1
|
Nian J, Lan W, Wang Z, Zhang X, Yao H, Zhang F. Exploring the metabolic implications of blue light exposure during daytime in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116436. [PMID: 38723383 DOI: 10.1016/j.ecoenv.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Excessive exposure to light is a global issue. Artificial light pollution has been shown to disrupt the body's natural circadian rhythm. To investigate the impacts of light on metabolism, we studied Sprague-Dawley rats chronically exposed to red or blue light during daytime or nighttime. Rats in the experimental group were exposed to extended light for 4 hours during daytime or nighttime to simulate the effects of excessive light usage. Strikingly, we found systemic metabolic alterations only induced by blue light during daytime. Furthermore, we conducted metabolomic analyses of the cerebrospinal fluid, serum, heart, liver, spleen, adrenal, cerebellum, pituitary, prostate, spermatophore, hypothalamus and kidney from rats in the control and blue light exposure during daytime. Significant changes in metabolites have been observed in cerebrospinal fluid, serum, hypothalamus and kidney of rats exposed to blue light during daytime. Metabolic alterations observed in rats encompassing pyruvate metabolism, glutathione metabolism homocysteine degradation, phosphatidylethanolamine biosynthesis, and phospholipid biosynthesis, exhibit analogous patterns to those inherent in specific physiological processes, notably neurodevelopment, cellular injury, oxidative stress, and autophagic pathways. Our study provides insights into tissue-specific metabolic changes in rats exposed to blue light during the daytime and may help explain potential mechanisms of photopathogenesis.
Collapse
Affiliation(s)
- Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
2
|
Lee D, Fu Z, Hellstrom A, Smith LEH. Therapeutic Effects of Anti-Inflammatory and Anti-Oxidant Nutritional Supplementation in Retinal Ischemic Diseases. Int J Mol Sci 2024; 25:5503. [PMID: 38791541 PMCID: PMC11122288 DOI: 10.3390/ijms25105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Liu S, Zhang W. NAD + metabolism and eye diseases: current status and future directions. Mol Biol Rep 2023; 50:8653-8663. [PMID: 37540459 DOI: 10.1007/s11033-023-08692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients' quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, 730030, Lanzhou, VA, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 730030, Lanzhou, VA, China.
| |
Collapse
|
4
|
Schmetterer L, Tezel G, Schuman J. Neville Osborne - Editor-in-Chief of Progress in Retinal and Eye Research for 40 years. Prog Retin Eye Res 2023; 96:101194. [PMID: 37473797 DOI: 10.1016/j.preteyeres.2023.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Joel Schuman
- Wills Eye Hospital, Department of Ophthalmology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
5
|
Charng J, Ansari AS, Bondonno NP, Hunter ML, O'Sullivan TA, Louca P, Hammond CJ, Mackey DA. Association between dietary niacin and retinal nerve fibre layer thickness in healthy eyes of different ages. Clin Exp Ophthalmol 2022; 50:736-744. [DOI: 10.1111/ceo.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Australia
- Department of Optometry The University of Western Australia Perth Australia
| | - Abdus Samad Ansari
- Section of Academic Ophthalmology School of Life Course Sciences, FoLSM, King's College London UK
| | - Nicola P. Bondonno
- Institute for Nutrition Research School of Medical and Health Sciences, Edith Cowan University Perth Australia
- The Danish Cancer Society Research Centre Copenhagen Denmark
| | - Michael L. Hunter
- School of Population and Global Health The University of Western Australia Perth Australia
- Busselton Population Medical Research Institute Inc. Perth Australia
| | - Therese A. O'Sullivan
- Institute for Nutrition Research School of Medical and Health Sciences, Edith Cowan University Perth Australia
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology School of Life Course Sciences, FoLSM, King's College London London UK
| | - Chris J. Hammond
- Section of Academic Ophthalmology School of Life Course Sciences, FoLSM, King's College London UK
| | - David A. Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Australia
| |
Collapse
|
6
|
The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8482149. [PMID: 35498134 PMCID: PMC9042598 DOI: 10.1155/2022/8482149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Natural visible light is an electromagnetic wave composed of a spectrum of monochromatic wavelengths, each with a characteristic color. Photons are the basic units of light, and their wavelength correlates to the energy of light; short-wavelength photons carry high energy. The retina is a fragile neuronal tissue that senses light and generates visual signals conducted to the brain. However, excessive and intensive light exposure will cause retinal light damage. Within the visible spectrum, short-wavelength light, such as blue light, carries higher energy, and thus the retinal injury, is more significant when exposed to these wavelengths. The damage mechanism triggered by different short-wavelength light varies due to photons carrying different energy and being absorbed by different photosensitive molecules in the retinal neurons. However, photooxidation might be a common molecular step to initiate cell death. Herein, we summarize the historical understanding of light, the key molecular steps related to retinal light injury, and the death pathways of photoreceptors to further decipher the molecular mechanism of retinal light injury and explore potential neuroprotective strategies.
