1
|
Mitsuhashi T, Iimura Y, Suzuki H, Ueda T, Nishioka K, Nomura K, Nakajima M, Sugano H, Kondo A. Bipolar and Laplacian montages are suitable for high-gamma modulation language mapping with stereoelectroencephalography. Front Neurol 2024; 15:1380644. [PMID: 39479009 PMCID: PMC11521834 DOI: 10.3389/fneur.2024.1380644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Objective To determine the optimal montage and vocalization conditions for high-gamma language mapping using stereoelectroencephalography. Methods We studied 12 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of auditory-naming related high-gamma modulations. We determined the effects of electrode montage and vocalization conditions of the response on the high-gamma (60-140 Hz) amplitudes. Results Compared to common average reference montage, bipolar and Laplacian montages effectively reduced the degree of auditory naming-related signal deflections in the white matter during the stimulus and response phases (mixed model estimate: -21.2 to -85.4%; p < 0.001), while maintaining those at the cortical level (-4.4 to +7.8%; p = 0.614 to 0.085). They also reduced signal deflections outside the brain parenchyma during the response phase (-90.6 to -91.2%; p < 0.001). Covert responses reduced signal deflections outside the brain parenchyma during the response phase (-17.0%; p = 0.010). Conclusion On depth electrode recording, bipolar and Laplacian montages are suitable for measuring auditory naming-related high-gamma modulations in gray matter. The covert response may highlight the gray matter activity. Significance This study helps establish the practical guidelines for high-gamma language mapping using stereoelectroencephalography.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nishioka
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nomura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Aron O, Mezjan I, Krieg J, Ferrand M, Colnat-Coulbois S, Maillard L. Mapping the basal temporal language network: a SEEG functional connectivity study. BRAIN AND LANGUAGE 2024; 258:105486. [PMID: 39388909 DOI: 10.1016/j.bandl.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The Basal Temporal Language Area (BTLA) is recognized in epilepsy surgery setting when cortical electrical stimulation (CES) of the ventral temporal cortex (VTC) trigger anomia or paraphasia during naming tasks. Despite acknowledging a ventral language stream, current cognitive language models fail to properly integrate this entity. In this SEEG study we used cortico-cortical evoked potentials in nine epileptic patients to assess and compare the effective connectivity of 73 sites in the left VTC of which 26 were deemed eloquent for naming after CES (BTLA). Eloquent sites connectivity supports the existence of a basal temporal language network (BTLN) structured around posterior projectors while the fusiform gyrus behaved as an integrator. BTLN was strongly connected to the amygdala and hippocampus unlike the non-eloquent sites, except for the anterior fusiform gyrus (FG). These observations support the FG as a multimodal functional hub and add to our understanding of ventral temporal language processing.
Collapse
Affiliation(s)
- Olivier Aron
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France.
| | - Insafe Mezjan
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Julien Krieg
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Mickael Ferrand
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Sophie Colnat-Coulbois
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Louis Maillard
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| |
Collapse
|
3
|
Rekola L, Peltola M, Vanhanen J, Wilenius J, Metsähonkala EL, Kämppi L, Lauronen L, Nevalainen P. Combined value of interictal markers and stimulated seizures to estimate the seizure onset zone in stereoelectroencephalography. Epilepsia 2024; 65:2946-2958. [PMID: 39162772 DOI: 10.1111/epi.18083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE This study was undertaken to investigate the potential of interictal electroencephalographic (EEG) findings and electrically stimulated seizures during stereo-EEG (SEEG) as surrogate markers for the spontaneous seizure onset zone (spSOZ). We hypothesized that combining the localizing information of these markers would allow clinically meaningful estimation of the spSOZ. METHODS We included all patients (n = 63) who underwent SEEG between January 2013 and March 2020 at Helsinki University Hospital and had spontaneous seizures during the recording. We scored spikes, gamma activity, and background abnormality on each channel visually during a 12-h epoch containing waking state and sleep. Based on semiology, we classified stimulated seizures as typical or atypical/unclassifiable and estimated the stimulated SOZ (stimSOZ) for typical seizures. To assess which markers increased the odds of channel inclusion in the spSOZ, we fitted mixed effects logistic regression models. RESULTS A combined regression model including the stimSOZ and interictal markers scored during sleep performed better in estimating which channels were part of the spSOZ than models based on stimSOZ (p < .001) or interictal markers (p < .001) alone. Of the individual markers, the effect sizes were greatest for inclusion of a channel in the stimSOZ (odds ratio [OR] = 60, 95% confidence interval [CI] = 37-97, p < .001) and for continuous (OR = 25, 95% CI = 12-55, p < .001) and subcontinuous (OR = 36, 95% CI = 21-64, p < .001) interictal spiking. At the individual level, the model's accuracy to predict spSOZ inclusion varied markedly (median accuracy = 85.7, range = 54.4-100), which was not explained by etiology (p > .05). SIGNIFICANCE Compared to either marker alone, combining visually rated interictal SEEG markers and stimulated seizures improved prediction of which SEEG channels belonged to the spSOZ. Inclusion in the stimSOZ and continuous or subcontinuous spikes increased the odds of spSOZ inclusion the most. Future studies should investigate whether suboptimal sampling of the true epileptogenic zone can explain the model's poor performance in certain patients.
Collapse
Affiliation(s)
- Lauri Rekola
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Peltola
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Vanhanen
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Wilenius
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eeva-Liisa Metsähonkala
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Division of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Kämppi
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Lauronen
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Nevalainen
- Epilepsia Helsinki, full member of European Reference Network EpiCARE, Department of Clinical Neurophysiology, Children's Hospital, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Zhang B, Wang X, Wang J, Wang M, Guan Y, Liu Z, Zhang Y, Zhao M, Ding H, Xu K, Deng J, Li T, Luan G, Zhou J. The Effect of Stereoelectroencephalography on the Long-Term Outcomes of Different Side Anterior Temporal Lobectomy: A Single-Center Retrospective Study. World Neurosurg 2024:S1878-8750(24)01593-6. [PMID: 39278540 DOI: 10.1016/j.wneu.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE), and Stereoelectroencephalography (SEEG) plays a critical role in precisely localizing the epileptogenic zone (EZ). This study aimed to explore the effect of SEEG on the long-term outcomes of different side ATL. METHODS From March 2012 to February 2020, a retrospective analysis was conducted on 231 TLE patients who underwent standard ATL surgery. According to the surgical sides and the utilization of SEEG during preoperative evaluation, the patients were categorized into 4 groups, with a follow-up period exceeding 2 years. RESULTS Among the 231 TLE patients, the probability of being seizure-free 2 years after the surgery was 80.52%, which decreased to 65.65% after 5 years. There was no significant difference in outcomes between SEEG and non-SEEG patients. For overall and non-SEEG patients, there was no significant difference in short-term outcomes between different surgical sides. However, the long-term outcomes of right ATL patients were significantly better than left. Interestingly, for patients who underwent SEEG, there was no significant difference in both short-term and long-term outcomes between different surgical sides. CONCLUSIONS Some TLE patients encounter challenges in localizing the EZ through noninvasive evaluation, necessitating the use of SEEG for precise localization. Furthermore, their seizure outcomes after surgery can be the same with the patients who have a clear EZ in noninvasive evaluation. And SEEG patients can achieve a more stable long-term prognosis than non-SEEG patients.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yao Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Dionisio S, Althubaiti I, Aldosari M, Alsallom F, Alomar N, Babtain F, Alkhotani A, Baeesa S, Najjar A, Sabbagh A, Althani Z, Alotaibi F, Alqadi K. Stereo electroencephalography in the kingdom of Saudi Arabia. Neurophysiol Clin 2024; 54:103007. [PMID: 39260182 DOI: 10.1016/j.neucli.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024] Open
Abstract
Epilepsy surgery and intracranial monitoring have a long history in the Kingdom of Saudi Arabia, spanning over 30 years. Stereo-EEG however, is a more recent offering. In this short communication, we discuss how Stereo-EEG has grown in the context of the Kingdom's healthcare model and the Vision 2030 model. We discuss the various positives of this technique and methodology as well as the various challenges that the hospitals offering Stereo-EEG have faced.
Collapse
Affiliation(s)
- S Dionisio
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Alfaisal University, Riyadh, Saudi Arabia; University of Queensland, Australia.
| | - I Althubaiti
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Alfaisal University, Riyadh, Saudi Arabia
| | - M Aldosari
- National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - F Alsallom
- National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - N Alomar
- National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - F Babtain
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - A Alkhotani
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - S Baeesa
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - A Najjar
- College of Medicine, Department of Surgery, Taibah University, Almadinah, Saudi Arabia
| | - A Sabbagh
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Abdulaziz University Hospital, Jeddah
| | - Z Althani
- King Fahad Specialist Hospital, Dammam
| | - F Alotaibi
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Alfaisal University, Riyadh, Saudi Arabia
| | - K Alqadi
- King Salman Ibn Abdulaziz Medical City, Madinah, Saudi Arabia
| |
Collapse
|
6
|
Angelini L, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Bidirectional and Cross-Hemispheric Modulations of Face-Selective Neural Activity Induced by Electrical Stimulation within the Human Cortical Face Network. Brain Sci 2024; 14:906. [PMID: 39335402 PMCID: PMC11429542 DOI: 10.3390/brainsci14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
A major scientific objective of cognitive neuroscience is to define cortico-cortical functional connections supporting cognitive functions. Here, we use an original approach combining frequency-tagging and direct electrical stimulation (DES) to test for bidirectional and cross-hemispheric category-specific modulations within the human cortical face network. A unique patient bilaterally implanted with depth electrodes in multiple face-selective cortical regions of the ventral occipito-temporal cortex (VOTC) was shown 70 s sequences of variable natural object images at a 6 Hz rate, objectively identifying deviant face-selective neural activity at 1.2 Hz (i.e., every five images). Concurrent electrical stimulation was separately applied for 10 seconds on four independently defined face-selective sites in the right and left VOTC. Upon stimulation, we observed reduced or even abolished face-selective neural activity locally and, most interestingly, at distant VOTC recording sites. Remote DES effects were found up to the anterior temporal lobe (ATL) in both forward and backward directions along the VOTC, as well as across the two hemispheres. This reduction was specific to face-selective neural activity, with the general 6 Hz visual response being mostly unaffected. Overall, these results shed light on the functional connectivity of the cortical face-selective network, supporting its non-hierarchical organization as well as bidirectional effective category-selective connections between posterior 'core' regions and the ATL. They also pave the way for widespread and systematic development of this approach to better understand the functional and effective connectivity of human brain networks.
