1
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
2
|
Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BK Ca Channel of Chromaffin Cells. Int J Mol Sci 2021; 22:ijms22042175. [PMID: 33671654 PMCID: PMC7926978 DOI: 10.3390/ijms22042175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.
Collapse
|
3
|
Fehér Á, Tóth VE, Al-Khrasani M, Balogh M, Lázár B, Helyes Z, Gyires K, Zádori ZS. Analysing the effect of I 1 imidazoline receptor ligands on DSS-induced acute colitis in mice. Inflammopharmacology 2016; 25:107-118. [PMID: 27873165 DOI: 10.1007/s10787-016-0299-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/13/2016] [Indexed: 12/28/2022]
Abstract
Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I1-IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I1-IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha2-adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I1-IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I1-IR agonists), AGN 192403 (highly selective I1-IR ligand, putative antagonist), efaroxan (I1-IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.
Collapse
Affiliation(s)
- Ágnes Fehér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Szentagothai Research Centre and MTA-NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
4
|
Zaitseva II, Berggren PO, Zaitsev SV. Insulinotropic compounds decrease endothelial cell survival. Toxicol In Vitro 2016; 33:1-8. [PMID: 26883446 DOI: 10.1016/j.tiv.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/05/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Hyperglycemia induces damage of vascular endothelial cells leading to diabetic complications. We investigated the effects of insulinotropic compounds and elevated glucose on endothelial cells in the absence or presence of vascular endothelial growth factor (VEGF). RESULTS Human umbilical vein endothelial cells (HUVECs) were treated with glibenclamide, repaglinide and insulinotropic imidazolines at high glucose concentration in the presence or absence of VEGF and viability, proliferation and nitric oxide production were measured. Hyperglycemia inhibited pro-survival effects of VEGF on endothelial cells. Glibenclamide and repaglinide decreased HUVEC viability at elevated glucose concentration in the absence but not in the presence of VEGF, without affecting HUVEC proliferation. Repaglinide also had some positive influence on HUVEC function elevating NO production in the presence of VEGF. Imidazolines showed different activities on endothelial cell survival. Efaroxan diminished HUVEC viability at elevated glucose concentration in the presence, however not in the absence of VEGF, while RX871024 decreased HUVEC survival regardless of the presence of VEGF. SIGNIFICANCE OF THE STUDY Our data demonstrate an important interplay between the actual insulinotropic compounds, VEGF and ambient glucose concentration affecting the survival of the vascular endothelial cells. Consequently, this interplay needs to be taken into consideration when designing novel oral antidiabetic compounds.
Collapse
Affiliation(s)
- Irina I Zaitseva
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Per-Olof Berggren
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Sergei V Zaitsev
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; Lomonosov Moscow State University, Belozersky Institute of Physico-chemical Biology, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia.
| |
Collapse
|
5
|
Keller B, García-Sevilla JA. Immunodetection and subcellular distribution of imidazoline receptor proteins with three antibodies in mouse and human brains: Effects of treatments with I1- and I2-imidazoline drugs. J Psychopharmacol 2015; 29:996-1012. [PMID: 26038110 DOI: 10.1177/0269881115586936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Various imidazoline receptor (IR) proteins have been proposed to mediate the effects of selective I1- and I2-IR drugs. However, the association of these IR-binding proteins with classic I1- and I2-radioligand binding sites remains somewhat controversial. In this study, three IR antibodies (anti-NISCH and anti-nischarin for I1-IRs; and anti-IRBP for I1/I2-IRs) were used to immunodetect, characterize and compare IR protein patterns in brain (mouse and human; total homogenate, subcellular fractionation, grey and white matter) and some cell systems (neurones, astrocytes, human platelets). Various immunoreactive IRs (specific molecular weight bands coincidently detected with the different antibodies) were related to I1-IR (167 kDa, 105/115 kDa and 85 kDa proteins) or I2-IR (66 kDa, 45 kDa and 30 kDa proteins) types. The biochemical characterization of cortical 167 kDa protein, localized in the membrane/cytosol but not in the nucleus, indicated that this I1-IR also forms part of higher order nischarin-related complexes. The contents of I1-IR (167 kDa, 105/115 kDa, and 85 kDa) proteins in mouse brain cortex were upregulated by treatment with I1-drugs (moxonidine, efaroxan) but not with I2-drugs (BU-224, LSL 61122). Conversely, the contents of I2-IR (66 kDa, 45 kDa and 30 kDa) proteins in mouse brain cortex were modulated by treatment with I2-drugs (decreases after BU-224 and LSL 61122, and increases after idazoxan) but not with I1-drugs (with the exception of moxonidine). These findings further indicate that brain immunoreactive IR proteins exist in multiple forms that can be grouped in the already known I1- and I2-IR types, which are expressed both in neurones and astrocytes.