1
|
Sánchez-Tena MÁ, Martinez-Perez C, Andreu-Vázquez C, Roque A, Alvarez-Peregrina C. Factors associated with myopia in the Portuguese child population: An epidemiological study. Ophthalmic Physiol Opt 2024. [PMID: 39606934 DOI: 10.1111/opo.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Myopia, a leading cause of correctable visual impairment, is projected to affect nearly 50% of the global population by 2050, posing a significant public health challenge. Understanding its prevalence and associated factors, particularly in children, is crucial for devising prevention and intervention strategies. This study aims to determine the proportion of myopia in school-aged children in Portugal and to examine the correlation between myopia occurrence and various environmental and genetic factors. METHODS A cross-sectional epidemiological study was conducted on children aged from 5 to 17 years from nine schools in Lisbon, Portugal, between September 2020 and May 2021. It included optometric assessments to evaluate refractive status and binocular vision, as well as questionnaires about their lifestyles and parental myopia. RESULTS Out of 1992 participants enrolled, 12.7% of the children were found to be myopic. The proportion of myopia increased with age and was higher in girls. A significant association was observed between myopia and parental history, with the likelihood being higher if one or both parents were myopic. Engaging in outdoor activities was associated with a lower likelihood of myopia. CONCLUSIONS The study found that 12.7% of the children in the study sample, aged 5-17 years, were myopic, indicating a significant association with familial history and limited outdoor activities. These insights highlight the need for targeted myopia screening and prevention strategies in the paediatric population.
Collapse
Affiliation(s)
- Miguel Ángel Sánchez-Tena
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
- ISEC LISBOA-Instituto Superior de Educação e Ciências, Lisbon, Portugal
| | | | | | - Ana Roque
- ISEC LISBOA-Instituto Superior de Educação e Ciências, Lisbon, Portugal
| | - Cristina Alvarez-Peregrina
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Zhu Z, Chen Y, Tan Z, Xiong R, McGuinness MB, Müller A. Interventions recommended for myopia prevention and control among children and adolescents in China: a systematic review. Br J Ophthalmol 2023; 107:160-166. [PMID: 34844916 DOI: 10.1136/bjophthalmol-2021-319306] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023]
Abstract
In 2018, a consortium of government bodies in China led by the Ministry of Education released the Comprehensive Plan to Prevent Nearsightedness among Children and Teenagers (CPPNCT), aiming to reduce the incidence of myopia and control myopic progression in China. Recommendations span from home-based to school-based interventions, including time outdoors, physical activity, light exposure, near-work activity, screen time, Chinese eye exercises, diet and sleep. To date, the levels of evidence for this suite of interventions have not been thoroughly investigated. This review has summarised the evidence of the interventions recommended by the CPPNCT in myopia prevention and control. Thus, the following statements are supposed by the evidence: (1) Increasing time outdoors and reducing near-work time are effective in lowering incident myopia in school-aged children. (2) All interventions have a limited effect on myopia progression. Ongoing research may lead to a better understanding of the underlying mechanisms of myopia development, the interaction of different interventions and recommendations, confounding variables and their true effect on myopia prevention, and the identification of those most likely to respond to specific interventions. This field may also benefit from longer-term studies of the various interventions or strategies covered within this review article, to better understand the persistence of treatment effects over time and explore more novel approaches to myopia control.
Collapse
Affiliation(s)
- Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanxian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zachary Tan
- Centre for Eye Research Australia, East Melbourne, Victoria, Australia
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Myra Beth McGuinness
- Centre for Eye Research Australia, East Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Müller
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
3
|
Mathis U, Feldkaemper M, Liu H, Schaeffel F. Studies on the interactions of retinal dopamine with choroidal thickness in the chicken. Graefes Arch Clin Exp Ophthalmol 2023; 261:409-425. [PMID: 36192457 PMCID: PMC9837001 DOI: 10.1007/s00417-022-05837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Recently, an increasing number of studies relied on the assumption that visually induced changes in choroidal thickness can serve as a proxy to predict future axial eye growth. The retinal signals controlling choroidal thickness are, however, not well defined. We have studied the potential roles of dopamine, released from the retina, in the choroidal response in the chicken. METHODS Changes in retinal dopamine release and choroidal thickness changes were induced by intravitreal injections of either atropine (250 µg or 360 nMol), atropine combined with a dopamine antagonist, spiperone (500 µMol), or spiperone alone and were tracked by optical coherence tomography (OCT). To visually stimulate dopamine release, other chicks were exposed to flicker light of 1, 10, or 400 Hz (duty cycle 0.2) and choroidal thickness was tracked. In all experiments, dopamine and 3,4-Dihydroxyphenylacetic acid (DOPAC) were measured in vitreous, retina, and choroid by high-performance liquid chromatography with electrochemical detection (HLPC-ED). The distribution of the rate-limiting enzyme of dopamine synthesis, tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), vascular endothelial growth factor (VEGF), and alpha2A adrenoreceptors (alpha2A-ADR) was studied in the choroid by immunofluorescence. RESULTS The choroid thickened strongly in atropine-injected eyes, less so in atropine + spiperone-injected eyes and became thinner over the day in spiperone alone-, vehicle-, or non-injected eyes. Flickering light at 20 lx, both 1 and 10 Hz, prevented diurnal choroidal thinning, compared to 400 Hz, and stimulated retinal dopamine release. Correlation analysis showed that the higher retinal dopamine levels or release, the thicker became the choroid. TH-, nNOS-, VEGF-, and alpha2A adrenoreceptor-positive nerve fibers were localized in the choroid around lacunae and in the walls of blood vessels with colocalization of TH and nNOS, and TH and VEGF. CONCLUSIONS Retinal DOPAC and dopamine levels were positively correlated with choroidal thickness. TH-positive nerve fibers in the choroid were closely associated with peptides known to play a role in myopia development. Findings are in line with the hypothesis that dopamine is related to retinal signals controlling choroidal thickness.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Marita Feldkaemper
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Hong Liu
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
- Institute for Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Alomair R, Alghnam SA, Alnasser BN, Almuhawas HA, Alhoshan SA, Altamimi BS, Alshaye RM, Almuayli MT, Alokiliy MK, Alfawaz WJ, Alghamdi SK. The prevalence and predictors of refractive error among school children in Riyadh, Saudi Arabia. Saudi J Ophthalmol 2021; 34:273-277. [PMID: 34527871 PMCID: PMC8409345 DOI: 10.4103/1319-4534.322621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE: Refractive error (RE) is one of the most common ocular disorders among children worldwide. This study aimed to investigate the prevalence of RE and possible risk factors among school children in Riyadh. METHODS: This is a cross-sectional study using data collected at various schools. To achieve the aim of the study, we selected a random sample of 850 school children aged 6–15 years. The examination was based on the RESC protocol and included full visual assessment. Furthermore, a questionnaire was sent to the parents of the participants to ascertain information about lifestyle factors. We constructed a logistic regression model to evaluate the predictors of RE. RESULTS: Close to a third of the children had a RE. Of those identified as having the condition, 60% did not wear glasses (newly diagnosed). Nearly all the children (95.4%) in our sample reported using electronic devices, according to parents. No association was found between using electronic devices and having a RE (P = 0.26). Doing outdoor activities was associated with 52% lower odds of a RE (odds ratio = 1.52). CONCLUSION: We found a higher prevalence of uncorrected RE than previously reported in other Saudi studies. About 60% of children who had RE were not wearing glasses, highlighting the need for a standardized school screening program for early detection and management. Outdoor activities were associated with a lower likelihood of having a RE. These findings might support initiatives to encourage outdoor activities among school children.
