1
|
Li H, Meng Q, Liu Y, Wu H, Dong Y, Ren Y, Zhang J, Du C, Dong S, Liu X, Zhang H. The value of ictal scalp EEG in focal epilepsies surgery: a retrospective analysis. Neurol Sci 2024; 45:5457-5464. [PMID: 38902569 DOI: 10.1007/s10072-024-07657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE To describe the association between preoperative ictal scalp electroencephalogram (EEG) results and surgical outcomes in patients with focal epilepsies. METHODS The data of consecutive patients with focal epilepsies who received surgical treatments at our center from January 2012 to December 2021 were retrospectively analyzed. RESULTS Our data showed that 44.2% (322/729) of patients had ictal EEG recorded on video EEG monitoring during preoperative evaluation, of which 60.6% (195/322) had a concordant ictal EEG results. No significant difference of surgery outcomes between patients with and without ictal EEG was discovered. Among MRI-negative patients, those with concordant ictal EEG had a significantly better outcome than those without ictal EEG (75.7% vs. 43.8%, p = 0.024). Further logistic regression analysis showed that concordant ictal EEG was an independent predictor for a favorable outcome (OR = 4.430, 95%CI 1.175-16.694, p = 0.028). Among MRI-positive patients, those with extra-temporal lesions and discordant ictal EEG results had a worse outcome compared to those without an ictal EEG result (44.7% vs. 68.8%, p = 0.005). Further logistic regression analysis showed that discordant ictal EEG was an independent predictor of worse outcome (OR = 0.387, 95%CI 0.186-0.807, p = 0.011) in these patients. Furthermore, our data indicated that the number of seizures was not associated with the concordance rates of the ictal EEG, nor the surgical outcomes. CONCLUSIONS The value of ictal scalp EEG for epilepsy surgery varies widely among patients. A concordant ictal EEG predicts a good surgical outcome in MRI-negative patients, whereas a discordant ictal EEG predicts a poor postoperative outcome in lesional extratemporal lobe epilepsy.
Collapse
Affiliation(s)
- Huanfa Li
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Qiang Meng
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Yong Liu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Hao Wu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yicong Dong
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yutao Ren
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
| | - Jiale Zhang
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
| | - Changwang Du
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Shan Dong
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Xiaofang Liu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Hua Zhang
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China.
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Sharma A, Song R, Sarmey N, Harasimchuk S, Bulacio J, Pucci F, Rammo R, Bingaman W, Serletis D. Validation and Safety Profile of a Novel, Noninvasive Fiducial Attachment for Stereotactic Robotic-Guided Stereoelectroencephalography: A Case Series. Oper Neurosurg (Hagerstown) 2024; 27:440-448. [PMID: 38651866 DOI: 10.1227/ons.0000000000001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We developed, tested, and validated a novel, noninvasive, Leksell G frame-based fiducial attachment, for use in stereotactic registration for stereoelectroencephalography (sEEG). Use of the device increased the number of fixed reference points available for registration, while obviating the need for additional scalp incisions. We report here on our experience and safety profile of using the device. METHODS We collected registration data using the fiducial device across 25 adult and pediatric patients with epilepsy consecutively undergoing robotic-guided sEEG for invasive epilepsy monitoring, treated between May 2022 and July 2023. ROSA One Brain was used for trajectory planning and electrode implantation. Postoperative clinical and radiographic data were computed and quantified, including mean registration error for all patients. Entry point, target point (TP), and angular errors were measured. Descriptive statistics and correlation coefficients for error were calculated. RESULTS Twenty-five patients underwent robotic-guided sEEG implantation (11 patients, bilateral; 10 patients, left unilateral; 4 patients, right). The mean number of electrodes per patient was 18 ± 3. The average mean registration error was 0.77 ± 0.11 mm. All patients were implanted with Ad-Tech depth electrodes. No clinically relevant complications were reported. Analysis of trajectory error was performed on 446 electrodes. The median entry point error was 1.03 mm (IQR 0.69-1.54). The median TP error was 2.26 mm (IQR 1.63-2.93). The mean angular error was 0.03 radians (IQR 0.02-0.05). There was no significant correlation between root mean square error and lead error. Root mean square error did not appreciably change over time, nor were there any significant changes in average angular, entry point, or TP error metrics. CONCLUSION A novel, noninvasive, Leksell G frame-based fiducial attachment was developed, tested, and validated, facilitating O-arm-based stereotactic registration for sEEG. This simple innovation maintained an excellent accuracy and safety profile for sEEG procedures in epilepsy patients, with the added advantages of providing additional reference points for stereotactic registration, without requiring additional scalp incisions.
Collapse
Affiliation(s)
- Akshay Sharma
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - Ryan Song
- Lerner College of Medicine of Case Western Reserve University, Cleveland , Ohio , USA
| | - Nehaw Sarmey
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - Stephen Harasimchuk
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - Juan Bulacio
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - Francesco Pucci
- Department of Neurosurgery, University of Illinois, Chicago, Chicago , Illinois , USA
| | - Richard Rammo
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - William Bingaman
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Lerner College of Medicine of Case Western Reserve University, Cleveland , Ohio , USA
| | - Demitre Serletis
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland , Ohio , USA
- Lerner College of Medicine of Case Western Reserve University, Cleveland , Ohio , USA
| |
Collapse
|
3
|
Gascoigne SJ, Evans N, Hall G, Kozma C, Panagiotopoulou M, Schroeder GM, Simpson C, Thornton C, Turner F, Woodhouse H, Blickwedel J, Chowdhury FA, Diehl B, Duncan JS, Faulder R, Thomas RH, Wilson K, Taylor PN, Wang Y. Incomplete resection of the intracranial electroencephalographic seizure onset zone is not associated with postsurgical outcomes. Epilepsia 2024; 65:e163-e169. [PMID: 38990082 DOI: 10.1111/epi.18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Delineation of seizure onset regions using intracranial electroencephalography (icEEG) is vital in the surgical workup of drug-resistant epilepsy cases. However, it is unknown whether the complete resection of these regions is necessary for seizure freedom, or whether postsurgical seizure recurrence can be attributed to the incomplete removal of seizure onset regions. To address this gap, we retrospectively analyzed icEEG recordings from 63 subjects, identifying seizure onset regions visually and algorithmically. We assessed onset region resection and correlated this with postsurgical seizure control. The majority of subjects had more than half of their onset regions resected (82.46% and 80.65% of subjects using visual and algorithmic methods, respectively). There was no association between the proportion of the seizure onset zone (SOZ) that was subsequently resected and better surgical outcomes (area under the receiver operating characteristic curve [AUC] < .7). Investigating the spatial extent of onset regions, we found no substantial evidence of an association with postsurgical seizure control (all AUC < .7). Although seizure onset regions are typically resected completely or in large part, incomplete resection is not associated with worse postsurgical outcomes. We conclude that postsurgical seizure recurrence cannot be attributed to an incomplete resection of the icEEG SOZ alone. Other network mechanisms beyond icEEG seizure onset likely contribute.
Collapse
Affiliation(s)
- Sarah J Gascoigne
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Nathan Evans
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gerard Hall
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Csaba Kozma
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariella Panagiotopoulou
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gabrielle M Schroeder
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Callum Simpson
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Thornton
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Frances Turner
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Heather Woodhouse
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Jess Blickwedel
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Fahmida A Chowdhury
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - Beate Diehl
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - John S Duncan
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - Ryan Faulder
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Rhys H Thomas
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kevin Wilson
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle Upon Tyne, UK
| | - Peter N Taylor
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Yujiang Wang
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Zauli FM, Del Vecchio M, Pigorini A, Russo S, Massimini M, Sartori I, Cardinale F, d'Orio P, Mikulan E. Localizing hidden Interictal Epileptiform Discharges with simultaneous intracerebral and scalp high-density EEG recordings. J Neurosci Methods 2024; 409:110193. [PMID: 38871302 DOI: 10.1016/j.jneumeth.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Scalp EEG is one of the main tools in the clinical evaluation of epilepsy. In some cases intracranial Interictal Epileptiform Discharges (IEDs) are not visible from the scalp. Recent studies have shown the feasibility of revealing them in the EEG if their timings are extracted from simultaneous intracranial recordings, but their potential for the localization of the epileptogenic zone is not yet well defined. NEW METHOD We recorded simultaneous high-density EEG (HD-EEG) and stereo-electroencephalography (SEEG) during interictal periods in 8 patients affected by drug-resistant focal epilepsy. We identified IEDs in the SEEG and systematically analyzed the time-locked signals on the EEG by means of evoked potentials, topographical analysis and Electrical Source Imaging (ESI). The dataset has been standardized and is being publicly shared. RESULTS Our results showed that IEDs that were not clearly visible at single-trials could be uncovered by averaging, in line with previous reports. They also showed that their topographical voltage distributions matched the position of the SEEG electrode where IEDs had been identified, and that ESI techniques can reconstruct it with an accuracy of ∼2 cm. Finally, the present dataset provides a reference to test the accuracy of different methods and parameters. COMPARISON WITH EXISTING METHODS Our study is the first to systematically compare ESI methods on simultaneously recorded IEDs, and to share a public resource with in-vivo data for their evaluation. CONCLUSIONS Simultaneous HD-EEG and SEEG recordings can unveil hidden IEDs whose origins can be reconstructed using topographical and ESI analyses, but results depend on the selected methods and parameters.
Collapse
Affiliation(s)
- Flavia Maria Zauli
- Department of Philosophy "P. Martinetti", Università degli Studi di Milano, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Ivana Sartori
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Francesco Cardinale
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Piergiorgio d'Orio
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Abdallah C, Mansilla D, Minato E, Grova C, Beniczky S, Frauscher B. Systematic review of seizure-onset patterns in stereo-electroencephalography: Current state and future directions. Clin Neurophysiol 2024; 163:112-123. [PMID: 38733701 DOI: 10.1016/j.clinph.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Increasing evidence suggests that the seizure-onset pattern (SOP) in stereo-electroencephalography (SEEG) is important for localizing the "true" seizure onset. Specifically, SOPs with low-voltage fast activity (LVFA) are associated with seizure-free outcome (Engel I). However, several classifications and various terms corresponding to the same pattern have been reported, challenging its use in clinical practice. METHOD Following the Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guideline, we performed a systematic review of studies describing SOPs along with accompanying figures depicting the reported SOP in SEEG. RESULTS Of 1799 studies, 22 met the selection criteria. Among the various SOPs, we observed that the terminology for low frequency periodic spikes exhibited the most variability, whereas LVFA is the most frequently used term of this pattern. Some SOP terms were inconsistent with standard EEG terminology. Finally, there was a significant but weak association between presence of LVFA and seizure-free outcome. CONCLUSION Divergent terms were used to describe the same SOPs and some of these terms showed inconsistencies with the standard EEG terminology. Additionally, our results confirmed the link between patterns with LVFA and seizure-free outcomes. However, this association was not strong. SIGNIFICANCE These results underline the need for standardization of SEEG terminology.