Collapse
Affiliation(s)
- Luna Angelini
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Corentin Jacques
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Louis Maillard
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
7
|
Lévi-Strauss J, Makhalova J, Medina Villalon S, Carron R, Bénar CG, Bartolomei F. Transient alteration of Awareness triggered by direct electrical stimulation of the brain. Brain Stimul 2024; 17:1024-1033. [PMID: 39218350 DOI: 10.1016/j.brs.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Awareness is a state of consciousness that enables a subject to interact with the environment. Transient alteration of awareness (AA) is a disabling sign of many types of epileptic seizures. The brain mechanisms of awareness and its alteration are not well known. OBJECTIVE/HYPOTHESIS Transient and isolated AA induced by electrical brain stimulation during a stereoelectroencephalography (SEEG) recording represents an ideal model for studying the associated modifications of functional connectivity and locating the hubs of awareness networks. METHODS We investigated the SEEG signals-based brain functional connectivity (FC) changes vs background occurring during AA triggered by three thalamic and two insular stimulations in three patients explored by SEEG in the frame of presurgical evaluation for focal drug-resistant epilepsy. The results were compared to the stimulations of the same sites that did not induce clinical changes (negative stimulations). RESULTS We observed decreased node strength in the pulvinar, insula, and parietal associative cortices during the thalamic and insular stimulations that induced AA. The link strengths characterizing functional coupling between the thalamus and the insular, prefrontal, temporal, or parietal associative cortices were also decreased. In contrast, there was an increased synchronization between the precuneus and the temporal lateral cortex. These FC changes were absent during the negative stimulations. CONCLUSION Our study highlights the role of the pulvinar, insular, and parietal hubs in maintaining the awareness networks and paves the way for invasive or non-invasive neuromodulation protocols to reduce AA manifestations during epileptic seizures.
Collapse
Affiliation(s)
- Julie Lévi-Strauss
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic Neurosurgery, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
8
|
Thomas J, Abdallah C, Cai Z, Jaber K, Gotman J, Beniczky S, Frauscher B. Investigating current clinical opinions in stereoelectroencephalography-informed epilepsy surgery. Epilepsia 2024; 65:2662-2672. [PMID: 39096434 DOI: 10.1111/epi.18076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is increasingly utilized worldwide in epilepsy surgery planning. International guidelines for SEEG terminology and interpretation are yet to be proposed. There are worldwide differences in SEEG definitions, application of features in epilepsy surgery planning, and interpretation of surgical outcomes. This hinders the clinical interpretation of SEEG findings and collaborative research. We aimed to assess the global perspectives on SEEG terminology, differences in the application of presurgical features, and variability in the interpretation of surgery outcome scores, and analyze how clinical expert demographics influenced these opinions. METHODS We assessed the practices and opinions of epileptologists with specialized training in SEEG using a survey. Data were qualitatively analyzed, and subgroups were examined based on geographical regions and years of experience. Primary outcomes included opinions on SEEG terminology, features used for epilepsy surgery, and interpretation of outcome scores. Additionally, we conducted a multilevel regression and poststratification analysis to characterize the nonresponders. RESULTS A total of 321 expert responses from 39 countries were analyzed. We observed substantial differences in terminology, practices, and use of presurgical features across geographical regions and SEEG expertise levels. The majority of experts (220, 68.5%) favored the Lüders epileptogenic zone definition. Experts were divided regarding the seizure onset zone definition, with 179 (55.8%) favoring onset alone and 135 (42.1%) supporting onset and early propagation. In terms of presurgical SEEG features, a clear preference was found for ictal features over interictal features. Seizure onset patterns were identified as the most important features by 265 experts (82.5%). We found similar trends after correcting for nonresponders using regression analysis. SIGNIFICANCE This study underscores the need for standardized terminology, interpretation, and outcome assessment in SEEG-informed epilepsy surgery. By highlighting the diverse perspectives and practices in SEEG, this research lays a solid foundation for developing globally accepted terminology and guidelines, advancing the field toward improved communication and standardization in epilepsy surgery.
Collapse
Affiliation(s)
- John Thomas
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Chifaou Abdallah
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Kassem Jaber
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sandor Beniczky
- Danish Epilepsy Center and Aarhus University Hospital, Aarhus, Denmark
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Taussig D, Petrescu AM, Herbrecht A, Dussaule C, Nasser G, Aghakhani N, Ancelet C, Bouilleret V. Vasogenic oedema during stereoelectroencephalography: intracranial pattern and late-onset clinical repercussion. J Neurol 2024; 271:6096-6101. [PMID: 39046522 DOI: 10.1007/s00415-024-12577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
In patients suffering from focal drug-resistant epilepsy, intracranial explorations are the gold standard for identifying the epileptogenic zone and evaluating the possibility of a surgical resection. Amongst them, stereoelectroencephalography (SEEG), using depth electrodes, is a safe procedure. However, complications occur on average in 2% of cases, notably haemorrhages or infections. Vasogenic cerebral oedema constitutes a rarely reported complication. Amongst the 85 patients explored with SEEG between January 2017 and September 2023, three had a clinically and electrophysiologically relevant vasogenic cerebral oedema. In these three patients, the surgical procedure was uneventful. In all three as well, electrodes exploring areas away from the epileptogenic zone recorded some unexpected focal delta slowing with clinically asymptomatic superimposed discharges, a pattern so far only reported in cases of bleeding. Moreover, one patient experienced confusion 10 days after explantation. Post-explantation magnetic resonance imaging showed, in all three patients, a vasogenic oedema that fully resolved a few months later. We did not identify any contributing factors, and there were no particularities concerning the number of electrodes, their implantation site or the recording duration. Focal delta slowing and rhythmic discharges during SEEG can indicate a vasogenic oedema. Clinical consequences can occur after explantation. Evolution is favourable but this misleading pattern must be identified.
Collapse
Affiliation(s)
- D Taussig
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France.
| | - A M Petrescu
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France
| | - A Herbrecht
- Université Paris Saclay-APHP, Neurochirurgie, Le Kremlin Bicêtre, France
| | - C Dussaule
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France
| | - G Nasser
- Université Paris Saclay-APHP, Neuroradiologie, Le Kremlin Bicêtre, France
| | - N Aghakhani
- Université Paris Saclay-APHP, Neurochirurgie, Le Kremlin Bicêtre, France
| | - C Ancelet
- Université Paris Saclay-APHP, Neuroradiologie, Le Kremlin Bicêtre, France
| | - V Bouilleret
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| |
Collapse
|
10
|
Szmidel M, Hunn M, Neal A, Laing J, Broadley L, Wittayacharoenpong T, O'brien T, Gutman M. Vascular imaging for Stereoelectroencephalography: A safety and planning study. J Clin Neurosci 2024; 127:110762. [PMID: 39079420 DOI: 10.1016/j.jocn.2024.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is a procedure used to localize the epileptogenic zone in patients with medically refractory epilepsy, involving the stereotactic implantation of electrodes into brain parenchyma. Magnetic Resonance Imaging (MRI), Digital Subtraction Angiography, and Computed Tomography have been used preoperatively to prevent Intracranial Hemorrhage (ICH) by identifying electrode-vessel conflicts (EVC's) on planned electrode trajectories. There is variation in the use of Digital Subtraction Angiography and non-invasive sequences for vascular planning. Digital Subtraction Angiography provides high spatial resolution, but carries risks of arterial dissection, groin and retroperitoneal hematoma, and a 0.5-1.9% risk of stroke. Our group has incorporated Intravenous Cone Beam Computed Tomography (CBCT A/V) Brain into our SEEG workflow, given its effective implementation in other neurosurgical domains. Primary aims include validating the safety of our CBCT A/V sequence for SEEG planning and determining if CBCT A/V is comparable to other modalities in detecting EVC's. Secondary aims include elucidating the relationship of conflicting vessel calibre with ICH incidence in SEEG using CBCT A/V imaging. METHODS A single-center retrospective study was conducted of 20 patients who underwent preoperative CBCT A/V Brain and MRI Brain with gadolinium enhancement, encompassing 273 electrode implantations from August 2020 - July 2023. The incidence and grade of post-implant, post-explant symptomatic ICH and asymptomatic ICH was noted. The total number of EVC's identifiable on MRI and CBCT A/V was recorded, along with average diameter of conflicting vessels. RESULTS Across 20 patients and 273 implanted electrodes, there were four ICH events, where two were symptomatic and two were asymptomatic. The mean diameter of EVC's across all patients was 1.4 mm (±0.5). A significant difference (P < 0.0001) was observed between the number of EVC's that CBCT A/V could identify (20) compared to MRI (6). Two EVC's were identified in the region of two symptomatic ICH's, with the mean diameter of these conflicted vessels being 1.5 mm (±0.4). The two symptomatic ICH-associated EVC's were observed on CBCT A/V but not MRI. CONCLUSIONS In our series, CBCT A/V demonstrates an acceptable safety profile for SEEG planning compared to other imaging modalities. CBCT A/V identified significantly more EVC's compared to MRI, including those contributing to transient symptomatic intracranial hemorrhage. A conflicting vessel calibre of less than 1.2 mm on CBCT A/V did not contribute to ICH in our SEEG series.
Collapse
Affiliation(s)
- Matthew Szmidel
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia; Department of Neuroscience, Alfred Hospital, Melbourne, VIC, Australia; Monash University, VIC, Australia.
| | - Martin Hunn
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia.
| | - Andrew Neal
- Department of Neuroscience, Alfred Hospital, Melbourne, VIC, Australia; Epilepsy Unit, Alfred Hospital, Melbourne, VIC, Australia.
| | - Joshua Laing
- Department of Neuroscience, Alfred Hospital, Melbourne, VIC, Australia; Epilepsy Unit, Alfred Hospital, Melbourne, VIC, Australia; The University of Melbourne, VIC, Australia.
| | - Lisa Broadley
- Department of Radiology, Alfred Hospital, Melbourne, VIC, Australia.
| | | | - Terence O'brien
- Department of Neuroscience, Alfred Hospital, Melbourne, VIC, Australia.
| | - Matthew Gutman
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia; Department of Neuroscience, Alfred Hospital, Melbourne, VIC, Australia; Monash University, VIC, Australia.
| |
Collapse
|
11
|
Bartolomei F, Bratu IF. Status epilepticus and psychosis: Lessons from SEEG. Epilepsy Behav 2024; 158:109911. [PMID: 38924969 DOI: 10.1016/j.yebeh.2024.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Psychotic manifestations are a classic feature of non-convulsive status epilepticus (NCSE) of temporal origin. For several decades now, the various psychiatric manifestations of NCSE have been described, and in particular, the diagnostic challenges they pose. However, studies using stereotactic-EEG (SEEG) recordings are very rare. Only a few cases have been reported, but they demonstrated the anatomical substrate of certain manifestations, including hallucinations, delusions, and emotional changes. The post-ictal origin of some of the manifestations should be emphasized. More generally, SEEG has shown that seizures affecting the temporal and frontal limbic systems can lead to intense emotional experiences and behavioural disturbances.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.
| | - Ionuț-Flavius Bratu
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| |
Collapse
|
12
|
Hagiwara K. [Insular lobe epilepsy. Part 2: presurgical evaluation & surgical interventions with stereo-electroencephalography]. Rinsho Shinkeigaku 2024; 64:540-549. [PMID: 39069490 DOI: 10.5692/clinicalneurol.cn-001930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Identification of insular lobe epilepsy (ILE) presents a major clinical challenge in the diagnosis and treatment of drug-resistant focal epilepsies. ILE has diverse clinical presentations due to the multifaceted functions of the insula. Surface EEG findings do not provide straightforward information to predict this deeply-situated origin of seizures; they are even misleading, masquerading as those of other focal epilepsies, such as temporal and frontal ones. Non-invasive imagings may disclose insular abnormalities, but extra-insular abnormalities can coexist or even stand out. Careful reading and a second-look guided by other clinical information are crucial in order not to miss subtle insulo-opercular abnormalities. Furthermore, a possible insular origin of seizures should be considered in MRI-negative frontal/temporal/parietal epilepsies. Therefore, exploration/exclusion of insular-origin seizures is necessary for a great majority of surgical candidates. As for the stereo-electroencephalography, considered as the gold standard method for intra-cranial EEG investigations with suspicion of ILE, planning of electrode positions/trajectories require sufficient knowledge of the functional localization and anatomo-functional connectivity of the insula. Dense sampling within the insula is required in patients with probable ILE, because the seizure-onset zone can be restricted to a single insular gyrus or even a part of it. It is also crucial to explore extra-insular regions on the basis of non-invasive investigation results while considering their anatomo-functional relationships with the insula. From a surgical perspective, differentiating seizures strictly confined to the insula from those extending to the opercula is of particular importance. Pure insular seizures can be treated with less invasive measures, such as radiofrequency thermocoagulation. To conclude, close attention must be paid to the possibility of ILE throughout the diagnostic workup. The precise identification/exclusion of ILE is a prerequisite to provide appropriate and effective surgical treatment in pharmaco-resistant focal epilepsies.
