1
|
The Regional and Cellular Distribution of GABAA Receptor Subunits in the Human Amygdala. J Chem Neuroanat 2022; 126:102185. [DOI: 10.1016/j.jchemneu.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
2
|
Ashton MK, Rueda AVL, Ho AM, Noor Aizin NABM, Sharma H, Dodd PR, Stadlin A, Camarini R. Sex differences in GABA A receptor subunit transcript expression are mediated by genotype in subjects with alcohol-related cirrhosis of the liver. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12785. [PMID: 35301805 PMCID: PMC9744570 DOI: 10.1111/gbb.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Male and female human subjects show contrasting propensities to misuse drugs of addiction, including alcohol. These differences lead to different psychological and neurological consequences, such as the likelihood of developing dependence. The pattern and extent of brain damage in alcohol-use disorder cases also varies with comorbid disease. To explore mechanisms that might underlie these outcomes, we used autopsy tissue to determine mRNA transcript expression in relation to genotype for two GABAA receptor subunit genes. We used quantitative Real-Time PCR to measure GABRA6 and GABRA2 mRNA concentrations in dorsolateral prefrontal and primary motor cortices of alcohol-use disorder subjects and controls of both sexes with and without liver disease who had been genotyped for these GABAA receptor subunit genes. Cirrhotic alcohol-use disorder cases had significantly higher expression of GABRA6 and GABRA2 transcripts than either controls or non-cirrhotic alcohol-use disorder cases. Differences were observed between sexes, genotypes and brain regions. We show that sex differences in subjects with GABRA6 and GABRA2 variants may contribute to differences in susceptibility to alcohol-use disorder and alcohol-induced cirrhosis.
Collapse
Affiliation(s)
- Madeline K. Ashton
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - André V. L. Rueda
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| | - Ada M.‐C. Ho
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Noradibah Arina Binte M. Noor Aizin
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Vela Research Singapore Pte LtdThe KendallSingapore
| | - Hansa Sharma
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Peter R. Dodd
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Rosana Camarini
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
3
|
Bhandage AK, Jin Z, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics. Front Cell Neurosci 2014; 8:415. [PMID: 25538565 PMCID: PMC4257153 DOI: 10.3389/fncel.2014.00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/15/2014] [Indexed: 01/16/2023] Open
Abstract
Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
Collapse
Affiliation(s)
- Amol K Bhandage
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Zhe Jin
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Olga Kononenko
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Georgy Bakalkin
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmaceutical Bioscience (Biological Research on Drug Dependence), Biomedical Center, Uppsala University Uppsala, Sweden
| | - Bryndis Birnir
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| |
Collapse
|
4
|
Janeczek P, MacKay RK, Lea RA, Dodd PR, Lewohl JM. Reduced expression of α-synuclein in alcoholic brain: influence of SNCA-Rep1 genotype. Addict Biol 2014; 19:509-15. [PMID: 22974310 DOI: 10.1111/j.1369-1600.2012.00495.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Synuclein has recently been implicated in the pathophysiology of alcohol abuse due to its role in dopaminergic neurotransmission. In these studies, genetic variability in the α-synuclein gene influences its expression which may contribute to susceptibility to chronic alcohol abuse. Real-time PCR was used to quantify α-synuclein mRNA expression in autopsy samples of human dorsolateral prefrontal cortex. Because of the association between length of the α-synuclein-repeat 1 microsatellite marker and expression levels of the gene, this marker was genotyped in a Caucasian sample of 126 controls and 117 alcoholics using capillary gel electrophoresis. The allele and genotype frequencies of α-synuclein-repeat 1 marker differed significantly between alcoholics and controls. Alcoholics had greater frequencies of the shortest allele found (267 bp). The shortest allele of the α-synuclein-repeat 1 marker was associated with decreased expression of α-synuclein in prefrontal cortex. Individuals with at least one copy of the 267 bp allele were more likely to exhibit an alcohol abuse phenotype. These results suggest that individuals with the 267 bp allele may be at increased risk of developing alcoholism and that genetic variation at the α-synuclein-repeat 1 locus may influence α-synuclein expression in the prefrontal cortex.