Collapse
Affiliation(s)
- Raed Alomair
- Department of Pediatric Ophthalmology and Optometry, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Suliman A Alghnam
- Department of Population Health, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bashair N Alnasser
- Department of Ophthalmology, Armed Forces Hospital, Dhahran, Saudi Arabia, Saudi Arabia
| | - Hana A Almuhawas
- Department of Pediatric Ophthalmology and Optometry, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Saja A Alhoshan
- Department of Pediatric Ophthalmology and Optometry, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Bashayer S Altamimi
- Department of Optometry at Pennsylvania College of Optometry at Salus University, Pennsylvania, US
| | - Rana M Alshaye
- Department of Pediatric Ophthalmology and Optometry, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mohamad T Almuayli
- Department of Pediatric Ophthalmology and Optometry, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mazen K Alokiliy
- Department of Ophthalmology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Waleed J Alfawaz
- Department of Ophthalmology, Medical Center at Prince Naif College, Riyadh, Saudi Arabia
| | - Sultan K Alghamdi
- Department of Ophthalmology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Tian T, Zou L, Wang S, Liu R, Liu H. The Role of Dopamine in Emmetropization Modulated by Wavelength and Temporal Frequency in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34546324 PMCID: PMC8458992 DOI: 10.1167/iovs.62.12.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Wavelength and temporal frequency have been found to influence refractive development. This study investigated whether retinal dopamine (DA) plays a role in these processes. Methods Guinea pigs were randomly divided into nine groups that received different lighting conditions for 4 weeks, as follows: white, green, or blue light at 0, 0.5, or 20.0 Hz. Refractions and axial lengths were measured using streak retinoscopy and A-scan ultrasound imaging. DA and its metabolites were measured by high-pressure liquid chromatography-electrochemical detection. Results At 0 Hz, green and blue light produced myopic and hyperopic shifts compared with that of white light. At 0.5 Hz, no significant changes were observed compared with those of green or blue light at 0 Hz, whereas white light at 0.5 Hz induced a myopic shift compared with white light at 0 or 20 Hz. At 20 Hz, green and blue light acted like white light. Among all levels of DA and its metabolites, only vitreous 3, 4-dihydroxyphenylacetic acid (DOPAC) levels and retinal DOPAC/DA ratios were dependent on wavelength, frequency, and their interaction. Specifically, retinal DOPAC/DA ratios were positively correlated with refractions in white and green light conditions. However, blue light (0, 0.5, and 20.0 Hz) produced hyperopic shifts but decreased vitreous DOPAC levels and retinal DOPAC/DA ratios. Conclusions The retinal DOPAC/DA ratio, indicating the metabolic efficiency of DA, is correlated with ocular growth. It may underlie myopic shifts from light exposure with a long wavelength and low temporal frequency. However, different biochemical pathways may contribute to the hyperopic shifts from short wavelength light.
Collapse
Affiliation(s)
- Tian Tian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Rui Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Shi H, Fu J, Liu X, Wang Y, Yong X, Jiang L, Ma S, Yin Z, Yao J, Yao X, Chen X, Wang T. Influence of the interaction between parental myopia and poor eye habits when reading and writing and poor reading posture on prevalence of myopia in school students in Urumqi, China. BMC Ophthalmol 2021; 21:299. [PMID: 34391397 PMCID: PMC8364037 DOI: 10.1186/s12886-021-02058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background To evaluate the prevalence of myopia in school students in Urumqi, China, and explore the influence of the interaction between parental myopia and poor reading and writing habits on myopia to identify the at-risk population and provide evidence to help school students avoid developing myopia. Methods A cross-sectional survey was conducted with 6,883 school students aged 7–20 years in Urumqi in December 2019. The Standard Eye Chart and mydriatic optometry were used to determine whether students had myopia. Falconer’s method was used to calculate the heritability of parental myopia. Multivariate unconditional logistic regression models were used to analyze the risk factors for myopia and the additive and multiplicative interaction of parental myopia and poor reading and writing habits. Results After standardizing the age of the 6,883 students, the overall prevalence rate of myopia was 47.50 %. The heritability of parental myopia was 66.57 % for boys, 67.82 % for girls, 65.02 % for the Han group, and 52.71 % for other ethnicities. There were additive interactions between parental myopia and poor reading and writing habits; among them, parental myopia and poor eye habits when reading and writing (the distance between the eyes and book is less than 30 cm when reading and writing, fingers block the sight of one eye while holding the pen, and leaning one’s body when reading and writing; habit 1) increased the risk of myopia by 10.99 times (odds ratio [OR] = 10.99, 95 % confidence interval [CI] = 8.33–14.68), parental myopia and poor reading posture (reading while lying down, walking, or in the car; habit 2) increased the risk of myopia by 5.92 times (OR = 5.92, 95 % CI = 4.84–7.27). There was no multiplicative interaction between parental myopia and habit 1 or habit 2 (OR = 0.69, 95 % CI = 0.44–1.08; OR = 0.89, 95 % CI = 0.66–1.21, respectively). Conclusion The prevalence of myopia among students in Urumqi, Xinjiang is relatively high. The risk of developing myopia is affected by parental myopia and poor reading and writing habits. In addition, parental myopia amplifies the harm caused by poor reading and writing habits, thereby increasing the risk of myopia. Students with parents who have myopia should be targeted during myopia prevention efforts. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02058-3.
Collapse
Affiliation(s)
- Haonan Shi
- School of Public Health, Xinjiang Medical University, 830011, Urumqi, China
| | - Jing Fu
- Department of Ophthalmology, First Affiliated Hospital, Xinjiang Medical University, 830000, Urumqi, China
| | - Xiaojing Liu
- Health Care Guidance Centre in Primary and Secondary Schools, 830002, Urumqi, China
| | - Yingxia Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China
| | - Xianting Yong
- School of Public Health, Xinjiang Medical University, 830011, Urumqi, China
| | - Lan Jiang
- Maternal and Child Health Care Hospital of Uygur Autonomous Region, 830002, Urumqi, China
| | - Shaowei Ma
- School of Public Health, Xinjiang Medical University, 830011, Urumqi, China
| | - Zhe Yin
- School of Public Health, Xinjiang Medical University, 830011, Urumqi, China
| | - Jian Yao
- School of Public Health, Xinjiang Medical University, 830011, Urumqi, China
| | - Xuan Yao
- College of Medicine, Shanghai University, 200444, Shanghai, China.
| | - Xueyi Chen
- Department of Ophthalmology, First Affiliated Hospital, Xinjiang Medical University, 830000, Urumqi, China. .,Department of Ophthalmology, First Affiliated Hospital, Xinjiang Medical University, 830001, Urumqi, China.
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China.
| |
Collapse
|
7
|
Mathis U, Feldkaemper MP, Schaeffel F. Effects of Single and Repeated Intravitreal Applications of Atropine on Choroidal Thickness in Alert Chickens. Ophthalmic Res 2021; 64:664-674. [PMID: 33774636 DOI: 10.1159/000515755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Atropine, a muscarinic antagonist, is known since the 19th century to inhibit myopia development in children. One of its effects is that it stimulates choroidal thickening. Thicker choroids, in turn, have been linked to myopia inhibition. We used the atropine-stimulated choroidal response in the chicken to learn more about the time courses and amplitudes of the effects of atropine, as well as whether repeated applications lead to accumulation or desensitization. METHODS Intravitreal injections containing 250 µg atropine sulfate were performed in 1 eye around 10:00 in the morning, the fellow eye received vehicle. Chickens with bilateral vehicle injections served as controls. Choroidal thickness was measured over the day for every 2-3 h in alert animals, using spectral domain optical coherence tomography, with 3-5 independent measurements in each eye. Three experiments were done - (1) single injection and time course measured over 1 day, (2) single injection and time course measured over 4 days, and (3) daily injections and time course measured over 4 days for measuring the effects of atropine on vitreal, retinal, and choroidal dopamine, and 3,4-dihydroxyphenylacetic acid levels by using high-performance liquid chromatography with electrochemical detection. RESULTS Atropine induced an increase in choroidal thickness by about 60 percent, with a peak amplitude after about 2 h. The effect persisted only for a few hours and had nearly disappeared by evening. Initially, similar amounts of choroidal thickening were observed in vehicle-injected fellow eyes but recovery to baseline was faster. When atropine was injected daily for 4 days, choroids thickened every day with similar amplitudes and time courses, with no signs of either accumulation or desensitization effects. Interestingly, while dopamine release from the retina was stimulated by atropine and followed approximately, the time course of choroidal thickening, its tissue concentration dropped in the choroid. CONCLUSIONS Even at relatively high intravitreal doses, effects of atropine on choroidal thickness remained transient, similar to its effects on retinal dopamine. With repeated application every day, the diurnal patterns of choroidal thickening could be reproduced for 4 days with similar amplitudes and time courses. The transient nature of the effects of atropine on the choroid may be relevant for application protocols of atropine against myopia.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Marita Pauline Feldkaemper
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany.,Institute for Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Nickla DL, Sarfare S, McGeehan B, Wei W, Elin-Calcador J, He L, Dhakal S, Dixon J, Maguire MG, Stone RA, Iuvone PM. Visual conditions affecting eye growth alter diurnal levels of vitreous DOPAC. Exp Eye Res 2020; 200:108226. [PMID: 32905843 DOI: 10.1016/j.exer.2020.108226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In chicks, the diurnal patterns of retinal dopamine synthesis and release are associated with refractive development. To assess the within-day patterns of dopamine release, we assayed vitreal levels of DOPAC (3,4-dihydroxyphenylacetic acid) using high performance liquid chromatography with electrochemical detection, at 4-h intervals over 24 h in eyes with experimental manipulations that change ocular growth rates. Chicks were reared under a 12 h light/12 h dark cycle; experiments began at 12 days of age. Output was assessed by modelling using the robust variance structure of Generalized Estimating Equations. Continuous spectacle lensdefocus or form deprivation: One group experienced non-restricted visual input to both eyes and served as untreated "normal" controls. Three experimental cohorts underwent monocular visual alterations known to alter eye growth and refraction: wearing a diffuser, a negative lens or a positive lens. After one full day of device-wear, chicks were euthanized at 4-h intervals over 24 h (8 birds per time/condition). Brief hyperopic defocus: Chicks wore negative lenses for only 2 daily hours either in the morning (starting at ZT 0; n = 16) or mid-day (starting at ZT 4; n = 8) for 3 days. Vitreal DOPAC was assayed. In chicks with bilateral non-restricted vision, or with continuous defocus or form-deprivation, there was a diurnal variation in vitreal DOPAC levels for all eyes (p < 0.001 for each). In normal controls, DOPAC was highest during the daytime, lowest at night, and equivalent for both eyes. In experimental groups, regardless of whether experiencing a growth stimulatory input (diffuser; negative lens) or growth inhibitory input (positive lens), DOPAC levels were reduced compared both to fellow eyes and to those of normal controls (p < 0.001 for each). These diurnal variations in vitreous DOPAC levels under different visual conditions indicate a complexity for dopaminergic mechanisms in refractive development that requires further study.