Collapse
|
7
|
Chaudhry S, Dunn H, Carnt N, White A. Nutritional supplementation in the prevention and treatment of Glaucoma. Surv Ophthalmol 2021; 67:1081-1098. [PMID: 34896192 DOI: 10.1016/j.survophthal.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Glaucoma is a chronic optic neuropathy that creates a significant burden on public health. Oxidative stress is hypothesised to play a role to glaucoma progression, and its reduction is being analysed as a therapeutic target. Dietary antioxidants play a crucial role in helping provide insight into this hypothesis. We reviewed 71 trials, interventional, I -vivo and I -vitro, including 11 randomised controlled trials, to determine if adjunctive nutritional supplementation could lead to a reduction in oxidative stress and prevent glaucomatous progression. Many laboratory findings show that vitamins and natural compounds contain an abundance of intrinsic antioxidative, neuroprotective and vasoprotective properties that show promise in the treatment and prevention of glaucoma. Although there is encouraging early evidence, most clincial findings are inconclusive. The group of B vitamins appear to have the greatest amount of evidence. Other compounds such as flavonoids, carotenoids, curcumin, saffron, CoQ10, Ggngko Biloba and Resveratrol however warrant further investigation in glaucoma patients. Studies of these antioxidants and other nutrients could create adjunctive or alternative preventative and treatment modalities for glaucoma to those currently available.
Collapse
Key Words
- AA, Ascorbic acid
- ARMD, Age Related Macular Degeneration
- CoQ10, Coenzyme Q10
- GON, Glaucomatous Optic Neuropathy
- Hcy, Homocysteine
- IOP, Intraocular pressure
- NO, Nitric Oxide
- NOS, Nitric Oxide Synthase
- NTG, Normal Tension Glaucoma
- POAG, Primary open angle Glaucoma;PEXG, Exfoliation Glaucoma
- PVD Primary vascular dysregulation
- RGC, Retinal Ganglion Cells
- ROS, Reactive Oxygen Species
- SC, Schlemm's Canal
- TM Trabecular Meshwork
- Vitamins, Nutrients, Glaucoma, Supplements, Reactive Oxygen Species, Open Angle Glaucoma, Trabecular Meshwork, Retinal Ganglion Cells, Oxidative Stress. Abbreviations
Collapse
Affiliation(s)
- Sarah Chaudhry
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia.