Collapse
|
13
|
Astner-Rohracher A, Ho A, Archer J, Bartolomei F, Brazdil M, Cacic Hribljan M, Castellano J, Dolezalova I, Fabricius ME, Garcés-Sanchez M, Hammam K, Ikeda A, Ikeda K, Kahane P, Kalamangalam G, Kalss G, Khweileh M, Kobayashi K, Kwan P, Laing JA, Leitinger M, Lhatoo S, Makhalova J, McGonigal A, Mindruta I, Mizera MM, Neal A, Oane I, Parikh P, Perucca P, Pizzo F, Rocamora R, Ryvlin P, San Antonio Arce V, Schuele S, Schulze-Bonhage A, Suller Marti A, Urban A, Villanueva V, Vilella Bertran L, Whatley B, Beniczky S, Trinka E, Zimmermann G, Frauscher B. Prognostic value of the 5-SENSE Score to predict focality of the seizure-onset zone as assessed by stereoelectroencephalography: a prospective international multicentre validation study. BMJ Neurol Open 2024; 6:e000765. [PMID: 39175939 PMCID: PMC11340713 DOI: 10.1136/bmjno-2024-000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Epilepsy surgery is the only curative treatment for patients with drug-resistant focal epilepsy. Stereoelectroencephalography (SEEG) is the gold standard to delineate the seizure-onset zone (SOZ). However, up to 40% of patients are subsequently not operated as no focal non-eloquent SOZ can be identified. The 5-SENSE Score is a 5-point score to predict whether a focal SOZ is likely to be identified by SEEG. This study aims to validate the 5-SENSE Score, improve score performance by incorporating auxiliary diagnostic methods and evaluate its concordance with expert decisions. Methods and analysis Non-interventional, observational, multicentre, prospective study including 200 patients with drug-resistant epilepsy aged ≥15 years undergoing SEEG for identification of a focal SOZ and 200 controls at 22 epilepsy surgery centres worldwide. The primary objective is to assess the diagnostic accuracy and generalisability of the 5-SENSE in predicting focality in SEEG in a prospective cohort. Secondary objectives are to optimise score performance by incorporating auxiliary diagnostic methods and to analyse concordance of the 5-SENSE Score with the expert decisions made in the multidisciplinary team discussion. Ethics and dissemination Prospective multicentre validation of the 5-SENSE score may lead to its implementation into clinical practice to assist clinicians in the difficult decision of whether to proceed with implantation. This study will be conducted in accordance with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (2014). We plan to publish the study results in a peer-reviewed full-length original article and present its findings at scientific conferences. Trial registration number NCT06138808.
Collapse
Affiliation(s)
| | - Alyssa Ho
- Neurology, Duke University, Durham, North Carolina, USA
| | - John Archer
- Bladin-Berkovic Comprehensive Epilepsy Program, The University of Melbourne Medicine at Austin Health, Heidelberg, Victoria, Australia
| | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, INSERM U751, CHU Timone, Marseille, France
- Neurology, Aix-Marseille Universite, Marseille, France
| | - Milan Brazdil
- Neurology, Masaryk University Faculty of Medicine, Brno, Czech Republic
| | | | - James Castellano
- Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irena Dolezalova
- Neurology, Masaryk University Faculty of Medicine, Brno, Czech Republic
| | - Martin Ejler Fabricius
- Clinical Neurophysiology, Rigshospitalet, Kobenhavn, Denmark
- Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
| | | | - Kahina Hammam
- Neurology, Aix-Marseille Universite, Marseille, France
| | - Akio Ikeda
- Neurology, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, Japan
| | - Kristin Ikeda
- Neurology, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Philippe Kahane
- Neurology, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Gudrun Kalss
- Neurology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Mays Khweileh
- Neurology, Duke University, Durham, North Carolina, USA
| | - Katsuya Kobayashi
- Neurology, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, Japan
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University Faculty of Medicine Nursing and Health Sciences, Melbourne, Victoria, Australia
| | | | - Markus Leitinger
- Neurology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Samden Lhatoo
- Neurology, University of Texas McGovern Medical School, Houston, Texas, USA
| | | | - Aileen McGonigal
- Neurosciences, Mater Hospital Brisbane, Brisbane, Queensland, Australia
- UQ Faculty of Medicine, Herston, Queensland, Australia
| | - Iona Mindruta
- Neurology, University of Medicine and Pharmacy Carol Davila Bucharest, Bucuresti, Romania
| | | | - Andrew Neal
- Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Irina Oane
- Neurology, University of Medicine and Pharmacy Carol Davila Bucharest, Bucuresti, Romania
| | - Prachi Parikh
- Neurology, Duke University, Durham, North Carolina, USA
| | | | | | | | - Philippe Ryvlin
- Institute for Child and Adolescent with Epilepsy (IDEE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Victoria San Antonio Arce
- Epilepsy Centre, University Hospital Freiburg Department of Neurology, Freiburg im Breisgau, Germany
| | - Stephan Schuele
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andreas Schulze-Bonhage
- Epilepsy Centre, University Hospital Freiburg Department of Neurology, Freiburg im Breisgau, Germany
| | - Ana Suller Marti
- Neurology, Western University Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Alexandra Urban
- Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Benjamin Whatley
- Neurology, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Sandor Beniczky
- Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Eugen Trinka
- Neurology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg Zimmermann
- Biostatistics and Big Medical Data, Paracelsus Medical Private University, Salzburg, Austria
| | - Birgit Frauscher
- Neurology, Duke University, Durham, North Carolina, USA
- Neurology, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Kamada C, Enatsu R, Imataka S, Kanno A, Ochi S, Mikuni N. Functional Brain Mapping Using Depth Electrodes. World Neurosurg 2024; 188:e288-e296. [PMID: 38796150 DOI: 10.1016/j.wneu.2024.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE This study investigated the neurologic symptoms and stimulus intensities in the stimulation of deep structures and subcortical fibers with the depth electrodes. METHODS Seventeen patients with drug-refractory epilepsy who underwent functional brain mapping with the depth electrodes were enrolled. The 50 Hz electrical stimulation was applied, and the diffusion tensor image was used to identify subcortical fibers. The responsible structures and stimulus intensities for the induced neurologic symptoms were evaluated. RESULTS Neurologic symptoms were induced in 11 of 17 patients. The opercular stimulation elicited the neurologic symptoms in 6 patients at the median threshold of 4.0 mA (visceral/face/hand sensory, hand/throat motor, negative motor and auditory symptoms). The insular stimulation induced the neurologic symptoms in 4 patients at the median threshold of 4.0 mA (auditory, negative motor, and sensory symptoms). The stimulation of subcortical fibers was induced in 5 of 9 patients at the median threshold of 4.5 mA. The thresholds of depth electrodes were significantly lower than those of subdural electrodes in 8 patients who used both subdural and depth electrodes and induced symptoms with both electrodes. CONCLUSIONS The stimulation of depth electrodes can identify the function of deep structures and subcortical fibers with lower intensities than subdural electrodes.
Collapse
Affiliation(s)
- Chie Kamada
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan.
| | - Seiichiro Imataka
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Aya Kanno
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
15
|
Pigorini A, Avanzini P, Barborica A, Bénar CG, David O, Farisco M, Keller CJ, Manfridi A, Mikulan E, Paulk AC, Roehri N, Subramanian A, Vulliémoz S, Zelmann R. Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone for deciphering brain activity. J Neurosci Methods 2024; 408:110160. [PMID: 38734149 DOI: 10.1016/j.jneumeth.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.
Collapse
Affiliation(s)
- Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | | | - Christian-G Bénar
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Olivier David
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, P.O. Box 256, Uppsala, SE 751 05, Sweden; Science and Society Unit Biogem, Biology and Molecular Genetics Institute, Via Camporeale snc, Ariano Irpino, AV 83031, Italy
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Alfredo Manfridi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelique C Paulk
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicolas Roehri
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Ajay Subramanian
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Rina Zelmann
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Dai Y, Jiang R, Zhang J, Qian Z, Chen Z, Shi S, Song S. The Value of SINO Robot and Angio Render Technology for Stereoelectroencephalography Electrode Implantation in Drug-Resistant Epilepsy. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38574755 DOI: 10.1055/a-2299-7781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) electrodes are implanted using a variety of stereotactic technologies to treat refractory epilepsy. The value of the SINO robot for SEEG electrode implantation is not yet defined. The aim of the current study was to assess the value of the SINO robot in conjunction with Angio Render technology for SEEG electrode implantation and to assess its efficacy. METHODS Between June 2018 and October 2020, 58 patients underwent SEEG electrode implantation to resect or ablate their epileptogenic zone (EZ). The SINO robot and the Angio Render technology was used to guide the electrodes and visualize the individual vasculature in a three-dimensional (3D) fashion. The 3D view functionality was used to increase the safety and accuracy of the electrode implantation, and for reducing the risk of hemorrhage by avoiding blood vessels. RESULTS In this study, 634 SEEG electrodes were implanted in 58 patients, with a mean of 10.92 (range: 5-18) leads per patient. The mean entry point localization error (EPLE) was 0.94 ± 0.23 mm (range: 0.39-1.63 mm), and the mean target point localization error (TPLE) was 1.49 ± 0.37 mm (range: 0.80-2.78 mm). The mean operating time per lead (MOTPL) was 6. 18 ± 1.80 minutes (range: 3.02-14.61 minutes). The mean depth of electrodes was 56.96 ± 3.62 mm (range: 27.23-124.85 mm). At a follow-up of at least 1 year, in total, 81.57% (47/58) patients achieved an Engel class I seizure freedom. There were two patients with asymptomatic intracerebral hematomas following SEEG electrode placement, with no late complications or mortality in this cohort. CONCLUSIONS The SINO robot in conjunction with Angio Render technology-in SEEG electrode implantation is safe and accurate in mitigating the risk of intracranial hemorrhage in patients suffering from drug-resistant epilepsy.