Collapse
Affiliation(s)
- Paulina Janeczek
- Griffith Health Institute, School of Medical Sciences; Griffith University; Australia
| | - Rachel K. MacKay
- Griffith Health Institute, School of Medical Sciences; Griffith University; Australia
| | - Rodney A. Lea
- Griffith Health Institute, School of Medical Sciences; Griffith University; Australia
| | - Peter R. Dodd
- School of Chemistry and Molecular Biosciences; University of Queensland; Australia
| | - Joanne M. Lewohl
- Griffith Health Institute, School of Medical Sciences; Griffith University; Australia
| |
Collapse
|
5
|
Jin Z, Bazov I, Kononenko O, Korpi ER, Bakalkin G, Birnir B. Selective Changes of GABA(A) Channel Subunit mRNAs in the Hippocampus and Orbitofrontal Cortex but not in Prefrontal Cortex of Human Alcoholics. Front Cell Neurosci 2012; 5:30. [PMID: 22319468 PMCID: PMC3249692 DOI: 10.3389/fncel.2011.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/14/2011] [Indexed: 11/13/2022] Open
Abstract
Alcohol dependence is a common chronic relapsing disorder. The development of alcohol dependence has been associated with changes in brain GABA(A) channel-mediated neurotransmission and plasticity. We have examined mRNA expression of the GABA(A) channel subunit genes in three brain regions in individuals with or without alcohol dependence using quantitative real-time PCR assay. The levels of selective GABA(A) channel subunit mRNAs were altered in specific brain regions in alcoholic subjects. Significant increase in the α1, α4, α5, β1, and γ1 subunit mRNAs in the hippocampal dentate gyrus region, and decrease in the β2 and δ subunit mRNAs in the orbitofrontal cortex were identified whereas no changes in the dorsolateral prefrontal cortex were detected. The data increase our understanding of the role of GABA(A) channels in the development of alcohol dependence.
Collapse
Affiliation(s)
- Zhe Jin
- The Division of Molecular Physiology and Neuroscience, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Pompili M, Serafini G, Innamorati M, Dominici G, Ferracuti S, Kotzalidis GD, Serra G, Girardi P, Janiri L, Tatarelli R, Sher L, Lester D. Suicidal behavior and alcohol abuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1392-431. [PMID: 20617037 PMCID: PMC2872355 DOI: 10.3390/ijerph7041392] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 12/22/2022]
Abstract
Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns.
Collapse
Affiliation(s)
- Maurizio Pompili
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Author to whom correspondence should be addressed; E-Mail:
or
; Tel. +39-06 33775675; Fax +39-0633775342
| | - Gianluca Serafini
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Marco Innamorati
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giovanni Dominici
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Stefano Ferracuti
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giorgio D. Kotzalidis
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giulia Serra
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Paolo Girardi
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Luigi Janiri
- Department of Psychiatry, Catholic University Medical School, Largo F. Vito 1, Rome 00168, Italy; E-Mail:
| | - Roberto Tatarelli
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Leo Sher
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; E-Mail:
| | - David Lester
- The Richard Stockton College of New Jersey, Pomona, NJ 08240-0195, USA; E-Mail:
| |
Collapse
|
7
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
8
|
Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90:95-104. [PMID: 18440057 DOI: 10.1016/j.pbb.2008.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/psychology
- Alcoholism/drug therapy
- Alcoholism/genetics
- Alcoholism/physiopathology
- Animals
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/physiology
- Dopamine/physiology
- Gene Expression Regulation/physiology
- Humans
- Neuronal Plasticity/physiology
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Presynaptic/drug effects
- Reward
- Steroids/physiology
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
|
10
|
Dodd PR, Foley PF, Buckley ST, Eckert AL, Innes DJ. Genes and gene expression in the brain of the alcoholic. Addict Behav 2004; 29:1295-309. [PMID: 15345266 DOI: 10.1016/j.addbeh.2004.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABAA receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-d-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor beta subunit mRNA expression, and GABB2 and DRD2B genotypes with beta subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.
Collapse
Affiliation(s)
- Peter R Dodd
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|