Collapse
Affiliation(s)
- D L Nickla
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA.
| | - S Sarfare
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA
| | - B McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - W Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Elin-Calcador
- Department of Biosciences, The New England College of Optometry, Boston, MA, USA
| | - L He
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Dhakal
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Dixon
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - M G Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - P M Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology & Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Hellmer CB, Bohl JM, Hall LM, Koehler CC, Ichinose T. Dopaminergic Modulation of Signal Processing in a Subset of Retinal Bipolar Cells. Front Cell Neurosci 2020; 14:253. [PMID: 32922266 PMCID: PMC7456991 DOI: 10.3389/fncel.2020.00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The retina and the olfactory bulb are the gateways to the visual and olfactory systems, respectively, similarly using neural networks to initiate sensory signal processing. Sensory receptors receive signals that are transmitted to neural networks before projecting to primary cortices. These networks filter sensory signals based on their unique features and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal network for daylight conditions (“light adaptation”). In the olfactory system, dopamine mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation and discrimination. While dopamine is essential for signal discrimination in the olfactory system, it is not understood whether dopamine has similar roles in visual signal processing in the retina. To elucidate dopaminergic effects on visual processing, we conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit multiple types that can convey different temporal features of light. We recorded excitatory postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390, reversed the effects of SKF on these types of bipolar cells. To examine the mechanism of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+ channels. SKF modulated HCN and LVA currents, suggesting that these channels are the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken together, we found that dopamine modulates the temporal tuning of a subset of retinal bipolar cells. Consequently, we determined that dopamine plays a role in visual signal processing, which is similar to its role in signal decorrelation in the olfactory bulb.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
10
|
Zhang J, Deng G. Protective effects of increased outdoor time against myopia: a review. J Int Med Res 2020; 48:300060519893866. [PMID: 31854216 PMCID: PMC7607527 DOI: 10.1177/0300060519893866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Myopia has become a major cause for concern globally, particularly in East Asian countries. The increasing prevalence of myopia has been associated with a high socioeconomic burden owing to severe ocular complications that may occur with progressive myopia. There is an urgent need to identify effective and safe measures to address the growing number of people with myopia in the general population. Among the numerous strategies implemented to slow the progression of myopia, longer time spent outdoors has come to be recognized as a protective factor against this disorder. Although our understanding of the protective effects of outdoor time has increased in the past decade, considerably more research is needed to understand the mechanisms of action. Here, we summarize the main potential factors associated with the protective effects against myopia of increased outdoor time, namely, exposure to elevated levels and shorter wavelengths of light, and increased dopamine and vitamin D levels. In this review, we aimed to identify safe and effective therapeutic interventions to prevent myopia-related complications and vision loss.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Guohua Deng
- Department of Ophthalmology, The Third People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Mathis U, Feldkaemper M, Wang M, Schaeffel F. Studies on retinal mechanisms possibly related to myopia inhibition by atropine in the chicken. Graefes Arch Clin Exp Ophthalmol 2019; 258:319-333. [PMID: 31879820 DOI: 10.1007/s00417-019-04573-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE While low-dose atropine eye drops are currently widely used to inhibit myopia development in children, the underlying mechanisms are poorly understood. Therefore, we studied possible retinal mechanisms and receptors that are potentially involved in myopia inhibition by atropine. METHODS A total of 250 μg atropine were intravitreally injected into one eye of 19 chickens, while the fellow eyes received saline and served as controls. After 1 h, 1.5 h, 2 h, 3 h, and 4 h, eyes were prepared for vitreal dopamine (DA) measurements, using high-pressure liquid chromatography with electrochemical detection. Twenty-four animals were kept either in bright light (8500 lx) or standard light (500 lx) after atropine injection for 1.5 h before DA was measured. In 10 chickens, the α2A-adrenoreceptor (α2A-ADR) agonists brimonidine and clonidine were intravitreally injected into one eye, the fellow eye served as control, and vitreal DA content was measured after 1.5 h. In 6 chickens, immunohistochemical analyses were performed 1.5 h after atropine injection. RESULTS Vitreal DA levels increased after a single intravitreal atropine injection, with a peak difference between both eyes after 1.97 h. DA was also enhanced in fellow eyes, suggesting a systemic action of intravitreally administered atropine. Bright light and atropine (which both inhibit myopia) had additive effects on DA release. Quantitative immunolabelling showed that atropine heavily stimulated retinal activity markers ZENK and c-Fos in cells of the inner nuclear layer. Since atropine was recently found to also bind to α2A-ADRs at doses where it can inhibit myopia, their retinal localization was studied. In amacrine cells, α2A-ADRs were colocalized with tyrosine hydroxylase (TH), glucagon, and nitric oxide synthase, peptides known to play a role in myopia development in chickens. Intravitreal atropine injection reduced the number of neurons that were double-labelled for TH and α2A-ADR. α2A-ADR agonists clonidine and brimonidine (which were also found by other authors to inhibit myopia) severely reduced vitreal DA content in both injected and fellow eyes, compared to eyes of untreated chicks. CONCLUSIONS Merging our results with published data, it can be concluded that both muscarinic and α2A-adrenergic receptors are expressed on dopaminergic neurons and both atropine and α2A-ADR antagonists stimulate DA release whereas α2A-ADR agonists strongly suppress its release. Stimulation of DA by atropine was enhanced by bright light. Results are in line with the hypothesis that inhibition of deprivation myopia is correlated with DA stimulation, as long as no toxicity is involved.