Collapse
Affiliation(s)
- Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Rifeng Jiang
- Department of Imaging, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jingyi Zhang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhe Qian
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhen Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Alick-Lindstrom S, Venkatesh P, Perven G, Wabulya A, Yang QZJ, Sirsi D, Podkorytova I. Back to Basics: Care of the Stereotactic EEG Implanted Patient. J Clin Neurophysiol 2024; 41:415-422. [PMID: 38935655 DOI: 10.1097/wnp.0000000000001044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is gaining increasing popularity in the United States. Patients undergoing SEEG have unique challenges, and their needs are different compared with noninvasive cases. We aim to describe the medical, nursing, and other institutional practices of SEEG evaluations among tertiary referral (level IV) epilepsy centers accredited by the National Association of Epilepsy Centers. METHODS We analyzed data obtained from a Research Electronic Data Capture (REDCap) survey we formulated and distributed to directors of all level IV epilepsy centers listed by the National Association of Epilepsy Center. Most questions were addressed to the adult and pediatric SEEG programs separately. RESULTS Among 199 epilepsy center directors invited to complete the survey, 90 (45%) responded. Eighty-three centers (92%) reported they perform SEEG evaluations. Of the 83 respondents, 56 perform SEEG in adult and 47 in pediatric patients. Twenty-two centers evaluate both pediatric and adult subjects. The highest concordance of SEEG workflow was in (1) epilepsy monitoring unit stay duration (1-2 weeks, 79% adult and 85% pediatric programs), (2) use of sleep deprivation (94% both adult and pediatric) and photic stimulation (79% adult and 70% pediatric) for seizure activation, (3) performing electrical cortical stimulation at the end of SEEG evaluation after spontaneous seizures are captured (84% adult and 88% pediatric), and (4) daily head-wrap inspection (76% adult and 80% pediatric). Significant intercenter variabilities were noted in the other aspects of SEEG workflow. CONCLUSIONS Results showed significant variability in SEEG workflow across polled centers. Prospective, multicenter protocols will help the future development and harmonization of optimal practice patterns.
Collapse
Affiliation(s)
- Sasha Alick-Lindstrom
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | - Ghazala Perven
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Angela Wabulya
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, U.S.A
| | - Qian-Zhou JoJo Yang
- Department of Pediatric Neurology, University of North Carolina, Chapel Hill, North Carolina, U.S.A.; and
| | - Deepa Sirsi
- Department of Pediatric Neurology, Children's Medical Center/UT Southwestern, Dallas, Texas, U.S.A
| | - Irina Podkorytova
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| |
Collapse
|
18
|
Wu S, Issa NP, Rose SL, Haider HA, Nordli DR, Towle VL, Warnke PC, Tao JX. Depth versus surface: A critical review of subdural and depth electrodes in intracranial electroencephalographic studies. Epilepsia 2024; 65:1868-1878. [PMID: 38722693 DOI: 10.1111/epi.18002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024]
Abstract
Intracranial electroencephalographic (IEEG) recording, using subdural electrodes (SDEs) and stereoelectroencephalography (SEEG), plays a pivotal role in localizing the epileptogenic zone (EZ). SDEs, employed for superficial cortical seizure foci localization, provide information on two-dimensional seizure onset and propagation. In contrast, SEEG, with its three-dimensional sampling, allows exploration of deep brain structures, sulcal folds, and bihemispheric networks. SEEG offers the advantages of fewer complications, better tolerability, and coverage of sulci. Although both modalities allow electrical stimulation, SDE mapping can tessellate cortical gyri, providing the opportunity for a tailored resection. With SEEG, both superficial gyri and deep sulci can be stimulated, and there is a lower risk of afterdischarges and stimulation-induced seizures. Most systematic reviews and meta-analyses have addressed the comparative effectiveness of SDEs and SEEG in localizing the EZ and achieving seizure freedom, although discrepancies persist in the literature. The combination of SDEs and SEEG could potentially overcome the limitations inherent to each technique individually, better delineating seizure foci. This review describes the strengths and limitations of SDE and SEEG recordings, highlighting their unique indications in seizure localization, as evidenced by recent publications. Addressing controversies in the perceived usefulness of the two techniques offers insights that can aid in selecting the most suitable IEEG in clinical practice.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Sandra L Rose
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Hiba A Haider
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Douglas R Nordli
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Vernon L Towle
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Gavvala JR. The United States Stereotactic EEG Survey: Current Practice and Future Opportunities. J Clin Neurophysiol 2024; 41:402-404. [PMID: 38935652 DOI: 10.1097/wnp.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. A 2022 survey of SEEG practices among National Association of Epilepsy Centers tertiary referral (NAEC level IV) centers found largely similar practices across institutions. However, a few significant differences were noted in technical and patient care practice, and in the level of SEEG background training. In the year since publication, we review the identified challenges facing SEEG practice and suggest specific corrective action. CONCLUSIONS Stereotactic EEG has rapidly become the principal method for intracranial EEG monitoring in epilepsy surgery centers in the United States. The rate of adoption of SEEG is currently higher than the growth of invasive monitoring overall. Most report similar indications for SEEG, although significant variability exists in personnel expertise and technical and patient care practice. Consensus statements, guidelines, and review of postgraduate training curricula are urgently needed to benchmark SEEG practice and develop appropriate skillsets in the next generation of practitioners in the United States.
Collapse
Affiliation(s)
- Jay R Gavvala
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, U.S.A
| |
Collapse
|
20
|
Bregianni M, Pizzo F, Lagarde S, Makhalova J, Trebuchon A, Carron R, Soncin L, Arthuis M, Bartolomei F. Psychiatric complications following SEEG-guided radiofrequency thermocoagulations in patients with drug-resistant epilepsy. Epilepsy Behav 2024; 156:109806. [PMID: 38677102 DOI: 10.1016/j.yebeh.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
SEEG-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic regions is a therapeutic option for patients with drug-resistant focal epilepsy who may have or not indication for epilepsy surgery. The most common adverse events of RF-TC are seizures, headaches, somatic pain, and sensory-motor deficits. If RF-TC could lead to psychiatric complications is unknown. In the present study, seven out of 164 patients (4.2 %) experienced psychiatric decompensation with or without memory deterioration after RF-TC of bilateral or unilateral amygdala and hippocampus. The appearance of symptoms was either acute, subacute, or chronic and the symptoms were either transient or lasted for several months. Common features among these patients were female sex, mesial temporal epilepsy, and a pre-existing history of psychological distress and memory dysfunction. Our study highlights the possibility of neuropsychiatric deterioration in specific patients following SEEG-guided RF-TC, despite its rarity.
Collapse
Affiliation(s)
- Marianna Bregianni
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1)
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Agnes Trebuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Lisa Soncin
- Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France
| | - Marie Arthuis
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1)
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France(1); Aix Marseille University, INSERM, INS, Systems Neuroscience Institute, Marseille, France.
| |
Collapse
|
21
|
Fujita Y, Khoo HM, Kimoto Y, Emura T, Iwata T, Matsuhashi T, Miura S, Yanagisawa T, Hosomi K, Tani N, Oshino S, Hirata M, Kishima H. Accuracy of Boltless Frame-Based Stereo-Electroencephalography Electrode Implantation. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01196. [PMID: 38888309 DOI: 10.1227/ons.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Boltless implantation of stereo-electroencephalography electrode is a useful alternative especially when anchor bolt is not available such as in country with limited resources or is less appropriate such as placement in patients with thin skull or at the occiput area, despite some drawbacks including potential dislodgement. While the accuracy of implantation using anchor bolt is well-studied, data on boltless implantation remain scarce. This study aimed to reveal the accuracy, permissible error for actual placement of electrodes within the grey matter, and delayed electrode dislodgement in boltless implantation. METHODS A total of 120 electrodes were implanted in 15 patients using a Leksell Stereotactic G Frame with each electrode fixed on the scalp using sutures. Target point error was defined as the Euclidean distance between the planned target and the electrode tip on immediate postimplantation computed tomography. Similarly, delayed dislodgement was defined as the Euclidean distance between the electrode tips on immediate postimplantation computed tomography and delayed MRI. The factors affecting accuracy were evaluated using multiple linear regression. The permissible error was defined as the largest target point error that allows the maximum number of planned gray matter electrode contacts to be actually placed within the gray matter as intended. RESULTS The median (IQR) target point error was 2.6 (1.7-3.5) mm, and the permissible error was 3.2 mm. The delayed dislodgement, with a median (IQR) of 2.2 (1.4-3.3) mm, was dependent on temporal muscle penetration (P = 5.0 × 10-4), scalp thickness (P < 5.1 × 10-3), and insertion angle (P = 3.4 × 10-3). CONCLUSION Boltless implantation of stereo-electroencephalography electrode offers an accuracy comparable to those using anchor bolt. During the planning of boltless implantation, target points should be placed within 3.2 mm from the gray-white matter junction and a possible delayed dislodgement of 2.2 mm should be considered.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Yuki Kimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Takuto Emura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Takamitsu Iwata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Takahiro Matsuhashi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Shimpei Miura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| |
Collapse
|
22
|
Bourdillon P, Ren L, Halgren M, Paulk AC, Salami P, Ulbert I, Fabó D, King JR, Sjoberg KM, Eskandar EN, Madsen JR, Halgren E, Cash SS. Differential cortical layer engagement during seizure initiation and spread in humans. Nat Commun 2024; 15:5153. [PMID: 38886376 PMCID: PMC11183216 DOI: 10.1038/s41467-024-48746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Hospital Foundation Adolphe de Rothschild, Paris, France.
- Integrative Neuroscience and Cognition Center, Paris Cité University, Paris, France.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Mila Halgren
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - István Ulbert
- HUN-REN, Research Center for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Fabó
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jean-Rémi King
- Laboratoire des Systèmes Perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Kane M Sjoberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Halgren
- Departments of Radiology and, Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Collavini S, Pérez JJ, Berjano E, Fernández-Corazza M, Oddo S, Irastorza RM. Impact of surrounding tissue-type and peri-electrode gap in stereoelectroencephalography guided (SEEG) radiofrequency thermocoagulation (RF-TC): a computational study. Int J Hyperthermia 2024; 41:2364721. [PMID: 38880496 DOI: 10.1080/02656736.2024.2364721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
PURPOSE To use computational modeling to provide a complete and logical description of the electrical and thermal behavior during stereoelectroencephalography-guided (SEEG) radiofrequency thermo-coagulation (RF-TC). METHODS A coupled electrical-thermal model was used to obtain the temperature distributions in the tissue during RF-TC. The computer model was first validated by an ex vivo model based on liver fragments and later used to study the impact of three different factors on the coagulation zone size: 1) the difference in the tissue surrounding the electrode (gray/white matter), 2) the presence of a peri-electrode gap occupied by cerebrospinal fluid (CSF), and 3) the energy setting used (power-duration). RESULTS The model built for the experimental validation was able to predict both the evolution of impedance and the short diameter of the coagulation zone (error < 0.01 mm) reasonably well but overestimated the long diameter by 2 - 3 mm. After adapting the model to clinical conditions, the simulation showed that: 1) Impedance roll-off limited the coagulation size but involved overheating (around 100 °C); 2) The type of tissue around the contacts (gray vs. white matter) had a moderate impact on the coagulation size (maximum difference 0.84 mm), and 3) the peri-electrode gap considerably altered the temperature distributions, avoided overheating, although the diameter of the coagulation zone was not very different from the no-gap case (<0.2 mm). CONCLUSIONS This study showed that computer modeling, especially subject- and scenario-specific modeling, can be used to estimate in advance the electrical and thermal performance of the RF-TC in brain tissue.