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca, Spain and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca, Spain and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Aceros H, Farah G, Noiseux N, Mukaddam-Daher S. Moxonidine modulates cytokine signalling and effects on cardiac cell viability. Eur J Pharmacol 2014; 740:168-82. [PMID: 25036265 DOI: 10.1016/j.ejphar.2014.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Regression of left ventricular hypertrophy and improved cardiac function in SHR by the centrally acting imidazoline I1-receptor agonist, moxonidine, are associated with differential actions on circulating and cardiac cytokines. Herein, we investigated cell-type specific I1-receptor (also known as nischarin) signalling and the mechanisms through which moxonidine may interfere with cytokines to affect cardiac cell viability. Studies were performed on neonatal rat cardiomyocytes and fibroblasts incubated with interleukin (IL)-1β (5 ng/ml), tumor necrosis factor (TNF)-α (10 ng/ml), and moxonidine (10(-7) and 10(-5) M), separately and in combination, for 15 min, and 24 and 48 h for the measurement of MAPKs (ERK1/2, JNK, and p38) and Akt activation and inducible NOS (iNOS) expression, by Western blotting, and cardiac cell viability/proliferation and apoptosis by flow cytometry, MTT assay, and Live/Dead assay. Participation of imidazoline I1-receptors and the signalling proteins in the detected effects was identified using imidazoline I1-receptor antagonist and signalling protein inhibitors. The results show that IL-1β, and to a lower extent, TNF-α, causes cell death and that moxonidine protects against starvation- as well as IL-1β -induced mortality, mainly by maintaining membrane integrity, and in part, by improving mitochondrial activity. The protection involves activation of Akt, ERK1/2, p38, JNK, and iNOS. In contrast, moxonidine stimulates basal and IL-1β-induced fibroblast mortality by mechanisms that include inhibition of JNK and iNOS. Thus, apart from their actions on the central nervous system, imidazoline I1-receptors are directly involved in cardiac cell growth and death, and may play an important role in cardiovascular diseases associated with inflammation.
Collapse
Affiliation(s)
- Henry Aceros
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Georges Farah
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada
| | - Nicolas Noiseux
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Suhayla Mukaddam-Daher
- Centre Hospitalier de L'Université de Montréal Research Center (CRCHUM), Montreal, Québec, Canada; Department of Pharmacology, Université de Montréal, Montreal, Québec, Canada; Department of Medicine, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
7
|
Qin X, Yue Z, Sun B, Yang W, Xie J, Ni E, Feng Y, Mahmood R, Zhang Y, Yue L. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol 2013; 168:1294-312. [PMID: 23145923 DOI: 10.1111/bph.12012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. EXPERIMENTAL APPROACH HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. KEY RESULTS SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. CONCLUSIONS AND IMPLICATIONS This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720.
Collapse
Affiliation(s)
- Xin Qin
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Garau C, Miralles A, García-Sevilla JA. Chronic treatment with selective I2-imidazoline receptor ligands decreases the content of pro-apoptotic markers in rat brain. J Psychopharmacol 2013; 27:123-34. [PMID: 22719017 DOI: 10.1177/0269881112450785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective I(2)-imidazoline receptor ligands induce neuroprotection through various molecular mechanisms including blockade of N-methyl-D-aspartate (NMDA) receptors. To investigate new neuroprotective mechanisms associated with I(2)-imidazoline receptors, the effects of selective (2-styryl-2-imidazoline (LSL 61122), 2-(2-benzofuranyl)-2-imidazoline (2-BFI), 2-(4,5-dihydroimidazol-2-yl) quinoline hydrochloride (BU-224)) and non-selective (idazoxan) I(2)-drugs on canonical apoptotic pathways were assessed in rat brain cortex. The acute treatment with LSL 61122 (10 mg/kg) reduced the content of mitochondrial (pro-apoptotic) Bax (-33%) and cytochrome c (-31%), which was prevented by idazoxan, an I(2)-receptor antagonist. The sustained stimulation of I(2)-imidazoline receptors with selective drugs (10 mg/kg, every 12 h for seven days) was associated with down-regulation of key components of the extrinsic (Fas receptor: -20%; Fas associated protein with death domain (FADD) adaptor: -47-54%) and/or intrinsic (Bax: -20-23%; cytochrome c: -22-28%) apoptotic signalling and/or up-regulation of survival anti-apoptotic factors (p-Ser194 FADD/FADD ratio: +1.6-2.5-fold; and/or Bcl-2/Bax ratio: +1.5-fold), which in the long-term could dampen cell death in the brain. Similar chronic treatments with LSL 60101 (the imidazole analogue of 2-BFI) and idazoxan (a mixed I(2)/α(2)-ligand) did not induce significant alterations of pro- or anti-apoptotic proteins. The disclosed anti-apoptotic mechanisms of selective I(2)-imidazoline drugs may work in concert with other molecular mechanisms of neuroprotection (e.g. blockade of NMDA receptors) that are engaged by I(2)-ligands.