Collapse
Affiliation(s)
- Chifaou Abdallah
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada.
| | - Daniel Mansilla
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Erica Minato
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Christophe Grova
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada; Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, Québec, Canada; PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC, USA.
| |
Collapse
|
6
|
Gavvala JR. The United States Stereotactic EEG Survey: Current Practice and Future Opportunities. J Clin Neurophysiol 2024; 41:402-404. [PMID: 38935652 DOI: 10.1097/wnp.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. A 2022 survey of SEEG practices among National Association of Epilepsy Centers tertiary referral (NAEC level IV) centers found largely similar practices across institutions. However, a few significant differences were noted in technical and patient care practice, and in the level of SEEG background training. In the year since publication, we review the identified challenges facing SEEG practice and suggest specific corrective action. CONCLUSIONS Stereotactic EEG has rapidly become the principal method for intracranial EEG monitoring in epilepsy surgery centers in the United States. The rate of adoption of SEEG is currently higher than the growth of invasive monitoring overall. Most report similar indications for SEEG, although significant variability exists in personnel expertise and technical and patient care practice. Consensus statements, guidelines, and review of postgraduate training curricula are urgently needed to benchmark SEEG practice and develop appropriate skillsets in the next generation of practitioners in the United States.
Collapse
Affiliation(s)
- Jay R Gavvala
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, U.S.A
| |
Collapse
|
7
|
Lee HJ, Chien LY, Yu HY, Lee CC, Chou CC, Kuo WJ, Lin FH. Distributed source modeling of stereoencephalographic measurements of ictal activity. Clin Neurophysiol 2024; 161:112-121. [PMID: 38461595 DOI: 10.1016/j.clinph.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Stereoelectroencephalography (SEEG) can define the epileptogenic zone (EZ). However, SEEG is susceptible to the sampling bias, where no SEEG recording is taken within a circumscribed EZ. METHODS Nine patients with medically refractory epilepsy underwent SEEG recording, and brain resection got positive outcomes. Ictal neuronal currents were estimated by distributed source modeling using the SEEG data and individual's anatomical magnetic resonance imaging. Using a retrospective leave-one-out data sub-sampling, we evaluated the sensitivity and specificity of the current estimates using MRI after surgical resection or radio-frequency ablation. RESULTS The sensitivity and specificity in detecting the EZ were indistinguishable from either the data from all electrodes or the sub-sampled data (rank sum test: rank sum = 23719, p = 0.13) when at least one remaining electrode contact was no more than 20 mm away. CONCLUSIONS The distributed neuronal current estimates of ictal SEEG data can mitigate the challenge of delineating the boundary of the EZ in cases of missing an electrode implanted within the EZ and a required second SEEG exploration. SIGNIFICANCE Distributed source modeling can be a tool for clinicians to infer the EZ by allowing for more flexible planning of the electrode implantation route and minimizing the number of electrodes.
Collapse
Affiliation(s)
- Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lin-Yao Chien
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Hsiang-Yu Yu
- Department of Epilepsy, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chen Chou
- Department of Epilepsy, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan.
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ilyas A, Vilella L, Restrepo CE, Johnson J, Pati S, Lacuey N, Lhatoo S, Thompson SA, Tandon N. The value of additional electrodes when stereo-electroencephalography is inconclusive. Epilepsia 2024; 65:641-650. [PMID: 38265418 DOI: 10.1111/epi.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG) is the preferred method for intracranial localization of the seizure-onset zone (SOZ) in drug-resistant focal epilepsy. Occasionally SEEG evaluation fails to confirm the pre-implantation hypothesis. This leads to a decision tree regarding whether the addition of SEEG electrodes (two-step SEEG - 2sSEEG) or placement of subdural electrodes (SDEs) after SEEG (SEEG2SDE) would help. There is a dearth of literature encompassing this scenario, and here we aimed to characterize outcomes following unplanned two-step intracranial EEG (iEEG). METHODS All 225 adult SEEG cases over 8 years at our institution were reviewed to extract patient data and outcomes following a two-step evaluation. Three raters independently quantified benefits of additional intracranial electrodes. The relationship between two-step iEEG benefit and clinical outcome was then analyzed. RESULTS Fourteen patients underwent 2sSEEG and nine underwent SEEG2SDE. In the former cohort, the second SEEG procedure was performed for these reasons-precise localization of the SOZ (36%); defining margins of eloquent cortex (21%); and broadening coverage in the setting of non-localizable seizure onsets (43% of cases). Sixty-four percent of 2sSEEG cases were consistently deemed beneficial (Light's κ = 0.80). 2sSEEG performed for the first two indications was much more beneficial than when onsets were not localizable (100% vs 17%, p = .02). In the SEEG2SDE cohort, SDEs identified the SOZ and enabled delineation of margins relative to eloquent cortex in all cases. SIGNIFICANCE The two-step iEEG is useful if the initial evaluation is broadly concordant with the original electroclinical hypothesis, where it can clarify onset zones or delineate safe surgical margins; however, it provides minimal benefit when the implantation hypothesis is erroneous, and we recommend that 2sSEEG not be generally utilized in such cases. SDE implantation after SEEG minimizes the need for SDEs and is helpful in delineating surgical boundaries relative to ictal-onset zones and eloquent cortex.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurological Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Laura Vilella
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, Texas, USA
| | - Carlos E Restrepo
- Department of Neurological Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Sandipan Pati
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Nuria Lacuey
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Samden Lhatoo
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Stephen A Thompson
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| |
Collapse
|
9
|
Mutoh M, Maesawa S, Nakatsubo D, Ishizaki T, Tanei T, Torii J, Ito Y, Hashida M, Saito R. Boltless nylon-suture technique for stereotactic electroencephalography as a safe, effective alternative when the anchor bolt is inappropriate. Acta Neurochir (Wien) 2024; 166:18. [PMID: 38231293 DOI: 10.1007/s00701-024-05889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The use of anchor bolts to secure electrodes to the skull can be difficult in some clinical situations. Herein, we present the boltless technique to secure electrodes to the scalp using nylon sutures to overcome the problems associated with anchor bolts. We investigated the safety, accuracy errors, and patient-related and operative factors affecting errors in the boltless technique. METHODS This single-institution retrospective series analyzed 103 electrodes placed in 12 patients. The target-point localization error (TPLE), entry-point localization error (EPLE), radial error (RE), and depth error (DE) of the electrodes were calculated. RESULTS The median of the mean operative time per electrode was 9.3 min. The median TPLE, EPLE, RE, and absolute DE value were 4.1 mm, 1.6 mm, 2.7 mm, and 1.9 mm, respectively. Positive correlations were observed between the preoperative scalp thickness, mean operative time per electrode, EPLE, RE, and the absolute value of DE versus TPLE (r = .228, p = .02; r = .678, p = .015; r = .228, p = .02; r = .445, p < .01; r = .630, p < .01, respectively), and electrode approach angle versus EPLE (r = .213, p = .031). Multivariate analysis revealed that the absolute value of DE had the strongest influence on the TPLE, followed by RE and preoperative scalp thickness, respectively (β = .938, .544, .060, respectively, p < .001). No complications related to SEEG insertion and monitoring were encountered. CONCLUSION The boltless technique using our unique planning and technical method is a safe, effective, and low-cost alternative in cases where anchor bolts are contraindicated.
Collapse
Affiliation(s)
- Manabu Mutoh
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan.
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Daisuke Nakatsubo
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
- Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nagoya, Aichi, Japan
| | - Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Jun Torii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Yoshiki Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Miki Hashida
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| |
Collapse
|
10
|
Kalina A, Jezdik P, Fabera P, Marusic P, Hammer J. Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals. Brain Topogr 2023; 36:835-853. [PMID: 37642729 DOI: 10.1007/s10548-023-00994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
Collapse
Affiliation(s)
- Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia.
| | - Petr Jezdik
- Department of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czechia
| | - Petr Fabera
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia.
| |
Collapse
|
11
|
Vasconcellos FDN, Almeida T, Müller Fiedler A, Fountain H, Santos Piedade G, Monaco BA, Jagid J, Cordeiro JG. Robotic-Assisted Stereoelectroencephalography: A Systematic Review and Meta-Analysis of Safety, Outcomes, and Precision in Refractory Epilepsy Patients. Cureus 2023; 15:e47675. [PMID: 38021558 PMCID: PMC10672406 DOI: 10.7759/cureus.47675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Robotic assistance in stereoelectroencephalography (SEEG) holds promising potential for enhancing accuracy, efficiency, and safety during electrode placement and surgical procedures. This systematic review and meta-analysis, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and International Prospective Register of Systematic Reviews (PROSPERO) registration, delves into the latest advancements and implications of robotic systems in SEEG, while meticulously evaluating outcomes and safety measures. Among 855 patients suffering from medication-refractory epilepsy who underwent SEEG in 29 studies, averaging 24.6 years in age, the most prevalent robots employed were robotic surgical assistant (ROSA) (450 patients), Neuromate (207), Sinovation (140), and ISys1 (58). A total of 8,184 electrodes were successfully implanted, with an average operative time of 157.2 minutes per procedure and 15.1 minutes per electrode, resulting in an overall mean operative time of 157.7 minutes across all studies. Notably, the mean target point error (TPE) stood at 2.13 mm, the mean entry point error (EPE) at 1.48 mm, and postoperative complications occurred in 7.69% of robotically assisted (RA) SEEG cases (60), with 85% of these complications being asymptomatic. This comprehensive analysis underscores the safety and efficacy of RA-SEEG in patients with medication-refractory epilepsy, characterized by low complication rates, reduced operative time, and precise electrode placement, supporting its widespread adoption in clinical practice, with no discernible differences noted among the various robotic systems.