Collapse
Affiliation(s)
- Santiago Collavini
- Institute of Engineering and Agronomy, National University Arturo Jauretche, Buenos Aires, Argentina
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp. "El Cruce N. Kirchner", National University A. Jauretche (UNAJ), Buenos Aires, Argentina
| | - Juan J Pérez
- BioMIT, Departamento de Ingeniería Electrónica, Universitat Politècnica de València, València, Spain
| | - Enrique Berjano
- BioMIT, Departamento de Ingeniería Electrónica, Universitat Politècnica de València, València, Spain
| | - Mariano Fernández-Corazza
- Research Institute of Electronics, Control and Signal Processing (LEICI), National University of La Plata-CONICET, La Plata, Argentina
| | - Silvia Oddo
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp. "El Cruce N. Kirchner", National University A. Jauretche (UNAJ), Buenos Aires, Argentina
| | - Ramiro M Irastorza
- Institute of Engineering and Agronomy, National University Arturo Jauretche, Buenos Aires, Argentina
- Institute of Physics of Liquids and Biological Systems (IFLySiB CONICET La Plata), La Plata, Argentina
- Granular Materials Group, Department of Mechanical Engineering, La Plata Regional Faculty, National Technological University, La Plata, Argentina
| |
Collapse
|
24
|
Lagarde S, Modolo J, Yochum M, Carvallo A, Ballabeni A, Scavarda D, Carron R, Villeneuve N, Bartolomei F, Wendling F. Modification of brain conductivity in human focal epilepsy: A model-based estimation from stereoelectroencephalography. Epilepsia 2024; 65:1744-1755. [PMID: 38491955 DOI: 10.1111/epi.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy. METHODS We used bipolar low-intensity biphasic pulse stimulation (.2 mA) followed by a postprocessing pipeline for estimating brain conductivity. This processing is based on biophysical modeling of the electrical potential induced in brain tissue between the stimulated contacts in response to pulse stimulation. We estimated the degree of epileptogenicity using a semi-automatic method quantifying the dynamic of fast discharge at seizure onset: the epileptogenicity index (EI). We also investigated how the location of stimulation within specific anatomical brain regions or within lesional tissue impacts brain conductivity. RESULTS We performed 1034 stimulations of 511 bipolar channels in 16 patients. We found that brain conductivity was lower in the epileptogenic zone (EZ; unpaired median difference = .064, p < .001) and inversely correlated with the epileptogenic index value (p < .001, Spearman rho = -.32). Conductivity values were also influenced by anatomical site, location within lesion, and delay between SEEG electrode implantation and stimulation, and had significant interpatient variability. Mixed model multivariate analysis showed that conductivity is significantly associated with EI (F = 13.45, p < .001), anatomical regions (F = 5.586, p < .001), delay since implantation (F = 14.71, p = .003), and age at SEEG (F = 6.591, p = .027), but not with the type of lesion (F = .372, p = .773) or the delay since last seizure (F = 1.592, p = .235). SIGNIFICANCE We provide a novel model-based method for estimating brain conductivity from SEEG low-intensity pulse stimulations. The brain tissue conductivity is lower in EZ as compared to non-EZ. Conductivity also varies significantly across anatomical brain regions. Involved pathophysiological processes may include changes in the extracellular space (especially volume or tortuosity) in epileptic tissue.
Collapse
Affiliation(s)
- Stanislas Lagarde
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- University Hospitals (HUG) and University of Geneva (UNIGE), Geneva, Switzerland
| | - Julien Modolo
- LTSI - U1099, University of Rennes, INSERM, Rennes, France
| | - Maxime Yochum
- LTSI - U1099, University of Rennes, INSERM, Rennes, France
| | | | - Alice Ballabeni
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- University of Modena and Reggio-Emilia, Modena, Italy
| | - Didier Scavarda
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- Pediatric Neurosurgery Department, APHM, Timone Hospital, Marseille, France
| | - Romain Carron
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
- Stereotactic and Functional Neurosurgery Department, APHM, Timone Hospital, Marseille, France
| | | | - Fabrice Bartolomei
- Epileptology and Cerebral Rhythmology Department (member of the ERN EpiCARE Network), APHM, Timone Hospital, Marseille, France
- INS, Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, Marseille, France
| | | |
Collapse
|
25
|
Guzzi G, Ricciuti RA, Della Torre A, Lo Turco E, Lavano A, Longhini F, La Torre D. Intraoperative Neurophysiological Monitoring in Neurosurgery. J Clin Med 2024; 13:2966. [PMID: 38792507 PMCID: PMC11122101 DOI: 10.3390/jcm13102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Intraoperative neurophysiological monitoring (IONM) is a crucial advancement in neurosurgery, enhancing procedural safety and precision. This technique involves continuous real-time assessment of neurophysiological signals, aiding surgeons in timely interventions to protect neural structures. In addition to inherent limitations, IONM necessitates a detailed anesthetic plan for accurate signal recording. Given the growing importance of IONM in neurosurgery, we conducted a narrative review including the most relevant studies about the modalities and their application in different fields of neurosurgery. In particular, this review provides insights for all physicians and healthcare professionals unfamiliar with IONM, elucidating commonly used techniques in neurosurgery. In particular, it discusses the roles of IONM in various neurosurgical settings such as tumoral brain resection, neurovascular surgery, epilepsy surgery, spinal surgery, and peripheral nerve surgery. Furthermore, it offers an overview of the anesthesiologic strategies and limitations of techniques essential for the effective implementation of IONM.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Attilio Della Torre
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Erica Lo Turco
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Angelo Lavano
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
| | - Domenico La Torre
- Neurosurgery Department, “R. Dulbecco” Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Du C, Jin W, Wang L, Yan J, Li G, Wu Y, Zhao G, Cui D, Yin S. Stereoelectroencephalography-guided radiofrequency thermocoagulation of the epileptogenic zone: a potential treatment and prognostic indicator for subsequent excision surgery. Acta Neurochir (Wien) 2024; 166:210. [PMID: 38735896 DOI: 10.1007/s00701-024-06106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE To evaluate the safety and efficacy of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) for drug-resistant focal epilepsy and investigate the relationship between post-RFTC remission duration and delayed excision surgery effectiveness. METHODS We conducted a retrospective analysis of 43 patients with drug-resistant focal epilepsy who underwent RFTC via SEEG electrodes. After excluding three, the remaining 40 were classified into subgroups based on procedures and outcomes. Twenty-four patients (60%) underwent a secondary excision surgery. We determined the predictive value of RFTC outcome upon subsequent surgical outcome by categorizing the delayed secondary surgery outcome as success (Engel I/II) versus failure (Engel III/IV). Demographic information, epilepsy characteristics, and the duration of seizure freedom after RFTC were assessed. RESULTS Among 40 patients, 20% achieved Engel class I with RFTC alone, while 24 underwent delayed secondary excision surgery. Overall, 41.7% attained Engel class I, with a 66.7% success rate combining RFTC with delayed surgery. Seizure freedom duration was significantly longer in the success group (mean 4.9 months, SD = 2.7) versus the failure group (mean 1.9 months, SD = 1.1; P = 0.007). A higher proportion of RFTC-only and delayed surgical success group patients had preoperative lesional findings (p = 0.01), correlating with a longer time to seizure recurrence (p < 0.05). Transient postoperative complications occurred in 10%, resolving within a year. CONCLUSION This study demonstrates that SEEG-guided RFTC is a safe and potential treatment option for patients with drug-resistant focal epilepsy. A prolonged duration of seizure freedom following RFTC may serve as a predictive marker for the success of subsequent excision surgery.
Collapse
Affiliation(s)
- Chuan Du
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Weipeng Jin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Le Wang
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Jingtao Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Guangfeng Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Yuzhang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Guangrui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Deqiu Cui
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Shaoya Yin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Wendling F, Koksal-Ersoz E, Al-Harrach M, Yochum M, Merlet I, Ruffini G, Bartolomei F, Benquet P. Multiscale neuro-inspired models for interpretation of EEG signals in patients with epilepsy. Clin Neurophysiol 2024; 161:198-210. [PMID: 38520800 DOI: 10.1016/j.clinph.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France; Univ Aix Marseille, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
28
|
Du C, Wang L, Yan J, Li G, Wu Y, Zhao G, Cui D, Jin W, Yin S. The Association Between Trajectory-Skull Angle and Accuracy of Stereoelectroencephalography Electrode Implantation in Drug-Resistant Epilepsy. World Neurosurg 2024; 184:e408-e416. [PMID: 38309654 DOI: 10.1016/j.wneu.2024.01.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE To analyze the relationship between trajectory-skull angle and stereoelectroencephalography electrode implantation accuracy in drug-resistant epilepsy patients, aiming to guide clinical electrode placement and enhance surgical precision and safety. METHODS We conducted a retrospective analysis of medical records and surgical characteristics of 32 consecutive patients diagnosed with drug-resistant epilepsy, who underwent stereoelectroencephalography procedures at our center from June 2020 to June 2023. To evaluate the accuracy of electrode implantation, we utilized preoperative and postoperative computed tomography scans fused with SinoPlan software-planned trajectories. Entry radial error and target vector error were assessed as measurements of electrode implantation accuracy. RESULTS After adjusting for confounders, we found a significant positive correlation between trajectory-skull angle and entry radial error (β = 0.02, 95% CI: 0.01-0.03, P < 0.001). Likewise, a significant positive correlation existed between trajectory-skull angle and target vector error in all three models (β = 0.03, 95% CI: 0.01-0.04, P < 0.001). Additionally, a U-shaped relationship between trajectory-skull angle and target vector error was identified using smooth curve fitting. This U-shaped pattern persisted in both frame-based and robot-guided stereotactic techniques. According to the two-piecewise linear regression model, the inflection points were 9° in the frame-based group and 16° in the robot-guided group. CONCLUSIONS This study establishes a significant positive linear correlation between trajectory-skull angle and entry radial error, along with a distinctive U-shaped pattern in the relationship between trajectory-skull angle and target vector error. Our findings suggest that trajectory-skull angles of 9° (frame-based) and 16° (robot-guided) may optimize the accuracy of target vector error.
Collapse
Affiliation(s)
- Chuan Du
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Le Wang
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Jingtao Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Guangfeng Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yuzhang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Guangrui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Deqiu Cui
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Weipeng Jin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China
| | - Shaoya Yin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
29
|
Huang Q, Xie P, Zhou J, Ding H, Liu Z, Li T, Guan Y, Wang M, Wang J, Teng P, Zhu M, Ma K, Wu H, Luan G, Zhai F. Predictors of seizure outcomes in stereo-electroencephalography-guided radio-frequency thermocoagulation for MRI-negative epilepsy. Ther Adv Chronic Dis 2024; 15:20406223241236258. [PMID: 38496233 PMCID: PMC10943718 DOI: 10.1177/20406223241236258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Background One-third of intractable epilepsy patients have no visually identifiable focus for neurosurgery based on imaging tests [magnetic resonance imaging (MRI)-negative cases]. Stereo-electroencephalography-guided radio-frequency thermocoagulation (SEEG-guided RF-TC) is utilized in the clinical treatment of epilepsy to lower the incidence of complications post-open surgery. Objective This study aimed to identify prognostic factors and long-term seizure outcomes in SEEG-guided RF-TC for patients with MRI-negative epilepsy. Design This was a single-center retrospective cohort study. Methods We included 30 patients who had undergone SEEG-guided RF-TC at Sanbo Brain Hospital, Capital Medical University, from April 2015 to December 2019. The probability of remaining seizure-free and the plotted survival curves were analyzed. Prognostic factors were analyzed using log-rank tests in univariate analysis and the Cox regression model in multivariate analysis. Results With a mean time of 31.07 ± 2.64 months (median 30.00, interquartile range: 18.00-40.00 months), 11 out of 30 patients (36.7%) were classified as International League Against Epilepsy class 1 in the last follow-up. The mean time of remaining seizure-free was 21.33 ± 4.55 months [95% confidence interval (CI) 12.41-30.25], and the median time was 3.00 ± 0.54 months (95% CI 1.94-4.06). Despite falling in the initial year, the probability of remaining seizure-free gradually stabilizes in the subsequent years. The patients were more likely to obtain seizure freedom when the epileptogenic zone was located in the insular lobe or with one focus on the limbic system (p = 0.034, hazard ratio 5.019, 95% CI 1.125-22.387). Conclusion Our findings may be applied to guide individualized surgical interventions and help clinicians make better decisions.