Collapse
Affiliation(s)
- Ute Mathis
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Min Wang
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
12
|
Wang M, Aleman AC, Schaeffel F. Probing the Potency of Artificial Dynamic ON or OFF Stimuli to Inhibit Myopia Development. Invest Ophthalmol Vis Sci 2019; 60:2599-2611. [PMID: 31219534 DOI: 10.1167/iovs.18-26471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether equiluminant artificial dynamic ON or OFF stimuli on a computer screen can induce bidirectional changes in choroidal thickness (ChTh) in both humans and chickens, and whether such changes are associated with bidirectional changes in retinal dopamine release in chickens. Methods Experiment 1: Before and after ON or OFF stimulation for 1 hour, ChTh was measured with optical coherence tomography (OCT). Experiment 2: chicks (n = 14) were raised under ON or OFF stimulation for 3 hours. ChTh was determined by OCT. Experiment 3: chicks were raised for 7 days either under room light (500 lux, n = 11), dynamic ON stimulus (700 lux, n = 15), or dynamic OFF stimulus (700 lux, n = 7). In addition, negative lenses were attached to their right eyes. After experiments 2 and 3, retinal and vitreal dopamine (DA), and its metabolites, were measured by HPLC-electrochemical detection. Results Experiment 1: Dynamic ON stimuli caused thicker choroids (+5.3 ± 2.0 μm), whereas OFF stimuli caused choroidal thinning (-4.7 ± 0.5 μm) (right eye data only, P < 0.001). Experiment 2: After 3 hours, chickens developed thicker choroids with ON stimuli (+37.4 ± 12.4 μm) and thinner choroids with OFF stimuli (-11.3 ± 3.6 μm, difference P < 0.01). Vitreal DA, 3-methoxytyramine, and homovanillic acid levels were elevated after ON stimulation, compared with the OFF (P < 0.05). Experiment 3: After 7 days, chickens with lenses developed more myopia both with ON and OFF stimulation, compared with room light. ON stimulation increased vitreal DA compared with OFF. Conclusions Artificial dynamic ON or OFF stimuli had similar effects on ChTh in humans and chickens, but more work will be necessary to determine whether such stimuli can be used as novel interventions of myopia.
Collapse
Affiliation(s)
- Min Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan Province, China.,Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Andrea C Aleman
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| |
Collapse
|
13
|
Update on Myopia Risk Factors and Microenvironmental Changes. J Ophthalmol 2019; 2019:4960852. [PMID: 31781378 PMCID: PMC6875023 DOI: 10.1155/2019/4960852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
The focus of this update is to emphasize the recent advances in the pathogenesis and various molecular key approaches associated with myopia in order to reveal new potential therapeutic targets. We review the current evidence for its complex genetics and evaluate the known or candidate genes and loci. In addition, we discuss recent investigations regarding the role of environmental factors. This paper also covers current research aimed at elucidating the signaling pathways involved in the pathogenesis of myopia.
Collapse
|
14
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Curr Biol 2019; 29:763-774.e5. [PMID: 30799247 DOI: 10.1016/j.cub.2019.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Retinal dopamine is released by a specialized subset of amacrine cells in response to light and has a potent influence on how the retina responds to, and encodes, visual information. Here, we address the critical question of which retinal photoreceptor is responsible for coordinating the release of this neuromodulator. Although all three photoreceptor classes-rods, cones, and melanopsin-containing retinal ganglion cells (mRGCs)-have been shown to provide electrophysiological inputs to dopaminergic amacrine cells (DACs), we show here that the release of dopamine is defined only by rod photoreceptors. Remarkably, this rod signal coordinates both a suppressive signal at low intensities and drives dopamine release at very bright light intensities. These data further reveal that dopamine release does not necessarily correlate with electrophysiological activity of DACs and add to a growing body of evidence that rods define aspects of retinal function at very bright light levels.
Collapse
|
16
|
Anders LM, Heinrich SP, Lagrèze WA, Joachimsen L. Little effect of 0.01% atropine eye drops as used in myopia prevention on the pattern electroretinogram. Doc Ophthalmol 2019; 138:85-95. [PMID: 30680489 DOI: 10.1007/s10633-019-09671-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Daily administration of 0.01% atropine eye drops is a promising approach for myopia control. The mechanism of action is believed to involve the dopaminergic system of the retina, triggering an increased release of dopamine. Previous studies in psychiatric condition such as major depression suggest that pattern electroretinogram (PERG) amplitudes are modulated by changes in retinal dopamine. It is thus plausible that atropine eye drops could have an effect on PERG amplitudes. The present study was designed to test this, assessing the difference in amplitude between contrast levels and the ratio of amplitudes between check sizes as primary endpoints. METHODS We included 14 participants with no more than ± 2 diopters of ametropia and visual acuity of at least 1.0. One eye was chosen randomly in each participant for atropine application (14 days, one drop of 0.01% atropine solution once daily before bedtime). We recorded two sets of steady-state PERG recordings: one with different contrasts (25% and 98%) and one with different check sizes (0.8° and 17°). Near-point distance, near visual acuity, and pupil diameter were measured additionally. RESULTS The recordings to different contrasts did not show atropine-related changes of PERG amplitude. A small increase by 6% of the amplitude difference between contrast levels with atropine application was not significant (p = 0.08). Raw amplitudes in the check size condition increased with atropine by 17% (p < 0.01) and 10% (p < 0.03) for small and large checks, respectively, without a significant concomitant effect on the amplitude ratio. Pupil size was significantly affected (median increase 0.5 mm, p < 0.002). However, neither of the experimental conditions was associated with a significant correlation between pupil size and PERG effects. CONCLUSION The effects on PERG primary endpoints after the 14-day period of atropine administration were small, especially compared to effect sizes in major depression, and statistically insignificant. Effects on raw amplitude were inconsistent. The present results suggest that retinal processing as reflected by PERG does not sizably change following a treatment regimen with atropine that is typical for myopia control.
Collapse
Affiliation(s)
- Lisa-Marie Anders
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Sven P Heinrich
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf A Lagrèze
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Joachimsen
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Prevalence of Myopia among Children Attending Pediatrics Ophthalmology Clinic at Ohud Hospital, Medina, Saudi Arabia. J Ophthalmol 2018; 2018:3708409. [PMID: 30524756 PMCID: PMC6247464 DOI: 10.1155/2018/3708409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Around half of the visually impaired population has uncorrected refractive errors (URE), and myopia constitutes a high proportion of them. URE should be screened and treated early to prevent long-term complications. The aim of this study was to determine the prevalence of myopia among all patients attending a pediatric outpatient clinic at Ohud Hospital in Medina, Saudi Arabia (KSA). Method This study was conducted using a convenience sample of all patients attending the clinic (1500 patients) aged between 3 and 14 years, and they were enrolled in the study during the period from May 2017 until September 2017. Result Of 1215 subjects, only 43 (3.54%) were diagnosed with myopia. Out of the study participants, 56.8% were female and the mean age was 9.7 ± 3.6. Myopia was more prevalent in male participants than female participants (n = 525, 4%, n = 690, 3.1%, p=0.5). Low myopia was the most common form among the screened individuals. The level of myopia was associated with the degree of the strabismus angle. Approximately 22% of patients with myopia had >25° strabismus angle. There was a statistically significant association with both near work indoor and outdoor activities on weekends and the level of myopia. Conclusion The prevalence of myopia among pediatrics patients in Medina is 3.54%. We hope that the results of this study will contribute to a better understanding of this public health issue in Saudi Arabia in order to implant a strict screening program for early detection and interventions to reduce the risk of further progression of visual impairment.
Collapse
|
18
|
Wang M, Schaeffel F, Jiang B, Feldkaemper M. Effects of Light of Different Spectral Composition on Refractive Development and Retinal Dopamine in Chicks. ACTA ACUST UNITED AC 2018; 59:4413-4424. [DOI: 10.1167/iovs.18-23880] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Min Wang
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
- The Second Xiangya Hospital, Central South University, Xiangya, Hunan Province, China
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Bing Jiang
- The Second Xiangya Hospital, Central South University, Xiangya, Hunan Province, China
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE To systematically review epidemiologic and laboratory studies on the etiology of high myopia and its links to pathologic myopia. METHODS Regular Medline searches have been performed for the past 20 years, using "myopia" as the basic search term. The abstracts of all articles have been scrutinized for relevance, and where necessary, translations of articles in languages other than English were obtained. RESULTS Systematic review shows that there is an epidemic of myopia and high myopia in young adults in East and Southeast Asia, with similar but smaller trends in other parts of the world. This suggests an impending epidemic of pathologic myopia. High myopia in young adults in East and Southeast Asia is now predominantly associated with environmental factors, rather than genetic background. Recent clinical trials show that the onset of myopia can be reduced by increasing the time children spend outdoors, and methods to slow the progression of myopia are now available. CONCLUSION High myopia is now largely associated with environmental factors that have caused the epidemic of myopia in East and Southeast Asia. An important clinical question is whether the pathologic consequences of acquired high myopia are similar to those associated with classic genetic high myopia. Increased time outdoors can be used to slow the onset of myopia, whereas methods for slowing progression are now available clinically. These approaches should enable the current epidemics of myopia and high myopia to be turned around, preventing an explosion of pathologic myopia.