Collapse
Affiliation(s)
- Celia Garau
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
9
|
I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline. PLoS One 2012; 7:e47890. [PMID: 23166584 PMCID: PMC3499525 DOI: 10.1371/journal.pone.0047890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/17/2012] [Indexed: 12/31/2022] Open
Abstract
TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I1 & I2) are potential targets for TVP1022 (IC50 = 9.5E-08 M and IC50 = 1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1–20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.
Collapse
|
10
|
Tesfai J, Crane L, Baziard-Mouysset G, Kennedy W, Edwards LP. Novel I1-imidazoline S43126 enhance insulin action in PC12 cells. Pharmacol Rep 2012; 63:1442-9. [PMID: 22358092 DOI: 10.1016/s1734-1140(11)70708-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/28/2011] [Indexed: 11/18/2022]
Abstract
The I(1)-imidazoline receptor is a novel target for drug development for hypertension and insulin resistance, major disorders associated with type 2 diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126, on phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK1/2) in PC12 cells. We further examined the effects of S43126 on insulin stimulated PKB and ERK phosphorylation. PC12 cells were treated with varying doses of S43126 (10(-10) to 10(-6) M) or insulin (10(-10) to 10(-6) M) or combination treatment with insulin (10(-6) M) and varying doses of S43126 (10(-6) - 10(-11) M) for 10 min. Western blot analysis of treated samples showed that S43126 increased both ERK1/2 and PKB phosphorylation by 5 fold. Combination treatment with insulin (10(-6) M) and varying doses of S43126 (10(-6) - 10(-11) M) enhanced phosphorylation of PKB and ERK1/2 above the level of insulin alone, in a dose and time dependent manner. Treatment with siRNA against Nischarin (mouse homologue of I(1)-imidazoline receptor) reduced the phosphorylation of both ERK and PKB following combination treatments. These results indicate that S43126 has the potential to augment insulin action and should be further studied as a possible candidate drug for the treatment of insulin resistance states.
Collapse
Affiliation(s)
- Jerusalem Tesfai
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
11
|
Martir JF, Bozdagi O, Martinelli GP, Friedrich VL, Holstein GR. Imidazoleacetic acid-ribotide in the rodent striatum: a putative neurochemical link between motor and autonomic deficits in Parkinson's disease. ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 1:5-18. [PMID: 22453739 DOI: 10.1556/abiol.63.2012.suppl.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that imidazole-4-acetic acid-ribotide (IAA-RP) is present in the mammalian brain and is an endogenous ligand at imidazoline binding sites. In the present study, we used a polyclonal antiserum to visualize IAA-RP-containing neurons in the rat caudoputamen. We observe IAA-RP-immunostained neurons scattered throughout the dorsal and ventral striatum. Most of these cells co-localize GABA, but none are parvalbumin-immunoreactive. In contrast, approximately 50% of the calbindin D28k-immunopositive striatal neurons co-localize IAA-RP. Electrophysiological studies using corticostriatal slices demonstrated that bath application of IAA-RP reversibly depresses the synaptically mediated component of field potentials recorded in the striatum by stimulation of cortical axons. Addition of competitive glutamate receptor antagonists completely blocks the response, confirming its association with glutamatergic transmission. Using paired-pulse stimuli, IAA-RP was shown to exert, at least in part, a presynaptic effect, but blockade of GABAA receptor-mediated transmission did not alter the response. Lastly, we show that this effect is attributable to imidazoline-1 receptors, and not to α2 adrenergic receptors. Since IAA-RP is an endogenous central regulator of blood pressure, and cardiovascular dysfunction is a common symptom associated with Parkinson's disease (PD), we speculate that IAA-RP-related abnormalities may underlie some of the autonomic dysfunction that occurs in PD.