Collapse
Affiliation(s)
- Qi Huang
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pandeng Xie
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pengfei Teng
- Department of Magnetoencephalography, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Kaiqiang Ma
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Han Wu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
- Department of Functional Neurosurgery, Neurological Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
30
|
Marx B, Medina-Villalon S, Bartolomei F, Lagarde S. How Can a Focal Seizure Lead to a Dacrystic Behavior? A Case Analyzed with Functional Connectivity in Stereoelectroencephalography. Clin EEG Neurosci 2024; 55:272-277. [PMID: 37340756 DOI: 10.1177/15500594231182808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
We present a case of a patient with focal non-motor emotional seizures with dacrystic expression in the context of drug-resistant magnetic resonance imaging negative epilepsy. The pre-surgical evaluation suggested a hypothesis of a right fronto-temporal epileptogenic zone. Stereoelectroencephalography recorded dacrystic seizures arising from the right anterior operculo-insular (pars orbitalis) area with secondary propagation to temporal and parietal cortices during the dacrystic behavior. We analyzed functional connectivity during the ictal dacrystic behavior and found an increase of the functional connectivity within a large right fronto-temporo-insular network, broadly similar to the "emotional excitatory" network. It suggests that focal seizure, potentially, from various origins but leading to disorganization of these physiological networks may generate dacrystic behavior.
Collapse
Affiliation(s)
- Barbara Marx
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
| | - Samuel Medina-Villalon
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology Department, Member of the ERN EpiCARE, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
31
|
Medina Villalon S, Makhalova J, López-Madrona VJ, Garnier E, Badier JM, Bartolomei F, Bénar CG. Combining independent component analysis and source localization for improving spatial sampling of stereoelectroencephalography in epilepsy. Sci Rep 2024; 14:4071. [PMID: 38374380 PMCID: PMC10876572 DOI: 10.1038/s41598-024-54359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.
Collapse
Affiliation(s)
- Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
32
|
Bastuji H, Cadic-Melchior A, Ruelle-Le Glaunec L, Magnin M, Garcia-Larrea L. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep. Eur J Neurosci 2024; 59:570-583. [PMID: 36889675 DOI: 10.1111/ejn.15958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre du Sommeil, Hospices Civils de Lyon, Bron, France
| | - Andéol Cadic-Melchior
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Lucien Ruelle-Le Glaunec
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre d'évaluation et de traitement de la douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
33
|
Bratu IF, Makhalova J, Garnier E, Villalon SM, Jegou A, Bonini F, Lagarde S, Pizzo F, Trébuchon A, Scavarda D, Carron R, Bénar C, Bartolomei F. Permutation entropy-derived parameters to estimate the epileptogenic zone network. Epilepsia 2024; 65:389-401. [PMID: 38041564 DOI: 10.1111/epi.17849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Quantification of the epileptogenic zone network (EZN) most frequently implies analysis of seizure onset. However, important information can also be obtained from the postictal period, characterized by prominent changes in the EZN. We used permutation entropy (PE), a measure of signal complexity, to analyze the peri-ictal stereoelectroencephalography (SEEG) signal changes with emphasis on the postictal state. We sought to determine the best PE-derived parameter (PEDP) for identifying the EZN. METHODS Several PEDPs were computed retrospectively on SEEG-recorded seizures of 86 patients operated on for drug-resistant epilepsy: mean baseline preictal entropy, minimum ictal entropy, maximum postictal entropy, the ratio between the maximum postictal and the minimum ictal entropy, and the ratio between the maximum postictal and the baseline preictal entropy. The performance of each biomarker was assessed by comparing the identified epileptogenic contacts or brain regions against the EZN defined by clinical analysis incorporating the Epileptogenicity Index and the connectivity epileptogenicity index methods (EZNc), using the receiver-operating characteristic and precision-recall. RESULTS The ratio between the maximum postictal and the minimum ictal entropy (defined as the Permutation Entropy Index [PEI]) proved to be the best-performing PEDP to identify the EZNC . It demonstrated the highest area under the curve (AUC) and F1 score at the contact level (AUC 0.72; F1 0.39) and at the region level (AUC 0.78; F1 0.47). PEI values gradually decreased between the EZN, the propagation network, and the non-involved regions. PEI showed higher performance in patients with slow seizure-onset patterns than in those with fast seizure-onset patterns. The percentage of resected epileptogenic regions defined by PEI was significantly correlated with surgical outcome. SIGNIFICANCE PEI is a promising tool to improve the delineation of the EZN. PEI combines ease and robustness in a routine clinical setting with high sensitivity for seizures without fast activity at seizure onset.
Collapse
Affiliation(s)
- Ionuț-Flavius Bratu
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Francesca Bonini
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM Paediatric Neurosurgery Department, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM Functional Neurosurgery Department, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
34
|
Frauscher B, Mansilla D, Abdallah C, Astner-Rohracher A, Beniczky S, Brazdil M, Gnatkovsky V, Jacobs J, Kalamangalam G, Perucca P, Ryvlin P, Schuele S, Tao J, Wang Y, Zijlmans M, McGonigal A. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024; 26:1-59. [PMID: 38116690 DOI: 10.1002/epd2.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.
Collapse
Affiliation(s)
- B Frauscher
- Department of Neurology, Duke University Medical Center and Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - C Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - A Astner-Rohracher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Aarhus University, Aarhus, Denmark
| | - M Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Member of the ERN-EpiCARE, Brno, Czechia
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - V Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - J Jacobs
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Kalamangalam
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - P Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - J Tao
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Y Wang
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - M Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - A McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
- Mater Research Institute, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
35
|
Feys O, Wens V, Rovai A, Schuind S, Rikir E, Legros B, De Tiège X, Gaspard N. Delayed effective connectivity characterizes the epileptogenic zone during stereo-EEG. Clin Neurophysiol 2024; 158:59-68. [PMID: 38183887 DOI: 10.1016/j.clinph.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE Single-pulse electrical stimulations (SPES) can elicit normal and abnormal responses that might characterize the epileptogenic zone, including spikes, high-frequency oscillations and cortico-cortical evoked potentials (CCEPs). In this study, we investigate their association with the epileptogenic zone during stereoelectroencephalography (SEEG) in 28 patients with refractory focal epilepsy. METHODS Characteristics of CCEPs (distance-corrected or -uncorrected latency, amplitude and the connectivity index) and the occurrence of spikes and ripples were assessed. Responses within the epileptogenic zone and within the non-involved zone were compared using receiver operating characteristics curves and analysis of variance (ANOVA) either in all patients, patients with well-delineated epileptogenic zone, and patients older than 15 years old. RESULTS We found an increase in distance-corrected CCEPs latency after stimulation within the epileptogenic zone (area under the curve = 0.71, 0.72, 0.70, ANOVA significant after false discovery rate correction). CONCLUSIONS The increased distance-corrected CCEPs latency suggests that neuronal propagation velocity is altered within the epileptogenic network. This association might reflect effective connectivity changes at cortico-cortical or cortico-subcortico-cortical levels. Other responses were not associated with the epileptogenic zone, including the CCEPs amplitude, the connectivity index, the occurrences of induced ripples and spikes. The discrepancy with previous descriptions may be explained by different spatial brain sampling between subdural and depth electrodes. SIGNIFICANCE Increased distance-corrected CCEPs latency, indicating delayed effective connectivity, characterizes the epileptogenic zone. This marker could be used to help tailor surgical resection limits after SEEG.
Collapse
Affiliation(s)
- Odile Feys
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium.
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Sophie Schuind
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurosurgery, Bruxelles, Belgium
| | - Estelle Rikir
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Benjamin Legros
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Nicolas Gaspard
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Experimental Neurology, Bruxelles, Belgium; Yale University, Department of Neurology, New Haven, CT, USA
| |
Collapse
|
36
|
Kokkinos V. Interpretation of the Intracranial Electroencephalogram of the Human Hippocampus. Neurosurg Clin N Am 2024; 35:73-82. [PMID: 38000843 DOI: 10.1016/j.nec.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Understanding and discriminating the normal and abnormal elements of the intracranial electroencephalogram (iEEG) is essential in decision-making for epilepsy surgery. The hippocampus is widely acknowledged as a key structure in decision-making processes for surgical treatment in temporal lobe epilepsy and epilepsies that involve the mesial temporal structures. This review will provide a summary of the current state of our knowledge and understanding regarding normal and abnormal features of the iEEG of the human hippocampus.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, 675 North Street Clair Street, Galter 7-109, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Ebersole JS. EEG Source Imaging in Presurgical Evaluations. J Clin Neurophysiol 2024; 41:36-49. [PMID: 38181386 DOI: 10.1097/wnp.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
SUMMARY Presurgical evaluations to plan intracranial EEG implantations or surgical therapies at most epilepsy centers in the United States currently depend on the visual inspection of EEG traces. Such analysis is inadequate and does not exploit all the localizing information contained in scalp EEG. Various types of EEG source modeling or imaging can provide sublobar localization of spike and seizure sources in the brain, and the software to do this with typical long-term monitoring EEG data are available to all epilepsy centers. This article reviews the fundamentals of EEG voltage fields that are used in EEG source imaging, the strengths and weakness of dipole and current density source models, the clinical situations where EEG source imaging is most useful, and the particular strengths of EEG source imaging for various cortical areas where spike/seizure sources are likely.
Collapse
Affiliation(s)
- John S Ebersole
- Overlook MEG Center, Atlantic Health Neuroscience Institute, Summit, New Jersey, U.S.A
| |
Collapse
|
38
|
Ivin NO, Gordeyeva EA, Utyashev NP, Zuev AA. [Possibilities of stimulating epileptic seizures using deep stereo-EEG electrodes in presurgical diagnosis in patients with drug-resistant epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:7-14. [PMID: 39435771 DOI: 10.17116/jnevro20241240917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Electrical stimulation mapping using depth stereo-EEG electrodes is an important method in the structure of presurgical diagnostics in patients with drug-resistant forms of epilepsy. Electrical stimulation mapping was first used in the 1960s and has been actively developed since then, but despite such a long history, a unified protocol for the use of this technique has not been developed and different approaches to stimulation mapping are used in different countries. Based on publications on the topic in PubMed and other available resources, we tried to briefly outline the current opinion on the significance of this technique, paying special attention to the methodological approaches of different schools to stimulation parameters when mapping epileptogenic zones, highlighting in a separate section approaches to stimulation of functionally significant zones Finally, we summarize data on the effectiveness of this method in the presurgical diagnostics of epilepsy.