Collapse
|
20
|
Willis GL, Freelance CB. Emerging preclinical interest concerning the role of circadian function in Parkinson's disease. Brain Res 2017; 1678:203-213. [PMID: 28958865 DOI: 10.1016/j.brainres.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
The importance of circadian function in the aetiology, progression and treatment of Parkinson's disease is a topic of increasing interest to the scientific and clinical community. While clinical studies on this theme are relatively new and limited in number there are many preclinical studies which explore possible circadian involvement in Parkinson's disease and speculate as to the mechanism by which clinical benefit can be derived by manipulating the circadian system. The present review explores the sequelae of circadian related studies from a historical perspective and reveals mechanisms that may be involved in the aetiology and progression of the disease. A systematic review of these studies also sets the stage for understanding the basic neuroscientific approaches which have been applied and provides new direction from which circadian function can be explored.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia.
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia
| |
Collapse
|
21
|
Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, Rose KA. The epidemics of myopia: Aetiology and prevention. Prog Retin Eye Res 2017; 62:134-149. [PMID: 28951126 DOI: 10.1016/j.preteyeres.2017.09.004] [Citation(s) in RCA: 625] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
There is an epidemic of myopia in East and Southeast Asia, with the prevalence of myopia in young adults around 80-90%, and an accompanying high prevalence of high myopia in young adults (10-20%). This may foreshadow an increase in low vision and blindness due to pathological myopia. These two epidemics are linked, since the increasingly early onset of myopia, combined with high progression rates, naturally generates an epidemic of high myopia, with high prevalences of "acquired" high myopia appearing around the age of 11-13. The major risk factors identified are intensive education, and limited time outdoors. The localization of the epidemic appears to be due to the high educational pressures and limited time outdoors in the region, rather than to genetically elevated sensitivity to these factors. Causality has been demonstrated in the case of time outdoors through randomized clinical trials in which increased time outdoors in schools has prevented the onset of myopia. In the case of educational pressures, evidence of causality comes from the high prevalence of myopia and high myopia in Jewish boys attending Orthodox schools in Israel compared to their sisters attending religious schools, and boys and girls attending secular schools. Combining increased time outdoors in schools, to slow the onset of myopia, with clinical methods for slowing myopic progression, should lead to the control of this epidemic, which would otherwise pose a major health challenge. Reforms to the organization of school systems to reduce intense early competition for accelerated learning pathways may also be important.
Collapse
Affiliation(s)
- Ian G Morgan
- Division of Biochemistry and Molecular Biology, Research School of Biology, Australian National University, Canberra, ACT, Australia; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China.
| | - Amanda N French
- Discipline of Orthoptics, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Regan S Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faulty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Xinxing Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China; Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou, China; Centre for Eye Research Australia, University of Melbourne, Parkville, VIC, Australia
| | - Kathryn A Rose
- Discipline of Orthoptics, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
22
|
Kearney S, O'Donoghue L, Pourshahidi LK, Cobice D, Saunders KJ. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol Opt 2017; 37:557-567. [PMID: 28721695 DOI: 10.1111/opo.12396] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Experimental animal models of myopia demonstrate that higher melatonin (Mel) and lower dopamine (DA) concentrations actively promote axial elongation. This study explored the association between myopia and serum concentrations of DA and Mel in humans. METHODS Morning serum concentrations of DA and Mel were measured by solid phase extraction-liquid chromatography-tandem mass spectrometry from 54 participants (age 19.1 ± 0.81 years) in September/October 2014 (phase 1) and March/April 2016 (phase 2). Axial length (AL), corneal radii (CR) and spherical equivalent refraction (SER) were also recorded. Participants were defined as myopic if non-cycloplegic spherical equivalent refractive error ≤-0.50 DS at phase 1. RESULTS Nine participants were lost to follow up. Mel concentrations were measurable for all myopes (phase 1 n = 25, phase 2 n = 22) and non-myopes (phase 1 n = 29, phase 2 n = 23). SER did not change significantly between phases (p = 0.51). DA concentrations were measurable for fewer myopes (phase 1 n = 13, phase 2 n = 12) and non-myopes (phase 1 n = 23, phase 2 n = 16). Myopes exhibited significantly higher Mel concentrations than non-myopes at phase 1 (Median difference: 10 pg mL-1 , p < 0.001) and at phase 2 (Median difference: 7.3 pg mL-1 , p < 0.001) and lower DA concentrations at phase 2 (Median difference: 4.7 pg mL-1 , p = 0.006). Mel concentrations were positively associated with more negative SER (all r ≥ -0.53, all p < 0.001), longer AL (all r ≥ 0.37, all p ≤ 0.008) and higher AL/CR ratio (all r ≥ 0.51, all p < 0.001). CONCLUSION This study reports for the first time in humans that myopes exhibit higher serum Mel concentrations than non-myopes. This may indicate a role for light exposure and circadian rhythm in the human myopic growth mechanism. Further research should focus on younger cohorts exhibiting more dynamic myopic progression and explore the profile of these neurochemicals alongside evaluation of sleep patterns in myopic and non-myopic groups.
Collapse
Affiliation(s)
- Stephanie Kearney
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - Lisa O'Donoghue
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - L Kirsty Pourshahidi
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine, UK
| | - Diego Cobice
- Metabolomics and Proteomics Core Facility Unit, Biomedical Research Institute, University of Ulster, Coleraine, UK
| | - Kathryn J Saunders
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| |
Collapse
|
23
|
Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222:2921-2939. [DOI: 10.1007/s00429-017-1439-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
|
24
|
Induction of dopamine D1 and D5 receptors in R28 cells by light exposures. Biochem Biophys Res Commun 2017; 486:686-692. [PMID: 28336436 DOI: 10.1016/j.bbrc.2017.03.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 01/11/2023]
Abstract
Dopamine is known to play an important role in the pathophysiological process of myopia development relevant to the ambient lighting, but it is still poorly understood about how lighting regulates dopamine and its interaction with dopamine receptors to mediate the pathogenic signal transduction leading to alterations of ocular globe and the pathogenesis of myopia. Many studies have highlighted changes of ocular dopamine amount in response to different lighting conditions, but little attention has been paid to the dopamine receptors during these processes. Here we examined the effects of different lighting exposures on the expression of dopamine receptors in rat R28 retinal precursor cells. R28 cells normally grown in dark were exposed to a low (10 lux) or high (500 lux) intensity of a source of LED white light (5000 K-6000 K) for 12 h and total RNA was isolated either immediately or after certain time continuous growing in dark. Both conventional and real-time RT-PCR were performed to determine the expression of all five different dopamine receptors in cells after treatments. While the transcripts of dopamine D2, D3, and D4 receptors were not detected in the total RNA preparations of all the cells, those of D1 and D5 receptors (DRD1 and DRD5) were induced by lighting in contrast to the dark control. Elevated levels of DRD1 and DRD5 mRNA returned back close to the original levels once the cells were maintained in dark after light exposures. Immunofluorescence microscopy using a specific antibody confirmed an increase in the immunoreactivity of DRD1 in the cells exposed to 500 lux lighting versus dark control. Notably, treatments of R28 cells with nanomolar dosages of dopamine (0-500 nM) directly downregulated expression of both DRD1 and DRD5, whereas haloperidol (0-50 nM), a DRD2 antagonist, significantly induced expression of DRD1. These results suggest that dopamine receptors in the retinal cells might actively respond to the environmental lighting to act as an important player in the activation of the dopaminergic system in the ocular structures relevant to the lighting-induced pathogenic development of myopia.