Collapse
Affiliation(s)
| | - Timoteo Almeida
- Department of Neurosurgery, University of Miami, Miami, USA
- Department of Radiation Oncology, University of Miami, Miami, USA
| | | | - Hayes Fountain
- Department of Neurosurgery, University of Miami, Miami, USA
| | | | - Bernardo A Monaco
- Department of Neurological Surgery, University of Miami, Miami, USA
- Department of Neurological Surgery, CDF (Clinica de Dor e Funcional), Sao Paulo, BRA
- Department of Neurological Surgery, University of Sao Paulo, Sao Paulo, BRA
| | - Jonathan Jagid
- Department of Neurological Surgery, University of Miami, Miami, USA
| | | |
Collapse
|
12
|
Sukhudyan B, Minkin K, Badalyan S, Gabrovski K, Gevorgyan A, Tovmasyan I, Babloyan A, Dimova P. Development and results of the epilepsy surgery in Armenia: hope for a better future. Front Neurol 2023; 14:1152275. [PMID: 37670773 PMCID: PMC10475525 DOI: 10.3389/fneur.2023.1152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Abstract
Purpose We present our experience with the national epilepsy surgery program in Armenia by tracing the development of epilepsy surgery in the largest pediatric neurology department at "Arabkir" Medical Center. This development was possible on the basis of a strong collaboration with the Epilepsy Surgery center at the University Hospital "Sofia St. Ivan Rilski," Sofia, Bulgaria. Materials and methods Our material included 28 consecutive patients with lesional drug-resistant epilepsy evaluated. All patients underwent 3 T MRI and Video-EEG monitoring. Brain 18FDG-PET was done in 13 patients in St. Petersburg. Fifteen patients (53%) had preoperative neuropsychological examination before surgery. All operations were done by the same neurosurgical team on site in Arabkir Hospital. Results The majority of the patients in our cohort benefited from the epilepsy surgery as 25 (89%) are free of disabling seizures (Engel class I) and three patients (11%) did not improve substantially (Engel class IV). Eleven patients (39%) are already ASM-free after surgery, 4 (14%) are on monotherapy, 11(39%) get two drugs, and 2(7%) are on polytherapy, one of them still continues having seizures. In 12 patients (43%), we were able either to withdraw therapy or to decrease one of the ASM. Conclusion We believe that, although small, yet encompassing patients along the usual age spectrum and with the most frequent pathologies of drug-resistant epilepsies, our experience can serve as a model to develop epilepsy surgery in countries with limited resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Petia Dimova
- University Hospital St. Ivan Rilski, Sofia, Bulgaria
| |
Collapse
|
13
|
MAESAWA S, ISHIZAKI T, MUTOH M, ITO Y, TORII J, TANEI T, NAKATSUBO D, SAITO R. Clinical Impacts of Stereotactic Electroencephalography on Epilepsy Surgery and Associated Issues in the Current Situation in Japan. Neurol Med Chir (Tokyo) 2023; 63:179-190. [PMID: 37005247 DOI: 10.2176/jns-nmc.2022-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Stereotactic electroencephalography (SEEG) is receiving increasing attention as a safe and effective technique in the invasive evaluation for epileptogenic zone (EZ) detection. The main clinical question is whether the use of SEEG truly improves outcomes. Herein, we compared outcomes in our patients after three types of intracranial EEG (iEEG): SEEG, the subdural electrode (SDE), and a combined method using depth and strip electrodes. We present here our preliminary results from two demonstrative cases. Several international reports from large epilepsy centers found the following clinical advantages of SEEG: 1) three-dimensional analysis of structures, including bilateral and multilobar structures; 2) low rate of complications; 3) less pneumoencephalopathy and less patient burden during postoperative course, which allows the initiation of video-EEG monitoring immediately after implantation and does not require resection to be performed in the same hospitalization; and 4) a higher rate of good seizure control after resection. In other words, SEEG more accurately identified the EZ than the SDE method. We obtained similar results in our preliminary experiences under limited conditions. In Japan, as of August 2022, dedicated electrodes and SEEG accessories have not been approved and the use of the robot arm is not widespread. The Japanese medical community is hopeful that these issues will soon be resolved and that the experience with SEEG in Japan will align with that of large epilepsy centers internationally.
Collapse
Affiliation(s)
- Satoshi MAESAWA
- Department of Neurosurgery, Nagoya University School of Medicine
| | | | - Manabu MUTOH
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Yoshiki ITO
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Jun TORII
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Takafumi TANEI
- Department of Neurosurgery, Nagoya University School of Medicine
| | | | - Ryuta SAITO
- Department of Neurosurgery, Nagoya University School of Medicine
| |
Collapse
|
14
|
Pantovic A, Ollivier I, Essert C. Hybrid U-Net for segmentation of SEEG electrodes on post-operative CT scans. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anja Pantovic
- ICube, Université de Strasbourg, CNRS (UMR 7357), Strasbourg, France
| | - Irène Ollivier
- Department of Neurosurgery, Strasbourg University Hospital, Strasbourg, France
| | - Caroline Essert
- ICube, Université de Strasbourg, CNRS (UMR 7357), Strasbourg, France
| |
Collapse
|
15
|
Intermediate stimulation frequencies for language mapping using Stereo-EEG. Clin Neurophysiol 2022; 144:91-97. [PMID: 36327599 DOI: 10.1016/j.clinph.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Identification of eloquent cortices is a prerequisite for the surgical plan but may be challenging, in particular for language areas (LAs), considering the complexity of language function and organization. Electrical intracerebral stimulations (ES) during Stereo-electroencephalography are an essential tool in the localization of LAs and high frequency ES (HFS, 50 Hz) are current gold standard. Low frequencies (1 Hz) are not effective. We aim to investigate different ES frequencies for establishing their utility in localizing LAs. METHODS We implemented an observational and prospective study evaluating frequencies lower than 50 and higher than 1 Hz; indicated as "intermediate" frequencies (IFS) performed at 6, 9 and 12 Hz and lasting 15 seconds. We included ten patients and carried out a standardized protocol comparing IFS to HFS. RESULTS Eighty-six ES were carried out in LAs, positive for a language interference in 61.6% without noteworthy difference between IFS and HFS. Among these, 53.3% IFS vs 21.7% HFS yielded no after-discharge. CONCLUSIONS IFS were similarly effective as HFS, with lower incidence of ADs. Their longer duration facilitated more accurate clinical testing. SIGNIFICANCE Our results are promising, suggesting that IFS can be useful in the study of LAs.
Collapse
|
16
|
Gadot R, Korst G, Shofty B, Gavvala JR, Sheth SA. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J Neurosurg 2022; 137:1210-1225. [PMID: 35276641 DOI: 10.3171/2022.1.jns212613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereoelectroencephalography (sEEG) is a well-established surgical method for defining the epileptogenic network. Traditionally reserved for identifying discrete cortical regions for resection or ablation, sEEG in current practice is also used for identifying more broadly involved subcortical epileptic network components, driven by the availability of brain-based neuromodulation strategies. In particular, sEEG investigations including thalamic nuclei are becoming more frequent in parallel with the increase in therapeutic strategies involving thalamic targets such as deep brain stimulation (DBS) and responsive neurostimulation (RNS). The objective to this study was to evaluate existing evidence and trends regarding the purpose, techniques, and relevant electrographic findings of thalamic sEEG. METHODS MEDLINE and Embase databases were systematically queried for eligible peer-reviewed studies involving sEEG electrode implantation into thalamic nuclei of patients with epilepsy. Available data were abstracted concerning preoperative workup and purpose for implanting the thalamus, thalamic targets and trajectories, and electrophysiological methodology and findings. RESULTS sEEG investigations have included thalamic targets for both basic and clinical research purposes. Medial pulvinar, dorsomedial, anterior, and centromedian nuclei have been the most frequently studied. Few studies have reported any complications with thalamic sEEG implantation, and no studies have reported long-term complications. Various methods have been utilized to characterize thalamic activity in epileptic disorders including evoked potentials, power spectrograms, synchronization indices, and the epileptogenicity index. Thalamic intracranial recordings are beginning to be used to guide neuromodulation strategies including RNS and DBS, as well as to understand complex, network-dependent seizure disorders. CONCLUSIONS Inclusion of thalamic coverage during sEEG evaluation in drug-resistant epilepsy is a growing practice and is amenable to various methods of electrographic data analysis. Further study is required to establish well-defined criteria for thalamic implantation during invasive investigations as well as safety and ethical considerations.
Collapse
Affiliation(s)
| | | | | | - Jay R Gavvala
- 2Neurology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
17
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Fohlen M, Taussig D, Blustajn J, Rivera S, Pieper T, Ferrand-Sorbets S, Dorfmuller G. Hypothalamic hamartoma associated with polymicrogyria and periventricular nodular heterotopia in children: report of three cases and discussion of the origin of the seizures. Childs Nerv Syst 2022; 38:1965-1975. [PMID: 35680686 DOI: 10.1007/s00381-022-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Hypothalamic hamartomas (HH) are malformations responsible for drug-resistant epilepsy. HH are usually isolated or part of a genetic syndrome, such as Pallister-Hall. Exceptionally they can be associated with other brain malformations such as polymicrogyria (PMG) and periventricular nodular heterotopia (PNH). We discuss the origin of the seizures associated with this combination of malformations, through electrophysiological studies, and review the literature on this rarely reported syndrome. METHODS We retrospectively reviewed the patients with HH who had surgery between 1998 and 2020 and selected those with associated focal PMG and PNH, detected on MRIs. All patients had comprehensive clinical evaluation and surface video-EEG and one underwent stereoelectroencephalography (SEEG). RESULTS Three male patients out of 182 were identified with a mean age at surgery of 7.5 years. MRI showed unilateral focal PMG (fronto-insulo-parietal, fronto-insulo-parieto-opercular, and fronto-insular, respectively) and multiple PNH homolateral to the main HH implantation side. In two patients, there were strong clinical and scalp EEG arguments for seizure onset within the HH. In the third, due to abnormalities on scalp video-EEG in the same area as PMG and the lack of gelastic seizures, SEEG was indicated and demonstrated seizure onset within the hamartoma. With a mean follow-up of 6 years, two patients were seizure-free. CONCLUSION Our results show that HH is the trigger of epilepsy, which confirms the high epileptogenic potential of this malformation. In patients such as ours, as in those with isolated HH, we recommend to begin by operating the HH independently of seizure semiology or electrophysiological abnormalities.
Collapse
Affiliation(s)
- Martine Fohlen
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, 29 rue Manin, 75019, Paris, France.
| | - Delphine Taussig
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, 29 rue Manin, 75019, Paris, France.,Neurophysiologie Et Epileptologie, Université Paris Saclay-APHP, Le Kremlin Bicêtre, France
| | - Jerry Blustajn
- Diagnostic Neuroradiology Department, Rothschild Foundation Hospital, Paris, France
| | - Serge Rivera
- Department of Paediatric Neurology, Bayonne Hospital, Bayonne, France
| | - Tom Pieper
- Epilepsy Center for Children and Adolescents, Neuropediatric Clinic and Clinic for Neurorehabilitation, Schoen-Klinik Vogtareuth, Krankenhausstr. 20, D-83569, Vogtareuth, Germany
| | - Sarah Ferrand-Sorbets
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, 29 rue Manin, 75019, Paris, France
| | - Georg Dorfmuller
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, 29 rue Manin, 75019, Paris, France
| |
Collapse
|
19
|
Patient-specific solution of the electrocorticography forward problem in deforming brain. Neuroimage 2022; 263:119649. [PMID: 36167268 DOI: 10.1016/j.neuroimage.2022.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Invasive intracranial electroencephalography (iEEG), or electrocorticography (ECoG), measures electric potential directly on the surface of the brain and can be used to inform treatment planning for epilepsy surgery. Combined with numerical modeling it can further improve accuracy of epilepsy surgery planning. Accurate solution of the iEEG forward problem, which is a crucial prerequisite for solving the iEEG inverse problemin epilepsy seizure onset zone localization, requires accurate representation of the patient's brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative magnetic resonance imaging (MRI) is incompatible with implanted electrodes and computed tomography (CT) has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electric potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the lead field matrix (useful for solution of the iEEG inverse problem) also showed significant differences between the different models. The results suggest that rapid and accurate solution of the forward problem in a deformed brain for a given patient is achievable.