Collapse
Affiliation(s)
- N O Ivin
- Pirogov National Medical and Surgical Center, Moscow, Russia
| | - E A Gordeyeva
- Pirogov National Medical and Surgical Center, Moscow, Russia
| | - N P Utyashev
- Pirogov National Medical and Surgical Center, Moscow, Russia
| | - A A Zuev
- Pirogov National Medical and Surgical Center, Moscow, Russia
| |
Collapse
|
39
|
Shan Y, Wang H, Yang Y, Wang J, Zhao W, Huang Y, Wang H, Han B, Pan N, Jin X, Fan X, Liu Y, Wang J, Wang C, Zhang H, Chen S, Liu T, Yan T, Si T, Yin L, Li X, Cosci F, Zhang X, Zhang G, Gao K, Zhao G. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Mol Psychiatry 2023; 28:5402-5410. [PMID: 37468529 DOI: 10.1038/s41380-023-02150-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Deep brain regions such as hippocampus, insula, and amygdala are involved in neuropsychiatric disorders, including chronic insomnia and depression. Our recent reports showed that transcranial alternating current stimulation (tACS) with a current of 15 mA and a frequency of 77.5 Hz, delivered through a montage of the forehead and both mastoids was safe and effective in intervening chronic insomnia and depression over 8 weeks. However, there is no physical evidence to support whether a large alternating current of 15 mA in tACS can send electrical currents to deep brain tissue in awake humans. Here, we directly recorded local field potentials (LFPs) in the hippocampus, insula and amygdala at different current strengths (1 to 15 mA) in 11 adult patients with drug-resistant epilepsy implanted with stereoelectroencephalography (SEEG) electrodes who received tACS at 77.5 Hz from 1 mA to 15 mA at 77.5 Hz for five minutes at each current for a total of 40 min. For the current of 15 mA at 77.5 Hz, additional 55 min were applied to add up a total of 60 min. Linear regression analysis revealed that the average LFPs for the remaining contacts on both sides of the hippocampus, insula, and amygdala of each patient were statistically associated with the given currents in each patient (p < 0.05-0.01), except for the left insula of one subject (p = 0.053). Alternating currents greater than 7 mA were required to produce significant differences in LFPs in the three brain regions compared to LFPs at 0 mA (p < 0.05). The differences remained significant after adjusting for multiple comparisons (p < 0.05). Our study provides direct evidence that the specific tACS procedures are capable of delivering electrical currents to deep brain tissues, opening a realistic avenue for modulating or treating neuropsychiatric disorders associated with hippocampus, insula, and amygdala.
Collapse
Affiliation(s)
- Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China.
- Beijing Institute of Brain Disorders, Beijing, 100069, China.
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Jiahao Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Zhao
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
| | - Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Huang Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
| | - Bing Han
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
| | - Na Pan
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
| | - Xiukun Jin
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Yunyun Liu
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Jun Wang
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Ting Liu
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Beijing, 100191, China
| | - Lu Yin
- Medical Research & Biometrics Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 102300, China
| | - Xinmin Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Albert, T6G 2B7, Canada
| | - Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, 50135, Italy.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute (CHINA-INI), Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
- Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
40
|
Bottan JS, Alshahrani A, Gilmore G, Steven DA, Burneo JG, Lau JC, McLachlan RS, Parrent AG, MacDougall KW, Diosy DC, Mirsattari SM, Suller Marti A. Lack of spontaneous typical seizures during intracranial monitoring with stereo-electroencephalography. Epileptic Disord 2023; 25:833-844. [PMID: 37792454 DOI: 10.1002/epd2.20165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE In the presurgical evaluation of patients with drug-resistant epilepsy (DRE), occasionally, patients do not experience spontaneous typical seizures (STS) during a stereo-electroencephalography (SEEG) study, which limits its effectiveness. We sought to identify risk factors for patients who did not have STS during SEEG and to analyze the clinical outcomes for this particular set of patients. METHODS We conducted a retrospective analysis of all patients with DRE who underwent depth electrode implantation and SEEG recordings between January 2013 and December 2018. RESULTS SEEG was performed in 155 cases during this period. 11 (7.2%) did not experience any clinical seizures (non-STS group), while 143 experienced at least one patient-typical seizure during admission (STS group). No significant differences were found between STS and non-STS groups in terms of patient demographics, lesional/non-lesional epilepsy ratio, pre-SEEG seizure frequency, number of ASMs used, electrographic seizures or postoperative seizure outcome in those who underwent resective surgery. Statistically significant differences were found in the average number of electrodes implanted (7.0 in the non-STS group vs. 10.2 in STS), days in Epilepsy Monitoring Unit (21.8 vs. 12.8 days) and the number of cases that underwent resective surgery following SEEG (27.3% vs. 60.8%), respectively. The three non-STS patients (30%) who underwent surgery, all had their typical seizures triggered during ECS studies. Three cases were found to have psychogenic non-epileptic seizures. None of the patients in the non-STS group were offered neurostimulation devices. Five of the non-STS patients experienced transient seizure improvement following SEEG. SIGNIFICANCE We were unable to identify any factors that predicted lack of seizures during SEEG recordings. Resective surgery was only offered in cases where ECS studies replicated patient-typical seizures. Larger datasets are required to be able to identify factors that predict which patients will fail to develop seizures during SEEG.
Collapse
Affiliation(s)
- Juan S Bottan
- Section of Neurosurgery, Hospital General de Niños "Pedro De Elizalde", Ciudad Autónoma de Buenos Aires, Argentina
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ashwaq Alshahrani
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Greydon Gilmore
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Neuroepidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jonathan C Lau
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard S McLachlan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David C Diosy
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
41
|
Taussig D, Mazzola L, Petrescu AM, Aghakhani N, Bouilleret V, Dorfmüller G, Ferrand-Sorbets S, Herbrecht A, Isnard J. Deep retroinsular and parieto-opercular origin of vestibular symptoms: A stereoelectrocenphalography (SEEG) study. Epilepsy Behav 2023; 149:109509. [PMID: 37935078 DOI: 10.1016/j.yebeh.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023]
Abstract
Several studies have shown that the retroinsular and posterior parietal operculum regions play a central role in vestibular processing. Electrical stimulations performed during stereoelectroencephalography (SEEG) in patients with focal drug-resistant epilepsy could contribute to the analysis of this area. Among the 264 SEEGs performed in both an adult and a paediatric epilepsy surgery centre, we retrospectively identified 24 patients (9%) reporting vertigo during electrical stimulations (ES). In seven of them (29% of patients experiencing vertigo during ES), it was evoked by stimulating the retroinsular region. The reported responses were mostly not rotatory sensations but actually illusions of body, limb or limb segment movement. The involved area is limited. Moreover, two patients reported having the same symptoms at the beginning of their seizures starting in the same region. Our case study confirms the pivotal role of the retroinsular and posterior parietal operculum areas in vestibular responses, and we therefore advise the exploration of this region when patients report an illusion of body movement at the beginning of their seizures.
Collapse
Affiliation(s)
- Delphine Taussig
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France.
| | - Laure Mazzola
- Neurology Department, University Hospital, Saint-Etienne, France; NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Ana Maria Petrescu
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France
| | - Nozar Aghakhani
- Université Paris Saclay-APHP, Neurochirurgie, Le Kremlin Bicêtre, France
| | - Viviane Bouilleret
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Georg Dorfmüller
- Hôpital Fondation Rothschild, Neurochirurgie Pédiatrique, Paris, France
| | | | - Anne Herbrecht
- Université Paris Saclay-APHP, Neurochirurgie, Le Kremlin Bicêtre, France
| | - Jean Isnard
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France; Hospices Civils de Lyon, Neurological Hospital, Department of Functional Neurology and Epileptology, Lyon F - 69003, France
| |
Collapse
|
42
|
Oane I, Barborica A, Daneasa A, Maliia MD, Ciurea J, Stoica S, Dabu A, Bratu F, Lentoiu C, Mindruta I. Organization of the epileptogenic zone and signal analysis at seizure onset in patients with drug-resistant epilepsy due to focal cortical dysplasia with mTOR pathway gene mutations-An SEEG study. Epilepsia Open 2023; 8:1588-1595. [PMID: 37574648 PMCID: PMC10690691 DOI: 10.1002/epi4.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Epilepsy surgery in genetic drug-resistant epilepsy is a debated subject as more histological and molecular data are available. We retrospectively collected data from focal drug-resistant epilepsy patients that underwent stereoelectroencephalography (SEEG) invasive recordings. Patients with nonlesional brain imaging or in whom a first epilepsy surgery failed to control seizures were selected. We computed and displayed the intracranial ictal onset activity pattern on structural imaging. Patients underwent epilepsy gene panel testing, next generation sequencing-NGS. Of 113 patients, 13 underwent genetic testing, and in 6 patients, a mechanistic target of rapamycin pathway gene germline mutation (mTOR) was identified. Brain imaging was nonlesional except for one patient in whom two abnormalities suggestive of focal cortical dysplasia (FCD) were found. Patients underwent tailored brain surgery based on SEEG data, tissue analysis revealed FCD and postsurgical outcome was favorable. Our findings are similar to previous case series suggesting that epilepsy surgery can be a treatment option in patients with mTOR pathway mutation. In patients with mTOR pathway mutation, the postsurgical outcome is favorable if complete resection of the epileptogenic zone is performed. Electrophysiological seizure onset patterns in FCDs associated with mTOR pathway mutations display low-voltage fast activity as previously described.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring UnitUniversity Emergency Hospital BucharestBucharestRomania
| | | | - Andrei Daneasa
- Epilepsy Monitoring UnitUniversity Emergency Hospital BucharestBucharestRomania
| | | | - Jean Ciurea
- Neurosurgery Department“Bagdasar‐Arseni” Emergency HospitalBucharestRomania
| | - Sergiu Stoica
- Neurosurgery DepartmentBrain Institute, Monza HospitalBucharestRomania
| | - Aurelia Dabu
- Neurosurgery DepartmentUniversity Emergency Hospital BucharestBucharestRomania
| | - Flavius Bratu
- Epilepsy Monitoring UnitUniversity Emergency Hospital BucharestBucharestRomania
| | - Camelia Lentoiu
- Epilepsy Monitoring UnitUniversity Emergency Hospital BucharestBucharestRomania
| | - Ioana Mindruta
- Epilepsy Monitoring UnitUniversity Emergency Hospital BucharestBucharestRomania
- Neurology Department, Faculty of MedicineUniversity of Medicine and Pharmacy Carol Davila BucharestBucharestRomania
| |
Collapse
|
43
|
Arévalo-Astrada MA, Suller-Marti A, McLachlan RS, Paredes-Aragón E, Jones ML, Parrent AG, Mirsattari SM, Lau JC, Steven DA, Burneo JG. Involvement of the posterior cingulate gyrus in temporal lobe epilepsy: A study using stereo-EEG. Epilepsy Res 2023; 198:107237. [PMID: 37890266 DOI: 10.1016/j.eplepsyres.2023.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To analyze the involvement of the posterior cingulate gyrus (PCG) during mesial temporal lobe seizures (MTLS). METHODS We retrospectively reviewed the stereo-EEG (SEEG) recordings of patients with MTLS performed in our institution from February 2013 to December 2020. Only patients who had electrode implantation in the PCG were included. Patients with lesions that could potentially alter the seizure spread pathways were excluded. We assessed the propagation patterns of MTLS with respect to the different structures sampled. RESULTS Nine of 97 patients who had at least one seizure originating in the mesial temporal region met the inclusion criteria. A total of 174 seizures were analyzed. The PCG was the first site of propagation in most of the cases (8/9 patients and 77.5% of seizures, and 7/8 patients and 65.6% of seizures after excluding an outlier patient). The fastest propagation times were towards the contralateral mesial temporal region and ipsilateral PCG. Seven patients underwent standard anterior temporal lobectomy and, of these, all but one were Engel 1 at last follow up. CONCLUSION We found the PCG to be the first propagation site of MTLS in this group of patients. These results outline the relevance of the PCG in SEEG planning strategies. Further investigations are needed to corroborate whether fast propagation to the PCG predicts a good surgical outcome.