| | - Hamish Dunn
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Nicole Carnt
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew White
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|
9
|
Retinal energy metabolism in health and glaucoma. Prog Retin Eye Res 2020; 81:100881. [PMID: 32712136 DOI: 10.1016/j.preteyeres.2020.100881] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
Energy metabolism refers to the processes by which life transfers energy to do cellular work. The retina's relatively large energy demands make it vulnerable to energy insufficiency. In addition, evolutionary pressures to optimize human vision have been traded against retinal ganglion cell bioenergetic fragility. Details of the metabolic profiles of the different retinal cells remain poorly understood and are challenging to resolve. Detailed immunohistochemical mapping of the energy pathway enzymes and substrate transporters has provided some insights and highlighted interspecies differences. The different spatial metabolic patterns between the vascular and avascular retinas can account for some inconsistent data in the literature. There is a consilience of evidence that at least some individuals with glaucoma have impaired RGC energy metabolism, either due to impaired nutrient supply or intrinsic metabolic perturbations. Bioenergetic-based therapy for glaucoma has a compelling pathophysiological foundation and is supported by recent successes in animal models. Recent demonstrations of visual and electrophysiological neurorecovery in humans with glaucoma is highly encouraging and motivates longer duration trials investigating bioenergetic neuroprotection.
Collapse
|
10
|
Sia PI, Wood JPM, Chidlow G, Casson R. Creatine is Neuroprotective to Retinal Neurons In Vitro But Not In Vivo. Invest Ophthalmol Vis Sci 2020; 60:4360-4377. [PMID: 31634394 DOI: 10.1167/iovs.18-25858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the neuroprotective properties of creatine in the retina using in vitro and in vivo models of injury. Methods Two different rat retinal culture systems (one containing retinal ganglion cells [RGC] and one not) were subjected to either metabolic stress, via treatments with the mitochondrial complex IV inhibitor sodium azide, or excitotoxic stress, via treatment with N-methyl-D-aspartate for 24 hours, in the presence or absence of creatine (0.5, 1.0, and 5.0 mM). Neuronal survival was assessed by immunolabeling for cell-specific antigens. Putative mechanisms of creatine action were investigated in vitro. Expression of creatine kinase (CK) isoenzymes in the rat retina was examined using Western blotting and immunohistochemistry. The effect of oral creatine supplementation (2%, wt/wt) on retinal and blood creatine levels was determined as well as RGC survival in rats treated with N-methyl-D-aspartate (NMDA; 10 nmol) or high IOP-induced ischemia reperfusion. Results Creatine significantly prevented neuronal death induced by sodium azide and NMDA in both culture systems. Creatine administration did not alter cellular adenosine triphosphate (ATP). Inhibition of CK blocked the protective effect of creatine. Retinal neurons, including RGCs, expressed predominantly mitochondrial CK isoforms, while glial cells expressed exclusively cytoplasmic CKs. In vivo, NMDA and ischemia reperfusion caused substantial loss of RGCs. Creatine supplementation led to elevated blood and retinal levels of this compound but did not significantly augment RGC survival in either model. Conclusions Creatine increased neuronal survival in retinal cultures; however, no significant protection of RGCs was evident in vivo, despite elevated levels of this compound being present in the retina after oral supplementation.
Collapse
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Kouassi Nzoughet J, Chao de la Barca JM, Guehlouz K, Leruez S, Coulbault L, Allouche S, Bocca C, Muller J, Amati-Bonneau P, Gohier P, Bonneau D, Simard G, Milea D, Lenaers G, Procaccio V, Reynier P. Nicotinamide Deficiency in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:2509-2514. [PMID: 31185090 DOI: 10.1167/iovs.19-27099] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the plasma concentration of nicotinamide in primary open-angle glaucoma (POAG). Methods Plasma of 34 POAG individuals was compared to that of 30 age- and sex-matched controls using a semiquantitative method based on liquid chromatography coupled to high-resolution mass spectrometry. Subsequently, an independent quantitative method, based on liquid chromatography coupled to mass spectrometry, was used to assess nicotinamide concentration in the plasma from the same initial cohort and from a replicative cohort of 20 POAG individuals and 15 controls. Results Using the semiquantitative method, the plasma nicotinamide concentration was significantly lower in the initial cohort of POAG individuals compared to controls and further confirmed in the same cohort, using the targeted quantitative method, with mean concentrations of 0.14 μM (median: 0.12 μM; range, 0.06-0.28 μM) in the POAG group (-30%; P = 0.022) and 0.19 μM (median: 0.18 μM; range, 0.08-0.47 μM) in the control group. The quantitative dosage also disclosed a significantly lower plasma nicotinamide concentration (-33%; P = 0.011) in the replicative cohort with mean concentrations of 0.14 μM (median: 0.14 μM; range, 0.09-0.25 μM) in the POAG group, and 0.19 μM (median: 0.21 μM; range, 0.09-0.26 μM) in the control group. Conclusions Glaucoma is associated with lower plasmatic nicotinamide levels, compared to controls, suggesting that nicotinamide supplementation might become a future therapeutic strategy. Further studies are needed, in larger cohorts, to confirm these preliminary findings.