Collapse
|
25
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
26
|
|
27
|
Lan W, Yang Z, Feldkaemper M, Schaeffel F. Changes in dopamine and ZENK during suppression of myopia in chicks by intense illuminance. Exp Eye Res 2016; 145:118-124. [DOI: 10.1016/j.exer.2015.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022]
|
28
|
Sivaraman V, Rizwana JH, Ramani K, Price H, Calver R, Pardhan S, Vasudevan B, Allen PM. Near work-induced transient myopia in Indian subjects. Clin Exp Optom 2015; 98:541-6. [PMID: 26497844 DOI: 10.1111/cxo.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim was to determine the characteristics of near work-induced transient myopia (NITM) in asymptomatic Indian subjects and the influence of target size and contrast. METHODS Two studies were conducted: First, 24 myopes and 24 emmetropes viewed four targets (N8 and N12 with 50 and 90 per cent contrasts) placed at 0.2 m for five minutes. The refractive status was assessed objectively, before and after carrying out the near task, with the Grand Seiko WAM-5500 open-field autorefractor under monocular viewing conditions. Second, a different group of 24 myopes and 24 emmetropes viewed a N12 target with 90 per cent contrast for 60 minutes with pre- and post-refractive state measurements repeated as above. NITM was defined as the difference between pre-task and post-task distance refraction. RESULTS In the first study, myopes demonstrated an initial post-task myopic shift of 0.21 D, whereas emmetropes demonstrated a small hyperopic shift of 0.07 D (p < 0.001). The myopes demonstrated a decay time constant of 6.07 seconds. There was no effect of target size or contrast on the magnitude of the NITM or the decay time constant (p > 0.05). In the second study, myopes showed a NITM of 0.31 D, which was significantly greater than emmetropes (p < 0.001). The myopes demonstrated a decay time constant of 8.16 seconds. CONCLUSION The magnitude of the NITM was higher in myopes compared to emmetropes for both five minute and 60 minute viewing time. The NITM decayed slightly faster than that found in previous literature for some other ethnic groups. Potential reasons for these findings are discussed.
Collapse
Affiliation(s)
- Viswanathan Sivaraman
- Elite School of Optometry, Chennai, India.,Department of Vision and Hearing Sciences, Anglia Ruskin University, Cambridge, UK
| | | | | | - Holly Price
- Department of Vision and Hearing Sciences, Anglia Ruskin University, Cambridge, UK.,Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK
| | - Richard Calver
- Department of Vision and Hearing Sciences, Anglia Ruskin University, Cambridge, UK.,Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK
| | - Shahina Pardhan
- Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK
| | | | - Peter M Allen
- Department of Vision and Hearing Sciences, Anglia Ruskin University, Cambridge, UK.,Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
29
|
Connaughton VP, Wetzell B, Arneson LS, DeLucia V, L. Riley A. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism. J Neurochem 2015. [DOI: 10.1111/jnc.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Bradley Wetzell
- Department of Psychology; American University; Washington District of Columbia USA
| | - Lynne S. Arneson
- Department of Biology; American University; Washington District of Columbia USA
| | - Vittoria DeLucia
- Department of Biology; American University; Washington District of Columbia USA
| | - Anthony L. Riley
- Department of Psychology; American University; Washington District of Columbia USA
| |
Collapse
|
30
|
Lan W, Feldkaemper M, Schaeffel F. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLoS One 2014; 9:e110906. [PMID: 25360635 PMCID: PMC4216005 DOI: 10.1371/journal.pone.0110906] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.
Collapse
Affiliation(s)
- Weizhong Lan
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
- Graduate School of Cellular & Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Park HN, Jabbar SB, Tan CC, Sidhu CS, Abey J, Aseem F, Schmid G, Iuvone PM, Pardue MT. Visually-driven ocular growth in mice requires functional rod photoreceptors. Invest Ophthalmol Vis Sci 2014; 55:6272-9. [PMID: 25183765 DOI: 10.1167/iovs.14-14648] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Proper refractive eye growth depends on several features of the visual image and requisite retinal pathways. In this study, we determined the contribution of rod pathways to normal refractive development and form deprivation (FD) myopia by testing Gnat1(-/-) mice, which lack functional rods due to a mutation in rod transducin-α. METHODS Refractive development was measured in Gnat1(-/-) (n = 30-36) and wild-type (WT) mice (n = 5-9) from 4 to 12 weeks of age. FD was induced monocularly from 4 weeks of age using head-mounted diffuser goggles (Gnat1(-/-), n = 9-10; WT, n = 7-8). Refractive state and ocular biometry were obtained weekly using a photorefractor, 1310 nm optical coherence tomography, and partial coherence interferometry. We measured retinal dopamine and its metabolite, DOPAC, using HPLC. RESULTS During normal development, the refractions of WT mice started at 5.36 ± 0.68 diopters (D) and became more hyperopic before plateauing at 7.78 ± 0.64 D. In contrast, refractions in Gnat1(-/-) mice were stable at 7.39 ± 1.22 D across all ages. Three weeks of FD induced a 2.54 ± 0.77 D myopic shift in WT mice, while Gnat1(-/-) mice did not respond to FD at any age. Axial lengths of Gnat1(-/-) and WT mice increased with age, but differences between genotypes or with goggling did not reach statistical significance and fell within the precision of the instruments. The DOPAC levels were significantly lower in Gnat1(-/-) mice from 2 to 12 weeks of age with DOPAC/dopamine ratio peaking earlier in Gnat1(-/-) compared to WT mice. No differences in dopamine were seen in response to FD or between genotypes. CONCLUSIONS Functional rod photoreceptors are critical to normal refractive development and the response to FD in mice. Dopamine levels may not directly modulate the refractive state of the mouse eye, but tonic levels of dopamine during development may determine susceptibility to myopia.
Collapse
Affiliation(s)
- Han na Park
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Seema B Jabbar
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Christopher C Tan
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Curran S Sidhu
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jane Abey
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Fazila Aseem
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Gregor Schmid
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| |
Collapse
|
32
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
33
|
Willis GL, Moore C, Armstrong SM. Parkinson's disease, lights and melanocytes: looking beyond the retina. Sci Rep 2014; 4:3921. [PMID: 24473093 PMCID: PMC5379242 DOI: 10.1038/srep03921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022] Open
Abstract
Critical analysis of recent research suggesting that light pollution causes Parkinson's disease (PD) reveals that such a hypothesis is unsustainable in the context of therapeutic use of light in treating various neuropsychiatric conditions. Reinterpretation of their findings suggests that retinal damage caused by prolonged light exposure may have contributed to the observed enhancement of experimental PD. To test this hypothesis further, forty-two Sprague Dawley rats received microinjections of 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-2, 4, 6-tetrahydropyridine (MPTP), paraquat or rotenone into the vitreal mass in doses so minute that the effects could not be attributed to diffusion into brain. Significant changes in five motor parameters consistent with symptoms of experimental PD were observed. These findings support the interpretation that the retina is involved in the control of motor function and in the aetiology of PD.
Collapse
Affiliation(s)
- Gregory L. Willis
- Neurosciences Section, The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia
| | - Cleo Moore
- Neurosciences Section, The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia
| | - Stuart Maxwell Armstrong
- Neurosciences Section, The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia
| |
Collapse
|
34
|
Foster PJ, Jiang Y. Epidemiology of myopia. Eye (Lond) 2014; 28:202-8. [PMID: 24406412 DOI: 10.1038/eye.2013.280] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/21/2013] [Indexed: 11/09/2022] Open
Abstract
Myopia is one of the most prevalent disorders of the eye. Higher myopia is associated with comorbidities that increase risks of severe and irreversible loss of vision, such as retinal detachment, subretinal neovascularization, dense cataract, and glaucoma. In recent years, reports from population-based prevalence studies carried out in various geographical areas now give a clear picture of the current distribution of refractive error. The scarcity of data from well-designed longitudinal cohort studies is still yet to be addressed. These studies have confirmed the previous data indicating that prevalence of refractive error varies according to ethnicity and geographic regions, and also point to an increase in myopia prevalence over the past half-century. The problem is particularly pronounced in affluent, industrialised areas of East Asia. Environmental risk factors for myopia related to socioeconomic status and lifestyle have been identified. The past decade has seen a greater understanding of the molecular biological mechanisms that determine refractive error, giving further support to the belief that myopia is the result of a complex interaction between genetic predisposition and environmental exposures. This review summarizes data on the prevalence, incidence, progression, associations, risk factors, and impact from recent epidemiological studies on myopia.
