bao SS, He LW, Zhao W, Liu Z, Yang ZY, Li XG. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 2023; 26:106784. [PMID: 37378337 PMCID: PMC10291247 DOI: 10.1016/j.isci.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
Graph theory-based analysis describes the brain as a complex network. Only a few studies have examined modular composition and functional connectivity (FC) between modules in patients with spinal cord injury (SCI). Little is known about the longitudinal changes in hubs and topological properties at the modular level after SCI and treatment. We analyzed differences in FC and nodal metrics reflecting modular interaction to investigate brain reorganization after SCI-induced compensation and neurotrophin-3 (NT3)-chitosan-induced regeneration. Mean inter-modular FC and participation coefficient of areas related to motor coordination were significantly higher in the treatment animals than in the SCI-only ones at the late stage. The magnocellular part of the red nucleus may reflect the best difference in brain reorganization after SCI and therapy. Treatment can enhance information flows between regions and promote the integration of motor functions to return to normal. These findings may reveal the information processing of disrupted network modules.
Collapse
Affiliation(s)
- Ting Feng
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, PR China
| | - Jia-Sheng Rao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Xiao-Jun Guo
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Shu-Sheng Bao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Le-Wei He
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, PR China
- Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Xiao-Guang Li
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
18
|
Xu ZH, An N, Wang ZR. Exercise-Induced Hypoalgesia Following Proprioceptive Neuromuscular Facilitation and Resistance Training Among Individuals With Shoulder Myofascial Pain: Randomized Controlled Trial. JMIRX MED 2022; 3:e40747. [PMID: 37725522 PMCID: PMC10414395 DOI: 10.2196/40747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 09/21/2023]
Abstract
BACKGROUND Various exercises can attenuate pain perception in healthy individuals and may interact with the descending pain modulation in the central nervous system. However, the analgesic effects of exercise in patients with myofascial pain can be disrupted by the pathological changes during chronic pain conditions. Thus, the exercises targeted on the facilitation of the sensory-motor interaction may have a positive impact on the restoration of the descending pain modulation and the analgesia effects. OBJECTIVE This paper estimates the effect of proprioceptive neuromuscular facilitation (PNF) and resistance training on exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) among patients with myofascial pain syndrome. METHODS A total of 76 female patients with myofascial pain syndrome (aged 18-30 years), with the pain in the upper trapezius and a visual analog scale score of greater than 30/100 mm, were enrolled in the study. Participants were randomly assigned into 3 intervention groups, including isometric (n=18, 24%), isotonic (n=19, 25%), and PNF (n=20, 26%) exercises, as well as 1 control group (n=19, 25%) with no intervention. Pressure pain threshold and the CPM responses at the myofascial trigger point, arm, and leg sites were assessed before and after the exercise session. The effective EIH response was reflected in the improvement of pressure pain thresholds. RESULTS There was an increase in pressure pain thresholds and CPM responses at trigger point (P<.001 and P<.001), arm (P<.001 and P<.001), and leg sites (P<.001 and P=.03) in participants who performed PNF and isotonic exercise, while the isometric exercise only increased pressure pain thresholds at leg sites (P=.03). Compared with the control group, both the isotonic (P=.02) and PNF (P<.001) groups showed greater EIH responses at the trigger points. In comparison to the control group, only the PNF exercise (P=.01) significantly improved pressure pain thresholds and CPM responses at arm and leg sites compared to the control group. CONCLUSIONS PNF, isotonic, and isometric exercises could lead to local and global EIH effects. The improvement in CPM response following PNF and isotonic exercises suggested that the EIH mechanisms of different resistance exercises may be attributed to the enhancement of the endogenous pain modulation via the motor-sensory interaction from the additional eccentric and dynamic muscle contraction. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCtr202111090819166165; https://tinyurl.com/2ab93p7n.
Collapse
Affiliation(s)
- Zi-Han Xu
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Nan An
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zi-Ru Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
19
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|