Collapse
Affiliation(s)
- Judith Kouassi Nzoughet
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - Juan Manuel Chao de la Barca
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Khadidja Guehlouz
- Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Stéphanie Leruez
- Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Laurent Coulbault
- Service de Biochimie, EA4650, Centre Hospitalier Universitaire, Caen, France
| | - Stéphane Allouche
- Service de Biochimie, EA4650, Centre Hospitalier Universitaire, Caen, France
| | - Cinzia Bocca
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - Jeanne Muller
- Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrizia Amati-Bonneau
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Dominique Bonneau
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS, Singapore
| | - Guy Lenaers
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - Vincent Procaccio
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Pascal Reynier
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
12
|
Kovacs K, Vaczy A, Fekete K, Kovari P, Atlasz T, Reglodi D, Gabriel R, Gallyas F, Sumegi B. PARP Inhibitor Protects Against Chronic Hypoxia/Reoxygenation-Induced Retinal Injury by Regulation of MAPKs, HIF1α, Nrf2, and NFκB. Invest Ophthalmol Vis Sci 2019; 60:1478-1490. [PMID: 30973576 DOI: 10.1167/iovs.18-25936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the eye, chronic hypoxia/reoxygenation (H/R) contributes to the development of a number of ocular disorders. H/R induces the production of reactive oxygen species (ROS), leading to poly(ADP-ribose) polymerase-1 (PARP1) activation that promotes inflammation, cell death, and disease progression. Here, we analyzed the protective effects of the PARP1 inhibitor olaparib in H/R-induced retina injury and investigated the signaling mechanisms involved. Methods A rat retinal H/R model was used to detect histologic and biochemical changes in the retina. Results H/R induced reductions in the thickness of most retinal layers, which were prevented by olaparib. Furthermore, H/R caused increased levels of Akt and glycogen synthase kinase-3β phosphorylation, which were further increased by olaparib, contributing to retina protection. By contrast, H/R-induced c-Jun N-terminal kinase and p38 mitogen-activated protein kinases (MAPK) phosphorylation and activation were reduced by olaparib, via mitogen-activated protein kinase phosphatase 1 (MKP-1) expression. In addition, H/R-induced hypoxia-inducible factor 1α (HIF1α) levels were decreased by olaparib, which possibly contributed to reduced VEGF expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression was slightly increased by H/R and was further activated by olaparib. Nuclear factor-κB (NFκB) was also activated by H/R through phosphorylation (Ser536) and acetylation (Lys310) of the p65 subunit, although this was significantly reduced by olaparib. Conclusions Olaparib reduced H/R-induced degenerative changes in retinal morphology. The protective mechanisms of olaparib most probably involved Nrf2 activation and ROS reduction, as well as normalization of HIF1α and related VEGF expression. In addition, olaparib reduced inflammation by NFκB dephosphorylation/inactivation, possibly via the PARP1 inhibition-MKP-1 activation-p38 MAPK inhibition pathway. PARP inhibitors represent potential therapeutics in H/R-induced retinal disease.