Collapse
Affiliation(s)
- J F Martir
- Department of Neurology, Functional Morphology Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
12
|
Bozdagi O, Wang XB, Martinelli GP, Prell G, Friedrich VL, Huntley GW, Holstein GR. Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of imidazoline receptors. J Neurophysiol 2011; 105:1266-75. [PMID: 21228308 DOI: 10.1152/jn.00263.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imidazole-4-acetic acid-ribotide (IAA-RP), an endogenous agonist at imidazoline receptors (I-Rs), is a putative neurotransmitter/regulator in mammalian brain. We studied the effects of IAA-RP on excitatory transmission by performing extracellular and whole cell recordings at Schaffer collateral-CA1 synapses in rat hippocampal slices. Bath-applied IAA-RP induced a concentration-dependent depression of synaptic transmission that, after washout, returned to baseline within 20 min. Maximal decrease occurred with 10 μM IAA-RP, which reduced the slope of field extracellular postsynaptic potentials (fEPSPs) to 51.2 ± 5.7% of baseline at 20 min of exposure. Imidazole-4-acetic acid-riboside (IAA-R; 10 μM), the endogenous dephosphorylated metabolite of IAA-RP, also produced inhibition of fEPSPs. This effect was smaller than that produced by IAA-RP (to 65.9 ± 3.8% of baseline) and occurred after a further 5- to 8-min delay. The frequency, but not the amplitude, of miniature excitatory postsynaptic currents was decreased, and paired-pulse facilitation (PPF) was increased after application of IAA-RP, suggesting a principally presynaptic site of action. Since IAA-RP also has low affinity for α(2)-adrenergic receptors (α(2)-ARs), we tested synaptic depression induced by IAA-RP in the presence of α(2)-ARs, I(1)-R, or I(3)-R antagonists. The α(2)-AR antagonist rauwolscine (100 nM), which blocked the actions of the α(2)-AR agonist clonidine, did not affect either the IAA-RP-induced synaptic depression or the increase in PPF. In contrast, efaroxan (50 μM), a mixed I(1)-R and α(2)-AR antagonist, abolished the synaptic depression induced by IAA-RP and abolished the related increase in PPF. KU-14R, an I(3)-R antagonist, partially attenuated responses to IAA-RP. Taken together, these data support a role for IAA-RP in modulating synaptic transmission in the hippocampus through activation of I-Rs.
Collapse
Affiliation(s)
- O Bozdagi
- Department of Neurology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Holstein GR, Martinelli GP, Friedrich VL. Anatomical observations of the caudal vestibulo-sympathetic pathway. J Vestib Res 2011; 21:49-62. [PMID: 21422542 PMCID: PMC3570023 DOI: 10.3233/ves-2011-0395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vestibular system senses the movement and position of the head in space and uses this information to stabilize vision, control posture, perceive head orientation and self-motion in three-dimensional space, and modulate autonomic and limbic activity in response to locomotion and changes in posture. Most vestibular signals are not consciously perceived and are usually appreciated through effector pathways classically described as the vestibulo-ocular, vestibulo-spinal, vestibulo-collic and vestibulo-autonomic reflexes. The present study reviews some of the recent data concerning the connectivity and chemical anatomy of vestibular projections to autonomic sites that are important in the sympathetic control of blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
14
|
Peng JF, Wu ZT, Wang YK, Yuan WJ, Sun T, Ni X, Su DF, Wang W, Xu MJ, Wang WZ. GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine. Cardiovasc Res 2010; 89:473-81. [PMID: 20829217 DOI: 10.1093/cvr/cvq289] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The depressor action of the centrally antihypertensive drug moxonidine has been attributed to activation of I(1)-imidazoline receptor in the rostral ventrolateral medulla (RVLM). The objective of this study was to determine the role of the γ-aminobutyric acid (GABA) mechanisms in the RVLM in mediating the effect of moxonidine in anaesthetized normotensive rats. METHODS AND RESULTS The relationship between the effects of microinjection or picoinjection of moxonidine and the functional state of GABA receptors at the level of the RVLM or pre-sympathetic neuron was determined. Microdialysis was performed to detect the effect of moxonidine on the release of GABA in the RVLM. Western blot analysis was carried out to test the effect of chronic intracerebroventricular injection of moxonidine on the protein expression of GABA receptors in the RVLM. Pre-treatment with the GABA(A) or GABA(B) receptor antagonist bicuculline (5 pmol) or CGP35348 (200 pmol), respectively, microinjected into the RVLM significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity induced by moxonidine. In 22 moxonidine-sensitive pre-sympathetic neurons in the RVLM, picoinjection of bicuculline (100 fmol/5 nL) significantly attenuated the neuronal inhibition evoked by moxonidine (100 pmol/5 nL). The release of GABA in the RVLM was increased after intravenous moxonidine (50 μg/kg). Central infusion of moxonidine upregulated the protein expression of both GABA(A) and GABA(B) receptors in the RVLM. CONCLUSION The current data demonstrate that GABAergic mechanisms in the RVLM are responsible for the hypotension and sympathoinhibition of moxonidine.