Collapse
Affiliation(s)
- P J Foster
- 1] Division of Genetics & Epidemiology, UCL Institute of Ophthalmology, London, UK [2] NIHR Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Y Jiang
- Division of Genetics & Epidemiology, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
35
|
Backhouse S, Collins AV, Phillips JR. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol Opt 2013; 33:563-72. [DOI: 10.1111/opo.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Backhouse
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| | - Andrew V Collins
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| | - John R Phillips
- Department of Optometry and Vision Science; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
36
|
French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res 2013; 114:58-68. [PMID: 23644222 DOI: 10.1016/j.exer.2013.04.018] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Recent epidemiological evidence suggests that children who spend more time outdoors are less likely to be, or to become myopic, irrespective of how much near work they do, or whether their parents are myopic. It is currently uncertain if time outdoors also blocks progression of myopia. It has been suggested that the mechanism of the protective effect of time outdoors involves light-stimulated release of dopamine from the retina, since increased dopamine release appears to inhibit increased axial elongation, which is the structural basis of myopia. This hypothesis has been supported by animal experiments which have replicated the protective effects of bright light against the development of myopia under laboratory conditions, and have shown that the effect is, at least in part, mediated by dopamine, since the D2-dopamine antagonist spiperone reduces the protective effect. There are some inconsistencies in the evidence, most notably the limited inhibition by bright light under laboratory conditions of lens-induced myopia in monkeys, but other proposed mechanisms possibly associated with time outdoors such as relaxed accommodation, more uniform dioptric space, increased pupil constriction, exposure to UV light, changes in the spectral composition of visible light, or increased physical activity have little epidemiological or experimental support. Irrespective of the mechanisms involved, clinical trials are now underway to reduce the development of myopia in children by increasing the amount of time they spend outdoors. These trials would benefit from more precise definition of thresholds for protection in terms of intensity and duration of light exposures. These can be investigated in animal experiments in appropriate models, and can also be determined in epidemiological studies, although more precise measurement of exposures than those currently provided by questionnaires is desirable.
Collapse
Affiliation(s)
- Amanda N French
- Discipline of Orthoptics, Faculty of Health Sciences, University of Sydney, Lidcombe, NSW 2011, Australia
| | | | | | | |
Collapse
|
37
|
The effects and interactions of GABAergic and dopaminergic agents in the prevention of form deprivation myopia by brief periods of normal vision. Exp Eye Res 2013; 110:88-95. [PMID: 23474145 DOI: 10.1016/j.exer.2013.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
Intravitreal injections of GABA antagonists, dopamine agonists and brief periods of normal vision have been shown separately to inhibit form-deprivation myopia (FDM). Our study had three aims: (i) establish whether GABAergic agents modify the myopia protective effect of normal vision, (ii) investigate the receptor sub-type specificity of any observed effect, and (iii) consider an interaction with the dopamine (DA) system. Prior to the period of normal vision GABAergic agents were applied either (i) individually, (ii) in combination with other GABAergic agents (an agonist with an antagonist), or (iii) in combination with DA agonists and antagonists. Water injections were given to groups not receiving drug treatments so that all experimental eyes received intravitreal injections. As shown previously, constant form-deprivation resulted in high myopia and when diffusers were removed for 2 h per day the period of normal vision greatly reduced the FDM that developed. GABA agonists inhibited the protective effect of normal vision whereas antagonists had the opposite effect. GABAA/C agonists and D2 DA antagonists when used in combination were additive in suppressing the protective effect of normal vision. A D2 DA agonist restored some of the protective effect of normal vision that was inhibited by a GABA agonist (muscimol). The protective effect of normal vision against form-deprivation is modifiable by both the GABAergic and DAergic pathways.
Collapse
|
38
|
Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res 2013; 114:106-19. [PMID: 23434455 DOI: 10.1016/j.exer.2013.02.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies.
Collapse
Affiliation(s)
- Marita Feldkaemper
- Centre for Ophthalmology, Institute for Ophthalmic Research, Section of Neurobiology of the Eye, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | | |
Collapse
|
39
|
Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp Eye Res 2012; 103:33-40. [PMID: 22960317 DOI: 10.1016/j.exer.2012.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/29/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
Abstract
Form deprivation and low illuminance of ambient light are known to induce myopia in chicks. Low concentrations of retinal dopamine, a light-driven neurohormone, was previously shown to be associated with form deprivation myopia. In the present study we examined the dependence of retinal dopamine release in chicks on illuminance during light-dark cycles and in continuous light, and the role of retinal dopamine release in illuminance dependent refractive development. Newly hatched chicks (n = 166) were divided into two experimental groups, a dopamine (n = 88) and a refraction group (n = 78). Both groups were further divided into six illumination groups for exposure of chicks to illuminances of 50, 500 or 10,000 lux of incandescent illumination (referred to throughout as low, medium, and high illuminance, respectively), either under a light-dark cycle with lights on between 7 AM and 7 PM or under continuous illumination. For the dopamine experiment, chicks were euthanized and vitreous was extracted on day 14 post-hatching at 7, 8 AM and 1 PM. Vitreal dihydroxyphenylacetic acid (DOPAC) and dopamine concentrations were quantified by high-performance liquid chromatography coupled to electrochemical detection. For the refraction experiment, chicks underwent refraction, keratometry and A-scan ultrasonography on days 30, 60 and 90 post-hatching, and each of those measurements was correlated with vitreal DOPAC concentration measured at 1 PM (representing the index of retinal dopamine release). The results showed that under light-dark cycles, vitreal DOPAC concentration was strongly correlated with log illuminance, and was significantly correlated with the developing refraction, corneal radius of curvature, and axial length values. On day 90, low vitreal DOPAC concentrations were associated with myopia (-2.41 ± 1.23 D), flat cornea, deep anterior and vitreous chambers, and thin lens. Under continuous light, vitreal DOPAC concentrations measured at 1 PM in the low, medium, and high illuminance groups did not differ from the concentrations measured at 8 AM. On day 90, low DOPAC concentrations were associated with emmetropia (+0.63 ± 3.61), steep cornea, and shallow vitreous chamber. We concluded that ambient light over a log illuminance range of 1.69-4 is linearly related to vitreal DOPAC concentration. Under both light-dark cycles and continuous light, the intensity of ambient light regulates the release of retinal dopamine. Refractive development is associated with illuminance dependent dopamine release.
Collapse
Affiliation(s)
- Yuval Cohen
- Goldschleger Eye Research Institute, Tel Aviv University, 53621 Tel Hashomer, Israel.
| | | | | | | | | |
Collapse
|
40
|
Wan W, Liu Z, Wang X, Luo X. Dark rearing maintains tyrosine hydroxylase expression in retinal amacrine cells following optic nerve transection. Neural Regen Res 2012; 7:18-23. [PMID: 25806053 PMCID: PMC4354110 DOI: 10.3969/j.issn.1673-5374.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/25/2011] [Indexed: 01/10/2023] Open
Abstract
The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle, reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5–7 days. The number of TH-positive synaptic particles correlated with the TH levels, indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5–7 days after optic nerve injury) in retinal amacrine cells.
Collapse
Affiliation(s)
- Wei Wan
- Department of Human Anatomy and Neurobiology, Xiangya Medical College of Central South University, Changsha 410013, Hunan Province, China ; Department of Human Anatomy, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhenghai Liu
- Department of Human Anatomy, University of South China, Hengyang 421001, Hunan Province, China
| | - Xiaosheng Wang
- Department of Human Anatomy and Neurobiology, Xiangya Medical College of Central South University, Changsha 410013, Hunan Province, China
| | - Xuegang Luo
- Department of Human Anatomy and Neurobiology, Xiangya Medical College of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
41
|
Abstract
PURPOSE It has been shown that visual deprivation leads to a myopic refractive error and also reduces the retinal concentration of dopamine. Exogenously 3,4-dihydroxy-L-phenylalanine (levodopa, L-DOPA) can be converted into dopamine in vivo, which safely and effectively treats Parkinson disease. Moreover, L-DOPA was also used in the treatment of amblyopia in clinical studies. However, the effect of L-DOPA on the development of myopia has not been studied. The aim of this study was to investigate whether intraperitoneal injection of L-DOPA could inhibit form-deprivation myopia in guinea pigs and to explore a new strategy for drug treatment of myopia. METHODS Sixty guinea pigs, at age of 4 weeks, were randomly divided into six groups: normal control, L-DOPA group, saline group, deprived group, deprived plus L-DOPA group, and deprived plus saline group. Form deprivation was induced with translucent eye shields on the right eye and lasted for 10 days. L-DOPA was injected intraperitoneally into the guinea pig once a day. The corneal radius of curvature, refraction, and axial length were measured in all animals. Subsequently, retinal dopamine content was evaluated by high-performance liquid chromatography with electrochemical detection. RESULTS Ten days of eye occlusion caused the form-deprived eyes to elongate and become myopic, and retinal dopamine content to decrease, but the corneal radius of curvature was not affected. Repeated intraperitoneal injection of L-DOPA could inhibit the myopic shift (from -3.62 +/- 0.98 D to -1.50 +/- 0.38 D; p < 0.001) due to goggles occluding and compensate retinal dopamine (from 0.65 +/- 0.10 ng to 1.33 +/- 0.23 ng; p < 0.001). Administration of L-DOPA to the unoccluded animals had no effect on its ocular refraction. There was no effect of intraperitoneal saline on the ocular refractive state and retinal dopamine. CONCLUSIONS Systemic L-DOPA was partly effective in this guinea pig model and, therefore, is worth testing for effectiveness in progressing human myopes.