Collapse
Affiliation(s)
- Miguel A Arévalo-Astrada
- Division of Neurology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Box 511, Ottawa, Ontario K1H 8L6, Canada
| | - Ana Suller-Marti
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada; Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Richard S McLachlan
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Elma Paredes-Aragón
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Michelle-Lee Jones
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Andrew G Parrent
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Seyed M Mirsattari
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Jonathan C Lau
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - David A Steven
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada
| | - Jorge G Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada; Neuro-Epidemiology Unit, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Rd. London, Ontario N6A 5A5, Canada.
| |
Collapse
|
44
|
Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 2023; 64 Suppl 3:S49-S61. [PMID: 37194746 PMCID: PMC10654261 DOI: 10.1111/epi.17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France. AP-HM, Service de Neurophysiologie Clinique, Hôpital de la Timone, Marseille, France
| | - Maxime O. Baud
- Sleep-Wake-Epilepsy Center, NeuroTec and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| | - Rachel J. Smith
- University of Alabama at Birmingham, Electrical and Computer Engineering Department, Birmingham, Alabama, US. University of Alabama at Birmingham, Neuroengineering Program, Birmingham, Alabama, US
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, US
| | | |
Collapse
|
45
|
Makhalova J, Madec T, Medina Villalon S, Jegou A, Lagarde S, Carron R, Scavarda D, Garnier E, Bénar CG, Bartolomei F. The role of quantitative markers in surgical prognostication after stereoelectroencephalography. Ann Clin Transl Neurol 2023; 10:2114-2126. [PMID: 37735846 PMCID: PMC10646998 DOI: 10.1002/acn3.51900] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance
| | - Tanguy Madec
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic NeurosurgeryMarseilleFrance
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| |
Collapse
|
46
|
Filipescu C, Landré E, Turak B, Devaux B, Chassoux F. Towards a better identification of ictal semiology patterns in insular epilepsies: A stereo-EEG study. Clin Neurophysiol 2023; 155:32-43. [PMID: 37683325 DOI: 10.1016/j.clinph.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE To describe pure insular ictal semiology and patterns of extra-insular spread demonstrated by stereoelectroencephalography (SEEG) according to a classification based on the insular cytoarchitecture. METHODS We investigated the ictal semiology in 17 patients undergoing SEEG for insular epilepsy. The insular cortex was divided into three regions roughly overlapping with the agranular, dysgranular and granular regions. Ictal semiology was described accordingly: anterior insula (AI, short anterior and middle gyri), middle insula (MI, short posterior and long anterior gyri) and posterior insula (PI, long posterior gyrus). RESULTS Awareness impairment occurred secondarily to extra-insular ictal spread. Subjective manifestations were constant. AI seizures (n = 3) presented with autonomic (increased heart rate [HR], respiratory changes), oropharyngeal (mainly throat sensations), emotional (fear, anguish) semiology and the "hand-to-throat" sign followed by frontal-like semiology. MI seizures (n = 8) presented with mainly non-painful paresthesia, some autonomic (respiratory, increased HR), oropharyngeal or thermic symptoms and early motor features with spread to the opercular cortex. PI seizures (n = 6) were characterized by somatosensory semiology, mainly paresthesia potentially painful, and cephalic sensations. CONCLUSIONS Cytoarchitectonic-based classification and the corresponding ictal features support the antero-posterior grading of insular seizures and highlight specific ictal symptoms. SIGNIFICANCE This refinement of insular semiology can help optimize the planning of SEEG for presumed insular epilepsy.
Collapse
Affiliation(s)
- Cristina Filipescu
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France; Neurophysiology and Epileptology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Elisabeth Landré
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Baris Turak
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Bertrand Devaux
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France; Paris-Cité University, Paris, France.
| | - Francine Chassoux
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| |
Collapse
|
47
|
Kalina A, Jezdik P, Fabera P, Marusic P, Hammer J. Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals. Brain Topogr 2023; 36:835-853. [PMID: 37642729 DOI: 10.1007/s10548-023-00994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
Collapse
Affiliation(s)
- Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia.
| | - Petr Jezdik
- Department of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czechia
| | - Petr Fabera
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia.
| |
Collapse
|
48
|
Li Z, Zhang H, Niu S, Xing Y. Localizing epileptogenic zones with high-frequency oscillations and directed connectivity. Seizure 2023; 111:9-16. [PMID: 37487273 DOI: 10.1016/j.seizure.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Precise localization of the epileptogenic zone (EZ) is essential for epilepsy surgery. Existing methods often fail to detect slow onset patterns or similar neural activities presented in the recorded signals. To address this issue, we propose a new measure to quantify epileptogenicity, i.e., the connectivity high-frequency epileptogenicity index (cHFEI). METHODS The cHFEI method combines directed connectivity and high-frequency oscillations (HFOs) to measure the epileptogenicity of regions involved in a brain network. By applying this method to stereoelectroencephalography (SEEG) recordings of 49 seizures in 20 patients, we calculated the accuracy, sensitivity, and precision with a visually identified epileptogenic zone as a reference. The performance was evaluated by the confusion matrix and the area under the receiver operating characteristic (ROC) curve. RESULTS Epileptic network estimation based on cHFEI successfully distinguished brain regions involved in seizure onset from the propagation network. Moreover, cHFEI outperformed other existing detection methods in the estimation of EZs in all patients, with an average area under the ROC curve of 0.88 and an accuracy of 0.85. CONCLUSIONS cHFEI can characterize EZ in a robust manner despite various seizure onset patterns and has potential application in epilepsy therapy.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao 066004, China.
| | - Hao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shipeng Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yanyu Xing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
49
|
Vasconcellos FDN, Almeida T, Müller Fiedler A, Fountain H, Santos Piedade G, Monaco BA, Jagid J, Cordeiro JG. Robotic-Assisted Stereoelectroencephalography: A Systematic Review and Meta-Analysis of Safety, Outcomes, and Precision in Refractory Epilepsy Patients. Cureus 2023; 15:e47675. [PMID: 38021558 PMCID: PMC10672406 DOI: 10.7759/cureus.47675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Robotic assistance in stereoelectroencephalography (SEEG) holds promising potential for enhancing accuracy, efficiency, and safety during electrode placement and surgical procedures. This systematic review and meta-analysis, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and International Prospective Register of Systematic Reviews (PROSPERO) registration, delves into the latest advancements and implications of robotic systems in SEEG, while meticulously evaluating outcomes and safety measures. Among 855 patients suffering from medication-refractory epilepsy who underwent SEEG in 29 studies, averaging 24.6 years in age, the most prevalent robots employed were robotic surgical assistant (ROSA) (450 patients), Neuromate (207), Sinovation (140), and ISys1 (58). A total of 8,184 electrodes were successfully implanted, with an average operative time of 157.2 minutes per procedure and 15.1 minutes per electrode, resulting in an overall mean operative time of 157.7 minutes across all studies. Notably, the mean target point error (TPE) stood at 2.13 mm, the mean entry point error (EPE) at 1.48 mm, and postoperative complications occurred in 7.69% of robotically assisted (RA) SEEG cases (60), with 85% of these complications being asymptomatic. This comprehensive analysis underscores the safety and efficacy of RA-SEEG in patients with medication-refractory epilepsy, characterized by low complication rates, reduced operative time, and precise electrode placement, supporting its widespread adoption in clinical practice, with no discernible differences noted among the various robotic systems.
Collapse
Affiliation(s)
| | - Timoteo Almeida
- Department of Neurosurgery, University of Miami, Miami, USA
- Department of Radiation Oncology, University of Miami, Miami, USA
| | | | - Hayes Fountain
- Department of Neurosurgery, University of Miami, Miami, USA
| | | | - Bernardo A Monaco
- Department of Neurological Surgery, University of Miami, Miami, USA
- Department of Neurological Surgery, CDF (Clinica de Dor e Funcional), Sao Paulo, BRA
- Department of Neurological Surgery, University of Sao Paulo, Sao Paulo, BRA
| | - Jonathan Jagid
- Department of Neurological Surgery, University of Miami, Miami, USA
| | | |
Collapse
|
50
|
Cockle E, Rayner G, Malpas C, Alpitsis R, Rheims S, O'Brien TJ, Neal A. An international survey of SEEG cortical stimulation practices. Epilepsia Open 2023; 8:1084-1095. [PMID: 37437189 PMCID: PMC10472359 DOI: 10.1002/epi4.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
OBJECTIVE Cortical stimulation is an important component of stereoelectroencephalography (SEEG). Despite this, there is currently no standardized approach and significant heterogeneity in the literature regarding cortical stimulation practices. Via an international survey of SEEG clinicians, we sought to examine the spectrum of cortical stimulation practices to reveal areas of consensus and variability. METHODS A 68-item questionnaire was developed to understand cortical stimulation practices including neurostimulation parameters, interpretation of epileptogenicity, functional and cognitive assessment and subsequent surgical decisions. Multiple recruitment pathways were pursued, with the questionnaire distributed directly to 183 clinicians. RESULTS Responses were received from 56 clinicians across 17 countries with experience ranging from 2 to 60 years (M = 10.73, SD = 9.44). Neurostimulation parameters varied considerably, with maximum current ranging from 3 to 10 mA (M = 5.33, SD = 2.29) for 1 Hz and from 2 to 15 mA (M = 6.54, SD = 3.68) for 50 Hz stimulation. Charge density ranged from 8 to 200 μC/cm2 , with up to 43% of responders utilizing charge densities higher than recommended upper safety limits, i.e. 55 μC/cm2 . North American responders reported statistically significant higher maximum current (P < 0.001) for 1 Hz stimulation and lower pulse width for 1 and 50 Hz stimulation (P = 0.008, P < 0.001, respectively) compared to European responders. All clinicians evaluated language, speech, and motor function during cortical stimulation; in contrast, 42% assessed visuospatial or visual function, 29% memory, and 13% executive function. Striking differences were reported in approaches to assessment, classification of positive sites, and surgical decisions guided by cortical stimulation. Patterns of consistency were observed for interpretation of the localizing capacity of stimulated electroclinical seizures and auras, with habitual electroclinical seizures induced by 1 Hz stimulation considered the most localizing. SIGNIFICANCE SEEG cortical stimulation practices differed vastly across clinicians internationally, highlighting the need for consensus-based clinical guidelines. In particular, an internationally standardized approach to assessment, classification, and functional prognostication will provide a common clinical and research framework for optimizing outcomes for people with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Emily Cockle
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Genevieve Rayner
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Melbourne School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Charles Malpas
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Melbourne School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Rubina Alpitsis
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Sylvain Rheims
- Lyon Neurosciences Research Center (Inserm U1028, CNRS UMR5292, Lyon 1 University)LyonFrance
- Department of Functional Neurology and EpileptologyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
- Epilepsy Institute and member of the ERN EpiCARELyonFrance
| | - Terence J O'Brien
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Andrew Neal
- Department of NeurologyAlfred HospitalMelbourneVictoriaAustralia
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|