Collapse
|
20
|
Alis C, Alis D, Uslu Besli L, Karaarslan E, Sonmezoglu K, Ozkara C, Yeni SN. The analysis of 18 F-FDG PET/MRI, electroencephalography, and semiology in patients with gray matter heterotopia: A pilot study. Acta Neurol Scand 2022; 146:662-670. [PMID: 36102058 DOI: 10.1111/ane.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To describe 18 F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18 F-FDG PET/MRI) along with semiology and electroencephalography (EEG) in patients with gray matter heterotopia (GMH); to evaluate the concordance between 18 F-FDG PET/MRI and clinical epileptogenic zone (EZ). MATERIALS & METHODS GMH (subcortical heterotopia [SCH] and periventricular nodular heterotopia [PNH]) patients with epilepsy who underwent 18 F-FDG PET/MRI were retrospectively enrolled. Two radiologists evaluated brain MRI, while two nuclear medicine specialists assessed the 18 F-FDG PET. The SUVmax values of visually hypometabolic cortical areas were compared to the contralateral cortex using a SUVmax threshold value of 10%; the SUVmax values of GMH lesions were compared with that of the right precentral gyrus. The cortex or GMH with hypometabolism on 18 F-FDG PET/MRI was considered representative of the EZ. The clinical EZ was identified using EEG and semiology. RESULTS Thirty patients (19 PNH; 11 SCH) with a mean age of 28.46 ± 9.52 years were enrolled. The heterotopic nodules were ametabolic in 3 patients (10%), hypometabolic in 16 (33.33%), isometabolic in 13 (26.66%), and hypermetabolic in 4 (10%). 18 F-FDG PET/MRI demonstrated hypometabolism in the cortex and GMH in 22/30 (73.33%) and 16/30 (53.33%). We could identify a clinical EZ in 18 patients, and 15 out of 18 (83.33%) had concordant 18 F-FDG PET/MRI findings. CONCLUSION Heterotopic nodules in GMH patients show different metabolic patterns on 18 F-FDG PET/MRI, with nearly three-quarters of the patients having cortical hypometabolism. 18 F-FDG PET/ MRI findings are mostly concordant with the clinical EZ.
Collapse
Affiliation(s)
- Ceren Alis
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Alis
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Lebriz Uslu Besli
- Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Kerim Sonmezoglu
- Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cigdem Ozkara
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seher Naz Yeni
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Ye H, Fan Z, Li G, Wu Z, Hu J, Sheng X, Chen L, Zhu X. Spontaneous State Detection Using Time-Frequency and Time-Domain Features Extracted From Stereo-Electroencephalography Traces. Front Neurosci 2022; 16:818214. [PMID: 35368269 PMCID: PMC8968069 DOI: 10.3389/fnins.2022.818214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
As a minimally invasive recording technique, stereo-electroencephalography (SEEG) measures intracranial signals directly by inserting depth electrodes shafts into the human brain, and thus can capture neural activities in both cortical layers and subcortical structures. Despite gradually increasing SEEG-based brain-computer interface (BCI) studies, the features utilized were usually confined to the amplitude of the event-related potential (ERP) or band power, and the decoding capabilities of other time-frequency and time-domain features have not been demonstrated for SEEG recordings yet. In this study, we aimed to verify the validity of time-domain and time-frequency features of SEEG, where classification performances served as evaluating indicators. To do this, using SEEG signals under intermittent auditory stimuli, we extracted features including the average amplitude, root mean square, slope of linear regression, and line-length from the ERP trace and three traces of band power activities (high-gamma, beta, and alpha). These features were used to detect the active state (including activations to two types of names) against the idle state. Results suggested that valid time-domain and time-frequency features distributed across multiple regions, including the temporal lobe, parietal lobe, and deeper structures such as the insula. Among all feature types, the average amplitude, root mean square, and line-length extracted from high-gamma (60–140 Hz) power and the line-length extracted from ERP were the most informative. Using a hidden Markov model (HMM), we could precisely detect the onset and the end of the active state with a sensitivity of 95.7 ± 1.3% and a precision of 91.7 ± 1.6%. The valid features derived from high-gamma power and ERP in this work provided new insights into the feature selection procedure for further SEEG-based BCI applications.
Collapse
Affiliation(s)
- Huanpeng Ye
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Guangye Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zehan Wu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Liang Chen
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Xiangyang Zhu
| |
Collapse
|
22
|
Generation of synthetic training data for SEEG electrodes segmentation. Int J Comput Assist Radiol Surg 2022; 17:937-943. [DOI: 10.1007/s11548-022-02585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
|
23
|
Zhang C, Liu W, Zhang J, Zhang X, Huang P, Sun B, Zhan S, Cao C. Utility of magnetoencephalography combined with stereo-electroencephalography in resective epilepsy surgery: a 2-year follow-up. Seizure 2022; 97:94-101. [DOI: 10.1016/j.seizure.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
|
24
|
Cui D, Gao R, Xu C, Yan H, Zhang X, Yu T, Zhang G. Ictal onset stereoelectroencephalography patterns in temporal lobe epilepsy: type, distribution, and prognostic value. Acta Neurochir (Wien) 2022; 164:555-563. [PMID: 35041086 DOI: 10.1007/s00701-022-05122-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the different ictal onset stereoelectroencephalography patterns (IOPs) in patients with drug-resistant temporal lobe epilepsy (TLE). We examined whether the IOPs relate to different TLE subtypes, MRI findings, and underlying pathologies, and we evaluated their prognostic value for predicting the surgical outcome. METHODS We retrospectively analyzed data from patients with TLE who underwent stereoelectroencephalography (SEEG) monitoring followed by surgical resection between January 2018 and January 2020. The SEEG recordings were independently analyzed by two epileptologists. RESULTS Forty-five patients were included in the study, and 61seizures were analyzed. Five IOPs were identified: low voltage fast activity (LVFA; 44.3%), spike-and-wave activity (16.4%), low frequency high-amplitude periodic spikes (LFPS; 18%), a burst of high-amplitude polyspikes (8.2%), and rhythmic sharp activity at ≤ 13 Hz (13.1%). Thirty-two patients were found to have a single IOP, while the other 13 patients had two or more IOPs. All five IOPs were found to occur in the medial temporal lobe epilepsy (MTLE), while four IOPs occurred in the lateral temporal lobe epilepsy (LTLE). The LFPS was a common IOP that could distinguish MTLE from LTLE (x2 = 7.046, p = 0.011). Among the MTLE patients, the LFPS was exclusively seen in cases of hippocampal sclerosis (x2 = 5.058, p = 0.038), while the LVFA was associated with nonspecific histology (x2 = 6.077, p = 0.023). The IOPs were not found to differ according to whether the MRI scans were positive or negative. After surgery, patients achieved the higher seizure-free rate at 81.8% and 77.8%, respectively, if the LFPS and LVFA were the predominant patterns. Multiple IOPs or a negative MRI did not indicate a poor prognosis. CONCLUSIONS Five distinct IOPs were identified in the patients with TLE. The differences found have important clinical implications and could provide complementary information for surgical decision-making, especially in MRI-negative patients.
Collapse
Affiliation(s)
- Deqiu Cui
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hao Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
25
|
Li H, Ji S, Dong B, Chen L. Seizure control after epilepsy surgery in early childhood: A systematic review and meta-analysis. Epilepsy Behav 2021; 125:108369. [PMID: 34731717 DOI: 10.1016/j.yebeh.2021.108369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This meta-analysis aimed to determine the main factors influencing surgical outcomes in children <3 years old with refractory epilepsy. METHODS The PubMed and Cochrane database were systematically searched for epilepsy surgery outcomes from December 1, 1991, to March 30, 2021, using the following search terms: "Epilepsy surgery OR Seizure operation" AND "under three years" OR "first three years" OR "early childhood" OR "infancy OR infants." Seizure onset, duration of epilepsy, magnetic resonance imaging findings, age at the time of surgery, surgical methods, resection extent, and pathological findings were considered potential moderators of differences in seizure outcomes. The fixed-effects models, combined effect sizes, and 95% confidence intervals (CI) were used to calculate the influence of potential factors on seizure outcomes. RESULTS Thirty two studies (559 cases) were included in the meta-analysis. The significant factors that correlated with a lower seizure control rate were frontal lobectomy (odds ratio [OR]: 0.33, 95% CI: 0.12-0.91; p = 0.03) and malformation of cortical development (MCD) (OR, 0.38; 95% CI: 0.24-0.62; p < 0.01). A higher seizure control rate was observed in children with tumors (92.86%) and Sturge-Weber syndrome (SWS, 91.43%). Frontal lobe epilepsy induced by MCD was related to the worst postoperative efficacy (OR, 0.26; 95% CI: 0.13-0.53; p < 0.01). SIGNIFICANCE The results of our meta-analyses revealed that pathology and surgical location play critical roles in the outcome of epilepsy surgery in children <3 years old. Clarification of the etiology of epilepsy before surgery is critical for better postoperative outcomes.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Shuming Ji
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Bosi Dong
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China; Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
26
|
Belohlavkova A, Jahodova A, Kudr M, Benova B, Ebel M, Liby P, Taborsky J, Jezdik P, Janca R, Kyncl M, Tichy M, Krsek P. May intraoperative detection of stereotactically inserted intracerebral electrodes increase precision of resective epilepsy surgery? Eur J Paediatr Neurol 2021; 35:49-55. [PMID: 34610561 DOI: 10.1016/j.ejpn.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/13/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
OBJECT Epilepsy surgery is an effective treatment for selected patients with focal intractable epilepsy. Complete removal of the epileptogenic zone significantly increases the chances for postoperative seizure-freedom. In complex surgical candidates, delineation of the epileptogenic zone requires a long-term invasive video/EEG from intracranial electrodes. It is especially challenging to achieve a complete resection in deep brain structures such as opercular-insular cortex. We report a novel approach utilizing intraoperative visual detection of stereotactically implanted depth electrodes to inform and guide the extent of surgical resection. METHODS We retrospectively reviewed data of pediatric patients operated in Motol Epilepsy Center between October 2010 and June 2020 who underwent resections guided by intraoperative visual detection of depth electrodes following SEEG. The outcome in terms of seizure- and AED-freedom was assessed individually in each patient. RESULTS Nineteen patients (age at surgery 2.9-18.6 years, median 13 years) were included in the study. The epileptogenic zone involved opercular-insular cortex in eighteen patients. The intraoperative detection of the electrodes was successful in seventeen patients and the surgery was regarded complete in sixteen. Thirteen patients were seizure-free at final follow-up including six drug-free cases. The successful intraoperative detection of the electrodes was associated with favorable outcome in terms of achieving complete resection and seizure-freedom in most cases. On the contrary, the patients in whom the procedure failed had poor postsurgical outcome. CONCLUSION The reported technique helps to achieve the complete resection in challenging patients with the epileptogenic zone in deep brain structures.