Collapse
Affiliation(s)
- Jun-Feng Peng
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gyires K, Zádori ZS, Török T, Mátyus P. α2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 2009; 55:447-53. [DOI: 10.1016/j.neuint.2009.05.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 11/29/2022]
|
16
|
Generation and characterization of novel human IRAS monoclonal antibodies. J Biomed Biotechnol 2009; 2009:973754. [PMID: 19672324 PMCID: PMC2723995 DOI: 10.1155/2009/973754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/18/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.
Collapse
|
17
|
Kimura A, Tyacke RJ, Robinson JJ, Husbands SM, Minchin MC, Nutt DJ, Hudson AL. Identification of an imidazoline binding protein: creatine kinase and an imidazoline-2 binding site. Brain Res 2009; 1279:21-8. [PMID: 19410564 PMCID: PMC2722693 DOI: 10.1016/j.brainres.2009.04.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/28/2009] [Accepted: 04/22/2009] [Indexed: 12/11/2022]
Abstract
Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I(1), I(2) and I(3), have been proposed, although characterisations of these binding proteins are lacking. I(2) binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I(2) ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a approximately 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I(2) subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated approximately 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I(2) ligands; [(3)H]-2-BFI (5 nM) specifically bound to B-CK (2330+/-815 fmol mg protein(-1)). We predicted an I(2) binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I(2) irreversible ligand, where 20 microM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I(2) ligand. In summary, we have identified B-CK to be the approximately 45 kDa imidazoline binding protein and we have demonstrated the existence of an I(2) binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I(2) ligands in brain and the alterations in densities of I(2) binding sites in psychiatric disorders.
Collapse
Key Words
- 2-bfi, 2-(2-benzofuranyl)2-imidazoline
- bu224, 2-(4,5-dihydroimidaz-2-yl)quinoline
- bu99006, 5-isothiocyanoato-2-benzofuranyl-2-imidazoline
- b-ck, brain creatine kinase
- ck, creatine kinase
- gold, genetic optimisation for ligand docking
- gr, glucose-responsive
- i2, imidazoline-2 subtype
- katp channel, atp sensitive potassium channel
- mao, monoamine oxidase
- moe, molecular operating environment
- imidazoline binding protein
- creatine kinase
- 2-bfi
- harmane and psychiatric disorders
Collapse
Affiliation(s)
- Atsuko Kimura
- Psychopharmacology Unit, University of Bristol, BS1 3NY, UK
| | | | - James J. Robinson
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | | | | | - David J. Nutt
- Psychopharmacology Unit, University of Bristol, BS1 3NY, UK
| | - Alan L. Hudson
- Department of Pharmacology, 9-70 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
18
|
G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 2008; 40:329-34. [PMID: 18297070 DOI: 10.1038/ng.84] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/27/2007] [Indexed: 01/08/2023]
Abstract
Hypotrichosis simplex is a group of nonsyndromic human alopecias. We mapped an autosomal recessive form of this disorder to chromosome 13q14.11-13q21.33, and identified homozygous truncating mutations in P2RY5, which encodes an orphan G protein-coupled receptor. Furthermore, we identified oleoyl-L-alpha-lysophosphatidic acid (LPA), a bioactive lipid, as a ligand for P2Y5 in reporter gene and radioligand binding experiments. Homology and studies of signaling transduction pathways suggest that P2Y5 is a member of a subgroup of LPA receptors, which also includes LPA4 and LPA5. Our study is the first to implicate a G protein-coupled receptor as essential for and specific to the maintenance of human hair growth. This finding may provide opportunities for new therapeutic approaches to the treatment of hair loss in humans.
Collapse
|