Collapse
|
42
|
Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro. Vis Neurosci 2009; 26:467-76. [DOI: 10.1017/s0952523809990253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe chicken has been extensively studied as an animal model for myopia because its eye growth is tightly controlled by visual experience. It has been found that the retina controls the axial eye growth rates depending on the amount and the sign of defocus imposed in the projected image. Glucagonergic amacrine cells were discovered that appear to encode for the sign of imposed defocus. It is not clear whether the downstream neurons, the retinal ganglion cells, still have access to this information—and whether it ultimately reaches the brain. We have analyzed the spike rates of chicken retinal ganglion cells in vitro using a microelectrode array. For this purpose, we initially defined spatial resolution and contrast sensitivity in vitro. Two classes of chicken retinal ganglions were found, depending on the linearity of their responses with increasing contrast. Responses generally declined with increasing defocus of the visual stimulus. These responses were well predicted by the modulation transfer function for a diffraction-limited defocused optical system, the first Bessel function. Thus, the studied retinal ganglion cells did not distinguish between a loss of contrast at a given spatial frequency due to reduced contrast of the stimulus pattern or because the pattern was presented out of focus. Furthermore, there was no indication that the retinal ganglion cells responded differently to defocus of either sign, at least for the cells that were recorded in this study.
Collapse
|
43
|
Author reply. Ophthalmology 2009. [DOI: 10.1016/j.ophtha.2009.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Lorenc-Duda A, Berezińska M, Urbańska A, Gołembiowska K, Zawilska JB. Dopamine in the Turkey retina-an impact of environmental light, circadian clock, and melatonin. J Mol Neurosci 2008; 38:12-8. [PMID: 18953673 DOI: 10.1007/s12031-008-9153-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/25/2008] [Indexed: 11/29/2022]
Abstract
Substantial evidence suggests that dopamine and melatonin are mutually inhibitory factors that act in the retina as chemical analogs of day and night. Here, we show an impact of environmental light, biological clock, and melatonin on retinal levels of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the turkey. In turkeys held under different light (L) to dark (D) cycles (16L:8D, 12L:12D, 8L:16D), retinal levels of dopamine and DOPAC fluctuated with daily rhythms. High levels of dopamine and DOPAC were observed during light hours and low during dark hours. Under the three photoperiodic regimes, rhythms of dopamine and DOPAC were out of phase with daily oscillation in retinal melatonin content. In constant darkness, dopamine and DOPAC levels oscillated in circadian rhythms. Light deprivation resulted, however, in a significant decline in amplitudes of both rhythms. Injections of melatonin (0.1-1 mumol/eye) during daytime significantly reduced retinal levels of DOPAC. This suppressive effect of melatonin was more pronounced in the dark-adapted than light-exposed turkeys. Quinpirole (a D(2)/D(4)-dopamine receptor agonist; 0.1-10 nmol/eye) injected to dark-adapted turkeys significantly decreased retinal melatonin. Our results indicate that in the turkey retina: (1) environmental light is the major factor regulating dopamine synthesis and metabolism; (2) dopaminergic neurones are controlled, in part, by intrinsic circadian clock; and (3) dopamine and melatonin are components of the mutually inhibitory loop.
Collapse
Affiliation(s)
- Anna Lorenc-Duda
- Department of Pharmacology, Medical University of Łódź, Łódź, Poland
| | | | | | | | | |
Collapse
|
45
|
Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res 2008; 87:471-7. [PMID: 18778704 DOI: 10.1016/j.exer.2008.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
Abstract
Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine is high during daytime adapting the retina to light, whereas melatonin is high during nighttime participating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin in the photoreceptors via Drd4 receptors located on the cell membrane of these cells. In this study, we show by semiquantitative in situ hybridization a prominent day/night variation in Drd4 expression in the retina of the Sprague-Dawley rat with a peak during the nighttime. Drd4 expression is seen in all retinal layers but the nocturnal increase is confined to the photoreceptors. Retinal Drd4 expression is not affected by removal of the sympathetic input to the eye, but triiodothyronine treatment induces Drd4 expression in the photoreceptors. In a developmental series, we show that the expression of Drd4 is restricted to postnatal stages with a peak at postnatal day 12. The high Drd4 expression in the rat retinal photoreceptors during the night supports physiological and pharmacologic evidence that the Drd4 receptor is involved in the dopaminergic inhibition of melatonin synthesis upon light stimulation. The sharp increase of Drd4 expression at a specific postnatal time suggests that dopamine is involved in retinal development.
Collapse
|
46
|
Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 2008; 1207:111-9. [PMID: 18371938 DOI: 10.1016/j.brainres.2008.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Dopamine is a retinal neuromodulator secreted from amacrine and interplexiform cells. Activation of dopamine D4 receptors on photoreceptor cells reduces a light-sensitive pool of cAMP. The aim of the present study was to evaluate the role of dopamine receptors and cAMP in the regulation of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in photoreceptor cells of chick retina. Retinal cells from 6 day-old chicken embryos were isolated and cultured for 5-7 days prior to experiments. Cone photoreceptors were the predominant cell type in these cultures. Dopamine and agonists of dopamine D4 receptors suppressed K(+)-stimulated uptake of (45)Ca(2+) and [Ca(2+)](i), measured with the Ca(2+)-sensitive fluorescent dye fura-2AM. The effects of the agonists were blocked by dopamine D2/D4 receptor antagonists or by pertussis toxin. 8Br-cAMP, a cell-permeable analog of cAMP, had no effect on inhibition of K(+)-stimulated (45)Ca(2+) influx or [Ca(2+)](i) by dopamine D2/D4 receptor agonists. Quinpirole inhibited the increase in cAMP level elicited by K(+), which requires Ca(2+) influx through voltage-gated Ca(2+) channels, but not that induced by the calcium ionophore A23187. Moreover, dopamine had no effect on either forskolin-stimulated or Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in cell membranes prepared from the cultured cells. These data indicate that the decrease of cAMP elicited by dopamine D4 receptor stimulation may be secondary to decreased [Ca(2+)](i).
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
47
|
McCarthy CS, Megaw P, Devadas M, Morgan IG. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res 2006; 84:100-7. [PMID: 17094962 DOI: 10.1016/j.exer.2006.09.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 09/13/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Placing a translucent diffuser over the eye of a chick causes the eye to grow excessively, resulting in form-deprivation myopia. For chickens kept on a 12:12 h light/dark cycle, removing the diffuser for 3 h during the light period protects against the excessive growth, but if the bird is kept in the dark for this 3-h period, the protective effect is abolished. Injecting dopamine agonists into the eye during this 3-h dark period restores the protective effect, which can be blocked by dopamine antagonists injected just prior to diffuser removal in the light. These responses are mediated by D2 receptors, suggesting that the protective effect of normal vision against form-deprivation is mediated through the stimulation of dopamine release and activation of D2-dopamine receptors.
Collapse
Affiliation(s)
- C S McCarthy
- Visual Sciences Group, Research School of Biological Sciences, Centre for Visual Science and ARC Centre of Excellence in Vision Science, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|