Collapse
Affiliation(s)
- Anezka Belohlavkova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Alena Jahodova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Martin Kudr
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Barbora Benova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Matyas Ebel
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Petr Liby
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jakub Taborsky
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Petr Jezdik
- Faculty of Electrical Engineering, Department of Circuit Theory, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Radek Janca
- Faculty of Electrical Engineering, Department of Circuit Theory, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Martin Kyncl
- Department of Radiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Michal Tichy
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| |
Collapse
|
27
|
Cho K, Chang WS, Kim HD, Chang JW, Kim SH, Lee JS, Kang HC. Robot-Assisted Stereoelectroencephalography for Pediatric Epilepsy Surgery: The First Case in Korea. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Mallela AN, Abou-Al-Shaar H, Nayar GM, Luy DD, Barot N, González-Martínez JA. Stereotactic Electroencephalography Implantation Through Nonautologous Cranioplasty: Proof of Concept. Oper Neurosurg (Hagerstown) 2021; 21:258-264. [PMID: 34293155 DOI: 10.1093/ons/opab260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is an effective method to define the epileptogenic zone (EZ) in patients with medically intractable epilepsy. Typical placement requires passing and anchoring electrodes through native skull. OBJECTIVE To describe the successful placement of SEEG electrodes in patients without native bone. To the best of our knowledge, the use of SEEG in patients with nonautologous cranioplasties has not been described. METHODS We describe 3 cases in which SEEG was performed through nonautologous cranioplasty. The first is a 30-yr-old male with a titanium mesh cranioplasty following a left pterional craniotomy for aneurysm clipping. The second is a 51-yr-old female who previously underwent lesionectomy of a ganglioglioma with mesh cranioplasty and subsequent recurrence of her seizures. The third is a 31-yr-old male with a polyether ether ketone cranioplasty following decompressive hemicraniectomy for trauma. RESULTS SEEG was performed successfully in all three cases without intraoperative difficulties or complications and with excellent electroencephalogram recording and optimal localization of the seizure focus. The EZ was successfully localized in all three patients. There were no limitations related to drilling or inserting the guiding bolt/electrode through the nonautologous cranioplasties. CONCLUSION SEEG through nonautologous cranioplasties was clinically feasible, safe, and effective in our series. The presence of nonautologous bone cranioplasty should not preclude such patients from undergoing SEEG explorations.
Collapse
Affiliation(s)
- Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gautam M Nayar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diego D Luy
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jorge A González-Martínez
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Scullen T, Teja N, Song SH, Couldwell M, Carr C, Mathkour M, Lee DJ, Tubbs RS, Dallapiazza RF. Use of stereoelectroencephalography beyond epilepsy: a systematic review. World Neurosurg 2021; 155:96-108. [PMID: 34217862 DOI: 10.1016/j.wneu.2021.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Tyler Scullen
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nikhil Teja
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - Seo Ho Song
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire, USA
| | - Mitchell Couldwell
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chris Carr
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Shane Tubbs
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Robert F Dallapiazza
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
30
|
Bonda DJ, Pruitt R, Theroux L, Goldstein T, Stefanov DG, Kothare S, Karkare S, Rodgers S. Robot-assisted stereoelectroencephalography electrode placement in twenty-three pediatric patients: a high-resolution analysis of individual lead placement time and accuracy at a single institution. Childs Nerv Syst 2021; 37:2251-2259. [PMID: 33738542 DOI: 10.1007/s00381-021-05107-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We describe a detailed evaluation of predictors associated with individual lead placement efficiency and accuracy for 261 stereoelectroencephalography (sEEG) electrodes placed for epilepsy monitoring in twenty-three children at our institution. METHODS Intra- and post-operative data was used to generate a linear mixed model to investigate predictors associated with three outcomes (lead placement time, lead entry error, lead target error) while accounting for correlated observations from the same patients. Lead placement time was measured using electronic time-stamp records stored by the ROSA software for each individual electrode; entry and target site accuracy was measured using postoperative stereotactic CT images fused with preoperative electrode trajectory planning images on the ROSA computer software. Predictors were selected from a list of variables that included patient demographics, laterality of leads, anatomic location of lead, skull thickness, bolt cap device used, and lead sequence number. RESULTS Twenty-three patients (11 female, 48%) of mean age 11.7 (± 6.1) years underwent placement of intracranial sEEG electrodes (median 11 electrodes) at our institution over a period of 1 year. There were no associated infections, hemorrhages, or other adverse events, and successful seizure capture was obtained in all monitored patients. The mean placement time for individual electrodes across all patients was 6.56 (± 3.5) min; mean target accuracy was 4.5 (± 3.5) mm. Lesional electrodes were associated with 25.7% (95% CI: 6.7-40.9%, p = 0.02) smaller target point errors. Larger skull thickness was associated with larger error: for every 1-mm increase in skull thickness, there was a 4.3% (95% CI: 1.2-7.5%, p = 0.007) increase in target error. Bilateral lead placement was associated with 26.0% (95% CI: 9.9-44.5%, p = 0.002) longer lead placement time. The relationship between placement time and lead sequence number was nonlinear: it decreased consistently for the first 4 electrodes, and became less pronounced thereafter. CONCLUSIONS Variation in sEEG electrode placement efficiency and accuracy can be explained by phenomena both within and outside of operator control. It is important to keep in mind the factors that can lead to better or worse lead placement efficiency and/or accuracy in order to maximize patient safety while maintaining the standard of care.
Collapse
Affiliation(s)
- David J Bonda
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Rachel Pruitt
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Liana Theroux
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Todd Goldstein
- Center for 3D Design and Innovation, Northwell Health, Manhasset, NY, USA
| | - Dimitre G Stefanov
- Department of Biostatistics, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Sanjeev Kothare
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Shefali Karkare
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Shaun Rodgers
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA.
| |
Collapse
|
31
|
Stereotactic EEG-guided radiofrequency thermocoagulation versus anterior temporal lobectomy for mesial temporal lobe epilepsy with hippocampal sclerosis: study protocol for a randomised controlled trial. Trials 2021; 22:425. [PMID: 34187524 PMCID: PMC8244214 DOI: 10.1186/s13063-021-05378-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction In this report, we aim to describe the design for the randomised controlled trial of Stereotactic electroencephalogram (EEG)-guided Radiofrequency Thermocoagulation versus Anterior Temporal Lobectomy for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (STARTS). Mesial temporal lobe epilepsy (mTLE) is a classical subtype of temporal lobe epilepsy that often requires surgical intervention. Although anterior temporal lobectomy (ATL) remains the most popular treatment for mTLE, accumulating evidence has indicated that ATL can cause tetartanopia and memory impairments. Stereotactic EEG (SEEG)-guided radiofrequency thermocoagulation (RF-TC) is a non-invasive alternative associated with lower seizure freedom but greater preservation of neurological function. In the present study, we aim to compare the safety and efficacy of SEEG-guided RF-TC and classical ATL in the treatment of mTLE. Methods and analysis STARTS is a single-centre, two-arm, randomised controlled, parallel-group clinical trial. The study includes patients with typical mTLE over the age of 14 who have drug-resistant seizures for at least 2 years and have been determined via detailed evaluation to be surgical candidates prior to randomisation. The primary outcome measure is the cognitive function at the 1-year follow-up after treatment. Seizure outcomes, visual field abnormalities after surgery, quality of life, ancillary outcomes, and adverse events will also be evaluated at 1-year follow-up as secondary outcomes. Discussion SEEG-guided RF-TC for mTLE remains a controversial seizure outcome but has the advantage for cognitive and visual field protection. This is the first RCT studying cognitive outcomes and treatment results between SEEG-guided RF-TC and standard ATL for mTLE with hippocampal sclerosis. This study may provide higher levels of clinical evidence for the treatment of mTLE. Trial registration ClinicalTrials.gov NCT03941613. Registered on May 8, 2019. The STARTS protocol has been registered on the US National Institutes of Health. The status of the STARTS was recruiting and the estimated study completion date was December 31, 2021.
Collapse
|
32
|
MRI and CT Fusion in Stereotactic Electroencephalography: A Literature Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epilepsy is a common neurological disease characterized by spontaneous recurrent seizures. Resection of the epileptogenic tissue may be needed in approximately 25% of all cases due to ineffective treatment with anti-epileptic drugs. The surgical intervention depends on the correct detection of epileptogenic zones. The detection relies on invasive diagnostic techniques such as Stereotactic Electroencephalography (SEEG), which uses multi-modal fusion to aid localizing electrodes, using pre-surgical magnetic resonance and intra-surgical computer tomography as the input images. Moreover, it is essential to know how to measure the performance of fusion methods in the presence of external objects, such as electrodes. In this paper, a literature review is presented, applying the methodology proposed by Kitchenham to determine the main techniques of multi-modal brain image fusion, the most relevant performance metrics, and the main fusion tools. The search was conducted using the databases and search engines of Scopus, IEEE, PubMed, Springer, and Google Scholar, resulting in 15 primary source articles. The literature review found that rigid registration was the most used technique when electrode localization in SEEG is required, which was the proposed method in nine of the found articles. However, there is a lack of standard validation metrics, which makes the performance measurement difficult when external objects are presented, caused primarily by the absence of a gold-standard dataset for comparison.
Collapse
|
33
|
Hlauschek G, Sinclair B, Brinkmann B, Fuge J, Kwan P, O'Brien TJ, Vivash L. The effect of injection time on rates of epileptogenic zone localization using SISCOM and STATISCOM. Epilepsy Behav 2021; 118:107945. [PMID: 33845344 DOI: 10.1016/j.yebeh.2021.107945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The identification of hyperperfusion on ictal single-photon emission computed tomography (SPECT) scan is a technique for the localization of the epileptogenic zone (EZ) in patients with focal epilepsy undergoing presurgical evaluation. The accuracy of this technique has been improved by subtraction from an interictal image and coregistration with magnetic resonance imaging (MRI) (subtraction ictal SPECT coregistered to MRI (SISCOM)), and subsequently by the development of Statistical Ictal SPECT Co-registered to MRI (STATISCOM) which is reported to further improve localization accuracy by statistically accounting for random variation between images. However, the use of ictal SPECT is limited by the necessity for rapid injection of the radiotracer. The purpose of this study was to investigate the effect of tracer injection time on EZ localization rates using both STATISCOM and SISCOM. METHODS Consecutive patients with drug-resistant focal epilepsy who had an ictal SPECT scan while admitted to the video-electroencephalography (EEG) monitoring unit at the Royal Melbourne Hospital, Victoria, Australia, and a subsequent interictal scan, between 2009 and 2017 were included. The information collected included age, sex, seizure type, epilepsy diagnosis, and injection time. Statistical Ictal SPECT Co-registered to MRI and SISCOM images were generated and reviewed by two blinded reviewers. The rates of potential localization of the EZ, and the agreement with the EEG, were determined for each scan. Localization rates were compared between ictal scans with different radiotracer injection time windows (<30 s, 30-45 s, 45-60 s, 60-90 s, 90-120 s, >120 s). RESULTS Seventy patients (male = 32, 16-67 years) were included in the study. Overall agreement between the primary raters was moderate for STATISCOM (k = 0.44) and SISCOM (k = 0.57). The ability of SPECT to localize the potential EZ was 69% (48/70) for STATISCOM and 59% (41/70) for SISCOM. Injection time was not associated with the rate of localizing the potential EZ for STATISCOM (p = 0.64), whereas for SISCOM there was a trend that shorter injection times were associated with better ability to localize the potential EZ (p = 0.06). Agreement between SPECT and video-EEG data was 54% (38/70) for STATISCOM and 39% (27/70) for SISCOM. Statistical Ictal SPECT Co-registered to MRI did not show any difference of agreement across injection time groups (p = 0.42) whereas SISCOM showed better agreement with video-EEG data in the earlier injection time groups (p = 0.02). No differences in agreement between SPECT and video-EEG data were seen between patients with and without MRI lesions for either STATISCOM or SISCOM. Statistical Ictal SPECT Co-registered to MRI showed significantly better agreement for temporal than extratemporal seizures, with no difference of agreement between early (<45 s) and late (>45 s) injections. CONCLUSION Statistical Ictal SPECT Co-registered to MRI showed overall higher agreement rates with EZ localization by video-EEG than SISCOM, which was not affected by the injection times. Statistical Ictal SPECT Co-registered to MRI may provide localizing information for "late" injections where visual reads and SISCOM are inconclusive.
Collapse
Affiliation(s)
- Gernot Hlauschek
- Division of Clinical Neuroscience, National Centre for Epilepsy, Oslo University Hospital, Norway; Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Benjamin Sinclair
- Department of Medicine and Radiology, University of Melbourne, Parkville, VIC, Australia; Department of Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Benjamin Brinkmann
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, USA
| | - Joshua Fuge
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine and Radiology, University of Melbourne, Parkville, VIC, Australia; Department of Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine and Radiology, University of Melbourne, Parkville, VIC, Australia; Department of Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine and Radiology, University of Melbourne, Parkville, VIC, Australia; Department of Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Minkin K, Gabrovski K, Karazapryanov P, Milenova Y, Sirakov S, Karakostov V, Romanski K, Dimova P. Awake Epilepsy Surgery in Patients with Focal Cortical Dysplasia. World Neurosurg 2021; 151:e257-e264. [PMID: 33872840 DOI: 10.1016/j.wneu.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Awake craniotomy (AC) and direct electric stimulation emerged together with epilepsy surgery >80 years ago. The goal of our study was to evaluate the benefits of awake surgery in patients with drug-resistant epilepsy caused by focal cortical dysplasia (FCD) affecting eloquent areas. METHODS Our material included 95 patients with drug-resistant epilepsy and FCD, who were operated on between January 2009 and December 2018. These 95 patients were assigned into 3 groups: AC; general anesthesia (GA) with intraoperative neuromonitoring; and GA without intraoperative neuromonitoring. We investigated the following variables: age at surgery, lesion side, eloquent cortex involvement, brain mapping success rate, epilepsy surgery success rate, intraoperative complications, postoperative complications, and intraoperative changes of the preoperative resection plan according to results of the brain mapping by direct electric stimulation. RESULTS We found statistically significant differences between the AC and GA groups in the mean age at operation, lesion side, eloquent localization, and postoperative transient neurologic deficit. Seizure outcome in the AC was satisfactory (71% complete seizure control) and comparable to the seizure outcome in the GA groups. Our preoperative plan was changed because of functional constraints in 6 patients (43%) operated on during AC. CONCLUSIONS AC during epilepsy surgery for FCD in eloquent areas may change the preoperative plan. The good rate of postoperative seizure control and the absence of permanent postoperative neurologic deficit in our series is the main proof that AC is a useful tool in patients with FCD involving the eloquent cortex.
Collapse
Affiliation(s)
- Krasimir Minkin
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria.
| | - Kaloyan Gabrovski
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Petar Karazapryanov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Yoana Milenova
- Department of Neurology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Stanimir Sirakov
- Department of Interventional Radiology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Vasil Karakostov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Kiril Romanski
- Department of Neurosurgery, Military Medical Academy, Sofia, Bulgaria
| | - Petia Dimova
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| |
Collapse
|
35
|
Sokolov E, Sisterson ND, Hussein H, Plummer C, Corson D, Antony AR, Mettenburg JM, Ghearing GR, Pan JW, Urban A, Bagić A, Richardson RM, Kokkinos V. Intracranial monitoring contributes to seizure freedom for temporal lobectomy patients with nonconcordant preoperative data. Epilepsia Open 2021; 7:36-45. [PMID: 34786887 PMCID: PMC8886064 DOI: 10.1002/epi4.12483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
Abstract
Objective The question of whether a patient with presumed temporal lobe seizures should proceed directly to temporal lobectomy surgery versus undergo intracranial monitoring arises commonly. We evaluate the effect of intracranial monitoring on seizure outcome in a retrospective cohort of consecutive subjects who specifically underwent an anterior temporal lobectomy (ATL) for refractory temporal lobe epilepsy (TLE). Methods We performed a retrospective analysis of 85 patients with focal refractory TLE who underwent ATL following: (a) intracranial monitoring via craniotomy and subdural/depth electrodes (SDE/DE), (b) intracranial monitoring via stereotactic electroencephalography (sEEG), or (c) no intracranial monitoring (direct ATL—dATL). For each subject, the presurgical primary hypothesis for epileptogenic zone localization was characterized as unilateral TLE, unilateral TLE plus (TLE+), or TLE with bilateral/poor lateralization. Results At one‐year and most recent follow‐up, Engel Class I and combined I/II outcomes did not differ significantly between the groups. Outcomes were better in the dATL group compared to the intracranial monitoring groups for lesional cases but were similar in nonlesional cases. Those requiring intracranial monitoring for a hypothesis of TLE+had similar outcomes with either intracranial monitoring approach. sEEG was the only approach used in patients with bilateral or poorly lateralized TLE, resulting in 77.8% of patients seizure‐free at last follow‐up. Importantly, for 85% of patients undergoing SEEG, recommendation for ATL resulted from modifying the primary hypothesis based on iEEG data. Significance Our study highlights the value of intracranial monitoring in equalizing seizure outcomes in difficult‐to‐treat TLE patients undergoing ATL.
Collapse
Affiliation(s)
- Elisaveta Sokolov
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Helweh Hussein
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheryl Plummer
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - Danielle Corson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - Arun R Antony
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gena R Ghearing
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jullie W Pan
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Urban
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anto Bagić
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - Vasileios Kokkinos
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Patient-specific prediction of SEEG electrode bending for stereotactic neurosurgical planning. Int J Comput Assist Radiol Surg 2021; 16:789-798. [PMID: 33761063 PMCID: PMC8134306 DOI: 10.1007/s11548-021-02347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/05/2021] [Indexed: 12/01/2022]
Abstract
Purpose Electrode bending observed after stereotactic interventions is typically not accounted for in either computer-assisted planning algorithms, where straight trajectories are assumed, or in quality assessment, where only metrics related to entry and target points are reported. Our aim is to provide a fully automated and validated pipeline for the prediction of stereo-electroencephalography (SEEG) electrode bending. Methods We transform electrodes of 86 cases into a common space and compare features-based and image-based neural networks on their ability to regress local displacement (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{lu} $$\end{document}lu) or electrode bending (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbf{eb }}$$\end{document}eb^). Electrodes were stratified into six groups based on brain structures at the entry and target point. Models, both with and without Monte Carlo (MC) dropout, were trained and validated using tenfold cross-validation. Results mage-based models outperformed features-based models for all groups, and models that predicted \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{lu} $$\end{document}lu performed better than for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbf{eb }}$$\end{document}eb^. Image-based model prediction with MC dropout resulted in lower mean squared error (MSE) with improvements up to 12.9% (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{lu} $$\end{document}lu) and 39.9% (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbf{eb }}$$\end{document}eb^), compared to no dropout. Using an image of brain tissue types (cortex, white and deep grey matter) resulted in similar, and sometimes better performance, compared to using a T1-weighted MRI when predicting \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{lu} $$\end{document}lu. When inferring trajectories of image-based models (brain tissue types), 86.9% of trajectories had an MSE\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le 1$$\end{document}≤1 mm. Conclusion An image-based approach regressing local displacement with an image of brain tissue types resulted in more accurate electrode bending predictions compared to other approaches, inputs, and outputs. Future work will investigate the integration of electrode bending into planning and quality assessment algorithms. Supplementary Information The online version supplementary material available at 10.1007/s11548-021-02347-8.
Collapse
|
37
|
Arévalo-Astrada M, McLachlan RS, Suller-Marti A, Parrent AG, MacDougall KW, Mirsattari SM, Diosy D, Steven DA, Burneo JG. All that glitters: Contribution of stereo-EEG in patients with lesional epilepsy. Epilepsy Res 2021; 170:106546. [PMID: 33422972 DOI: 10.1016/j.eplepsyres.2020.106546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the contribution of stereo-EEG for localization purpose in patients with a visible lesion on MRI. BACKGROUND Intracranial EEG is often used to localize the epileptogenic focus in patients with non-lesional focal epilepsy. Its role in cases where a lesion is visible on MRI can be even more complex and the relationship between the lesion and the seizure onset has rarely been addressed. METHODS All consecutive patients between February 2013 and May 2018 who underwent stereo-EEG and had a lesion visible on MRI were included. We assessed the localization of the seizure onset and its relationship with the lesion. Clinical, radiological, and electrographic analyses were performed. RESULTS Stereo-EEG revealed a seizure onset with either partial or no overlap with the lesion seen on MRI in 42 (56 %) of the 75 lesions included. Mesial temporal sclerosis was the only lesion type associated with an exclusively lesional seizure onset (p = 0.003). CONCLUSION Epilepsy surgery in MRI-positive cases should rely not only the results of lesions seen on MRI, which might be potentially misleading; SEEG is a gold standard method in these cases to define resective borders.
Collapse
Affiliation(s)
- Miguel Arévalo-Astrada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard S McLachlan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller-Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Diosy
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Neuro-Epidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
38
|
Khoo HM, Hall JA, Dubeau F, Tani N, Oshino S, Fujita Y, Gotman J, Kishima H. Technical Aspects of SEEG and Its Interpretation in the Delineation of the Epileptogenic Zone. Neurol Med Chir (Tokyo) 2020; 60:565-580. [PMID: 33162469 PMCID: PMC7803703 DOI: 10.2176/nmc.st.2020-0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stereo-electroencephalography (SEEG) has gained global popularity in recent years. In Japan, a country in which invasive studies using subdural electrodes (SDEs) have been the mainstream, SEEG has been approved for insurance coverage in 2020 and is expected to gain in popularity. Some concepts supporting SEEG methodology are fundamentally different from that of SDE studies. Clinicians interested in utilizing SEEG in their practice should be aware of those aspects in which they differ. Success in utilizing the SEEG methodology relies heavily on the construction of an a priori hypothesis regarding the putative seizure onset zone (SOZ) and propagation. This article covers the technical and theoretical aspects of SEEG, including the surgical techniques and precautions, hypothesis construction, and the interpretation of the recording, all with the aim of providing an introductory guide to SEEG.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Francois Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
39
|
Stereotactic EEG Practices: A Survey of United States Tertiary Referral Epilepsy Centers. J Clin Neurophysiol 2020; 39:474-480. [PMID: 33181594 DOI: 10.1097/wnp.0000000000000794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. In this study, the authors describe current practice of SEEG among National Association of Epilepsy Centers tertiary referral (level IV) centers. METHODS Using the Survey Monkey platform, a survey was sent to all National Association of Epilepsy Centers level IV center directors. RESULTS Of 192 centers polled, 104 directors completed the survey (54% response rate). Ninety-two percent currently perform SEEG. Of these, 55% of institutions reported that greater than 75% of their invasive electrode cases used SEEG. Stereotactic EEG was commonly used over subdural electrodes in cases of suspected mesial temporal lobe epilepsy (87%), nonlesional frontal lobe epilepsy (79%), insular epilepsy (100%), and individuals with prior epilepsy surgery (74%). Most centers (72%) used single-lead electrocardiogram monitoring concurrently with SEEG, but less than half used continuous pulse oximetry (47%) and only a few used respiratory belts (3%). Other significant intercenter technical variabilities included electrode nomenclature and choice of reference electrode. Patient care protocols varied among centers in patient-to-nurse ratio and allowed patient activity. Half of all centers had personnel who had prior experience in SEEG (50.5%); 20% of centers had adopted SEEG without any formal training. CONCLUSIONS Stereotactic EEG has become the principal method for intracranial EEG monitoring in the majority of epilepsy surgery centers in the United States. Most report similar indications for use of SEEG, though significant variability exists in the utilization of concurrent cardiopulmonary monitoring as well as several technical and patient care practices. There is significant variability in level of background training in SEEG among practitioners. The study highlights the need for consensus statements and guidelines to benchmark SEEG practice and develop uniform standards in the United States.
Collapse
|
40
|
Liu Y, Chen G, Chen J, Zhou J, Su L, Zhao T, Zhang G. Individualized stereoelectroencephalography evaluation and navigated resection in medically refractory pediatric epilepsy. Epilepsy Behav 2020; 112:107398. [PMID: 32891888 DOI: 10.1016/j.yebeh.2020.107398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022]
Abstract
Pediatric patients frequently require invasive exploration with intracranial electrodes to achieve high-resolution delineation of the epileptogenic zones (EZ). We intend to discuss the efficacy and safety of stereoelectroencephalophraphy (SEEG) monitoring in pediatric patients with difficulty to localize the EZ. We retrospectively analyzed presurgical findings, SEEG data, resections, and outcomes of a series of 72 consecutive pediatric patients (<18 yrs) who had medically refractory epilepsy and received SEEG recording between January 2015 and September 2019. There were 20 girls and 52 boys with a mean age of 10.13 ± 4.11 years old (range: 1.8-18 years). Twenty-seven patients (37.5%) had nonlesional magnetic resonance imagings (MRIs). In total, 744 electrodes were implanted for an average of 10.33 ± 2.53 (range: 3-18) electrodes per patient. Twenty-eight explorations were unilateral (17 left and 11 right), and 44 explorations were bilateral (12 of which was predominately one side). The average monitoring period in days for the SEEG was 8.99 ± 5.79 (range: 3-25) days. The EZ could be located in 67 (94.4%) patients for the initial implantation according to SEEG monitoring. Lobectomy was performed in 12 patients (17.9%), of those anterior temporal lobectomy (ATL) was performed in 8 cases (11.9%) and insular plus was 2 cases (3.0%), multilobectomy resections in 15 cases (22.4%), tailored cortical resections in 37 cases (55.2%), and corpus callosotomy plus in 2 cases (3.0%). The average follow-up was 18.1 ± 7.53 months (range: 6-54). Forty-three of 67 patients (64.2%) were Engel class I, 12 patients (17.9%) were Engel class II, 10 patients (14.9%) were Engel class III, and an additional 2 patients (3.0%) were Engel class IV. In the SEEG implantation series, no child experienced serious or permanent morbidity. One patient (1.4%) experienced symptomatic intracranial hemorrhage (ICH), and 3 patients (4.2%) experienced asymptomatic ICH. There were no postimplantation infections or other postoperative complications associated with the SEEG. Several common complications related to resection surgery were included in this series with zero mortality. Of the 6 patients in whom we performed a second surgery, 4 of them subsequently became seizure-free (66.7%) after undergoing the second resection with SEEG evaluation. Stereoelectroencephalophraphy is a safe and efficient methodology to identify the EZ in particularly complex cases of focal medically refractory epilepsy for pediatric patients, even in infancy and early childhood. Seizure outcomes of SEEG-guided resection surgery are desirable. We recommend SEEG evaluations and even a more aggressive resection in certain pediatric patients who failed initial resection with realistic chances to benefit from reoperation.
Collapse
Affiliation(s)
- Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Chen
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Junjian Zhou
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Lanmei Su
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhao
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University, Beijing, China; Beijing Institute of Translational Medicine of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Wabulya A, Nacionales D, Shin HW, Abumoussa A, Hadar E. Feasibility of stereo electroencephalogram (SEEG) with little to no scalp bone; a case report. Epilepsy Behav Rep 2020; 15:100394. [PMID: 33490946 PMCID: PMC7809162 DOI: 10.1016/j.ebr.2020.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022] Open
Abstract
SEEG is feasible with little to no skull to anchor a bolt. To the best of our knowledge, this is the first report describing SEEG electrode placement with no skull bone.
Stereo electroencephalogram (SEEG) electrode placement with cranially fixed guide bolts is recognized as one of the most accurate and safest implantation strategies to sample deep and buried cortex during certain clinical scenarios involving epilepsy surgery. Bone thickness of less than 2 mm is a relative contraindication to SEEG. Here, we describe a case drug-resistant focal epilepsy where prior craniotomies, infections and radiation therapy yielded limited skull bone requiring invasive EEG monitoring. Due to the inability to use bolts over areas with limited skull bone, we successfully utilized a combination of the standard and a modified SEEG techniques for implantation and stabilization of intracranial electrodes without complications. This strategy enabled optimal intracranial EEG monitoring and surgical management of the patient’s drug-resistant focal seizures.
Collapse
Affiliation(s)
- Angela Wabulya
- University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - David Nacionales
- University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Hae Won Shin
- University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Andrew Abumoussa
- University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Eldad Hadar
- University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
42
|
De Barros A, Zaldivar-Jolissaint JF, Hoffmann D, Job-Chapron AS, Minotti L, Kahane P, De Schlichting E, Chabardès S. Indications, Techniques, and Outcomes of Robot-Assisted Insular Stereo-Electro-Encephalography: A Review. Front Neurol 2020; 11:1033. [PMID: 33041978 PMCID: PMC7527495 DOI: 10.3389/fneur.2020.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Stereo-electro-encephalography (SEEG) is an invasive, surgical, and electrophysiological method for three-dimensional registration and mapping of seizure activity in drug-resistant epilepsy. It allows the accurate analysis of spatio-temporal seizure activity by multiple intraparenchymal depth electrodes. The technique requires rigorous non-invasive pre-SEEG evaluation (clinical, video-EEG, and neuroimaging investigations) in order to plan the insertion of the SEEG electrodes with minimal risk and maximal recording accuracy. The resulting recordings are used to precisely define the surgical limits of resection of the epileptogenic zone in relation to adjacent eloquent structures. Since the initial description of the technique by Talairach and Bancaud in the 1950's, several techniques of electrode insertion have been used with accuracy and relatively few complications. In the last decade, robot-assisted surgery has emerged as a safe, accurate, and time-saving electrode insertion technique due to its unparalleled potential for orthogonal and oblique insertion trajectories, guided by rigorous computer-assisted planning. SEEG exploration of the insular cortex remains difficult due to its anatomical location, hidden by the temporal and frontoparietal opercula. Furthermore, the close vicinity of Sylvian vessels makes surgical electrode insertion challenging. Some epilepsy surgery teams remain cautious about insular exploration due to the potential of neurovascular injury. However, several authors have published encouraging results regarding the technique's accuracy and safety in both children and adults. We will review the indications, techniques, and outcomes of insular SEEG exploration with emphasis on robot-assisted implantation.
Collapse
Affiliation(s)
- Amaury De Barros
- Department of Neurosurgery, Toulouse University Hospital, Toulouse, France
| | | | - Dominique Hoffmann
- CHU Grenoble Alpes, Clinical University of Neurosurgery, Grenoble, France
| | | | - Lorella Minotti
- CHU Grenoble Alpes, Clinical University of Neurology, Grenoble, France
| | - Philippe Kahane
- CHU Grenoble Alpes, Clinical University of Neurology, Grenoble, France
| | | | - Stephan Chabardès
- CHU Grenoble Alpes, Clinical University of Neurosurgery, Grenoble, France
| |
Collapse
|
43
|
Jobst BC, Bartolomei F, Diehl B, Frauscher B, Kahane P, Minotti L, Sharan A, Tardy N, Worrell G, Gotman J. Intracranial EEG in the 21st Century. Epilepsy Curr 2020; 20:180-188. [PMID: 32677484 PMCID: PMC7427159 DOI: 10.1177/1535759720934852] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula. To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.
Collapse
Affiliation(s)
- Barbara C Jobst
- Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Hanover, NH, USA
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone hospital, Epileptology department, Marseille, France
| | - Beate Diehl
- National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Birgit Frauscher
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| | - Philippe Kahane
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Lorella Minotti
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Ashwini Sharan
- National Hospital for Neurology and Neurosurgery, Jefferson University, Philadelphia, PA, USA
| | - Nastasia Tardy
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | | | - Jean Gotman
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Peedicail JS, Almohawes A, Hader W, Starreveld Y, Singh S, Josephson CB, Murphy W, Federico P, Wiebe S, Pillay N, Agha‐Khani Y, Jette N, Avendano R, Hanna S. Outcomes of stereoelectroencephalography exploration at an epilepsy surgery center. Acta Neurol Scand 2020; 141:463-472. [PMID: 32057089 DOI: 10.1111/ane.13229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epilepsy surgery is offered in resistant focal epilepsy. Non-invasive investigations like scalp video EEG monitoring (SVEM) help delineate epileptogenic zone. Complex cases may require intracranial video EEG monitoring (IVEM). Stereoelectroencephalography (SEEG)-based intracerebral electrode implantation has better spatial resolution, lower morbidity, better tolerance, and superiority in sampling deep structures. Our objectives were to assess IVEM using SEEG with regard to reasoning behind implantation, course, surgical interventions, and outcomes. MATERIALS AND METHODS Seventy-two admissions for SEEG from January 2014 to December 2018 were included in the study. Demographic and clinical data were retrospectively collected. RESULTS The cohort comprised of 69 adults of which 34 (47%) had lesional MRI. Reasons for SEEG considering all cases included non-localizing ictal onset (76%), ictal-interictal discordance (21%), discordant semiology (17%), proximity to eloquent cortex (33%), nuclear imaging discordance (34%), and discordance with neuropsychology (19%). Among lesional cases, additional reasons included SVEM discordance (68%) and dual or multiple pathology (47%). Forty-eight patients (67%) were offered resective surgery, and 41 underwent it. Twenty-three (56%) had at least one year post-surgical follow-up of which 14 (61%) had Engels class I outcome. Of the remaining 23 who were continued on medical management, 4 (17%) became seizure-free and 12 (51%) had reduction in seizure frequency. CONCLUSION SEEG monitoring is an important and safe tool for presurgical evaluation with good surgical and non-surgical outcomes. Whether seizure freedom following non-surgical management could be related to SEEG implantation, medication change, or natural course needs to be determined.
Collapse
Affiliation(s)
- Joseph Samuel Peedicail
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Amal Almohawes
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Walter Hader
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Yves Starreveld
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Shaily Singh
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Colin Bruce Josephson
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - William Murphy
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Paolo Federico
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Samuel Wiebe
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Neelan Pillay
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Yahya Agha‐Khani
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Nathalie Jette
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Rey Avendano
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | - Salma Hanna
- Calgary Comprehensive Epilepsy Program Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Canada
| | | |
Collapse
|
45
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
46
|
Zhao R, Xue P, Zhou Y, Yang H, Zhou S, Wang Y, Li H. Application of Robot-Assisted Frameless Stereoelectroencephalography Based on Multimodal Image Guidance in Pediatric Refractory Epilepsy: Experience of a Pediatric Center in a Developing Country. World Neurosurg 2020; 140:e161-e168. [PMID: 32389862 DOI: 10.1016/j.wneu.2020.04.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To introduce the application of robot-assisted frameless stereoelectroencephalography (SEEG) based on multimodal image fusion technology in pediatric refractory epilepsy in a pediatric center from a developing country. METHODS We retrospectively evaluated pediatric patients with drug-resistant epilepsy who underwent SEEG monitoring at the Children's Hospital of Fudan University from July 2014 to August 2017. Application of multimodal image fusion technology in SEEG was described in detail. Seizure outcomes were assessed according to the International League Against Epilepsy classification. RESULTS A total of 208 patients were initially eligible and underwent a rigorous phase I evaluation. SEEG explorations were performed in 20 patients who entered phase II assessment (11 male and 9 female patients) with a median age of 7.99 ± 4.07 years. In total, 181 electrodes were implanted (9 per implantation), among which 16 implantations were unilateral (6 left and 10 right) and 4 were bilateral. The mean operating time was 3 hours and no obvious hemorrhage occurred. Electrode displacement and pneumocephalus were observed in 1 and 2 patients, respectively. Thirteen and 7 patients underwent tailored resection and radiofrequency thermocoagulation, respectively. Among resection cases, focal cortical dysplasia was the predominant pathologic type. The overall seizure outcome after a mean follow-up of 2.65 years was International League Against Epilepsy class 1 in 13, class 2 in 2, class 3 in 3, class 4 in 1, and class 5 in 1 patient, respectively. CONCLUSIONS The combination of multimodal image fusion and frameless robot-assisted SEEG is demonstrated to be safe and effective on children with refractory epilepsy in developing countries.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Ping Xue
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Haowei Yang
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, P.R China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, P.R China.
| |
Collapse
|
47
|
Granados A, Rodionov R, Vakharia V, McEvoy AW, Miserocchi A, O'Keeffe AG, Duncan JS, Sparks R, Ourselin S. Automated computation and analysis of accuracy metrics in stereoencephalography. J Neurosci Methods 2020; 340:108710. [PMID: 32339522 PMCID: PMC7456795 DOI: 10.1016/j.jneumeth.2020.108710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022]
Abstract
Automatic computation of SEEG accuracy metrics agree with those done manually. The choice of image to generate a scalp model has an effect on entry point metrics. Metrics have the lowest mean and variability when using an electrode bolt axis. Lateral shift deviation should include a measure of insertion depth error.
Background Implantation accuracy of electrodes during neurosurgical interventions is necessary to ensure safety and efficacy. Typically, metrics are computed by visual inspection which is tedious, prone to inter-/intra-observer variation, and difficult to replicate across sites. New Method We propose an automated approach for computing implantation metrics and investigate potential sources of error. We focus on accuracy metrics commonly reported in the literature to validate our approach against metrics computed manually including entry point (EP) and target point (TP) localisation errors and angle differences between planned and implanted trajectories in 15 patients with a total of 158 stereoelectroencephalography (SEEG) electrodes. We evaluate the effect of line-of-best-fit approaches, EP definition and lateral versus Euclidean distance on metrics to provide recommendations for reporting implantation accuracy metrics. Results We found no bias between manual and automated approaches for calculating accuracy metrics with limits of agreement of ±1 mm and ±1°. Automated metrics are robust to sources of errors including registration and electrode bending. We observe the highest error in EP deviations of μ = 0.25 mm when the post-implantation CT is used to define the point of entry. Comparison with Existing Method(s) We found no reports of automated approaches for quality assessment of SEEG electrode implantation. Neither the choice of metrics nor the possible errors that could occur have been investigated previously. Conclusions Our automated approach is useful to avoid human errors, unintentional bias and variation that may be introduced when manually computing metrics. Our work is relevant and timely to facilitate comparisons of studies reporting implantation accuracy.
Collapse
Affiliation(s)
- Alejandro Granados
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK.
| | - Roman Rodionov
- National Hospital of Neurology and Neurosurgery, London, UK
| | - Vejay Vakharia
- National Hospital of Neurology and Neurosurgery, London, UK
| | | | | | | | - John S Duncan
- National Hospital of Neurology and Neurosurgery, London, UK; Dept of Clin and Experim Epilepsy, UCL Queen Square, Inst of Neurol, UK
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Sébastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| |
Collapse
|
48
|
Taussig D, Chipaux M, Fohlen M, Dorison N, Bekaert O, Ferrand-Sorbets S, Dorfmüller G. Invasive evaluation in children (SEEG vs subdural grids). Seizure 2020; 77:43-51. [DOI: 10.1016/j.seizure.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022] Open
|
49
|
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is an invasive diagnostic surgical procedure used to identify specific areas of seizure activity in the brain. SEEG has been shown in both adult and pediatric populations to be a safe and effective tool for preoperative decision making. USES: This is used in patients with medically refractory epilepsy who are potential candidates for brain surgery to control seizures. It is preferred over other invasive diagnostic procedures because of lower risk, reduced discomfort, and shorter operating times. OUTCOMES It has a distinct role in obtaining meaningful data that leads to more precise surgical options. All of this results in better seizure control and improved quality of life for the patients. CONCLUSION Knowledge of the SEEG procedure, its benefits, complications, and the neuroscience nurse's role will improve care for surgical patients and improve outcomes.
Collapse
|
50
|
Feng AY, Ho AL, Kim LH, Sussman ES, Pendharkar AV, Iv M, Yeom KW, Halpern CH, Grant GA. Utilization of Novel High-Resolution, MRI-Based Vascular Imaging Modality for Preoperative Stereoelectroencephalography Planning in Children: A Technical Note. Stereotact Funct Neurosurg 2020; 98:1-7. [PMID: 32062664 DOI: 10.1159/000503693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Stereoelectroencephalography (SEEG) is a powerful intracranial diagnostic tool that requires accurate imaging for proper electrode trajectory planning to ensure efficacy and maximize patient safety. Computed tomography (CT) angiography and digital subtraction angiography are commonly used, but recent developments in magnetic resonance angiography allow for high-resolution vascular visualization without added risks of radiation. We report on the accuracy of electrode placement under robotic assistance planning utilizing a novel high-resolution magnetic resonance imaging (MRI)-based imaging modality. METHODS Sixteen pediatric patients between February 2014 and October 2017 underwent SEEG exploration for epileptogenic zone localization. A gadolinium-enhanced 3D T1-weighted spoiled gradient recalled echo sequence with minimum echo time and repetition time was applied for background parenchymal suppression and vascular enhancement. Electrode placement accuracy was determined by analyzing postoperative CT scans laid over preoperative virtual electrode trajectory paths. Entry point, target point, and closest vessel intersection were measured. RESULTS For any intersection along the trajectory path, 57 intersected vessels were measured. The mean diameter of an intersected vessel was 1.0343 ± 0.1721 mm, and 21.05% of intersections involved superficial vessels. There were 157 overall intersection + near-miss events. The mean diameter for an involved vessel was 1.0236 ± 0.0928 mm, and superficial vessels were involved in 20.13%. Looking only at final electrode target, 3 intersection events were observed. The mean diameter of an intersected vessel was 1.0125 ± 0.2227 mm. For intersection + near-miss events, 24 were measured. An involved vessel's mean diameter was 1.1028 ± 0.2634 mm. For non-entry point intersections, 45 intersected vessels were measured. The mean diameter for intersected vessels was 0.9526 ± 0.0689 mm. For non-entry point intersections + near misses, 126 events were observed. The mean diameter for involved vessels was 0.9826 ± 0.1008 mm. CONCLUSION We believe this novel sequence allows better identification of superficial and deeper subcortical vessels compared to conventional T1-weighted gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Austin Y Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Eric S Sussman
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Iv
- Department of Radiology, Stanford University Medical Center, Stanford, California, USA
| | - Kristen W Yeom
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford, California, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA, .,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford, Stanford, California, USA,
| |
Collapse
|