Collapse
Affiliation(s)
- Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Petra Kovari
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary.,Department of Sportbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Robert Gabriel
- Department of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res 2016; 41:2526-2537. [DOI: 10.1007/s11064-016-1964-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
|
14
|
Millet AMC, Bertholet AM, Daloyau M, Reynier P, Galinier A, Devin A, Wissinguer B, Belenguer P, Davezac N. Loss of functional OPA1 unbalances redox state: implications in dominant optic atrophy pathogenesis. Ann Clin Transl Neurol 2016; 3:408-21. [PMID: 27547769 PMCID: PMC4891995 DOI: 10.1002/acn3.305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Objective OPA1 mutations cause protein haploinsufficiency leading to dominant optic atrophy (DOA), an incurable retinopathy with variable severity. Up to 20% of patients also develop extraocular neurological complications. The mechanisms that cause this optic atrophy or its syndromic forms are still unknown. After identifying oxidative stress in a mouse model of the pathology, we sought to determine the consequences of OPA1 dysfunction on redox homeostasis. Methods Mitochondrial respiration, reactive oxygen species levels, antioxidant defenses, and cell death were characterized by biochemical and in situ approaches in both in vitro and in vivo models of OPA1 haploinsufficiency. Results A decrease in aconitase activity suggesting an increase in reactive oxygene species and an induction of antioxidant defenses was observed in cortices of a murine model as well as in OPA1 downregulated cortical neurons. This increase is associated with a decline in mitochondrial respiration in vitro. Upon exogenous oxidative stress, OPA1‐depleted neurons did not further exhibit upregulated antioxidant defenses but were more sensitive to cell death. Finally, low levels of antioxidant enzymes were found in fibroblasts from patients supporting their role as modifier factors. Interpretation Our study suggests that the pro‐oxidative state induced by OPA1 loss may contribute to DOA pathogenesis and that differences in antioxidant defenses can explain the variability in expressivity. Furthermore, antioxidants may be used as therapy as they could prevent or delay DOA symptoms in patients.
Collapse
Affiliation(s)
- Aurélie M C Millet
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Ambre M Bertholet
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Marlène Daloyau
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Pascal Reynier
- CNRS UMR 6214 Inserm UMR 1083 UFR Sciences médicales Rue Haute de Reculee Angers Cedex 01 49045 France
| | - Anne Galinier
- Laboratoire de Biochimie Nutritionnelle "STROMALab" UMR UPS/CNRS/EFS 5273 Inserm U1031, CHU Rangueil 1 avenue Jean Poulhès Toulouse Cedex 9 31059 France
| | - Anne Devin
- Laboratoire métabolisme énergétique cellulaire IBGC du CNRS 1 rue Camille Saint Saëns Bordeaux Cedex 33077 France
| | - Bernd Wissinguer
- Centre for Ophthalmology University of Tübingen Roentgenweg 11 Tübingen D-72076 Germany
| | - Pascale Belenguer
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| | - Noélie Davezac
- Center of Developmental Biology (CBD)/Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) Toulouse University, CNRS, UPS Toulouse France
| |
Collapse
|
15
|
SUN YU, ZHANG MENGCHAO, JI SHANGWEI, LIU LIN. Induction differentiation of rabbit adipose-derived stromal cells into insulin-producing cells in vitro. Mol Med Rep 2015; 12:6835-40. [DOI: 10.3892/mmr.2015.4305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/17/2015] [Indexed: 11/05/2022] Open
|
16
|
Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol 2015; 60:310-26. [PMID: 25907525 DOI: 10.1016/j.survophthal.2015.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/30/2022]
Abstract
Glaucoma, a progressive degenerative condition that results in the death of retinal ganglion cells, is one of the leading causes of blindness, affecting millions worldwide. The mechanisms underlying glaucoma are not well understood, although years of studies have shown that the largest risk factors are elevated intraocular pressure, age, and genetics. Eleven genes and multiple loci have been identified as contributing factors. These genes act by a number of mechanisms, including mechanical stress, ischemic/oxidative stress, and neurodegeneration. We summarize the recent advances in the understanding of glaucoma and propose a unified hypothesis for glaucoma pathogenesis. Glaucoma does not result from a single pathological mechanism, but rather a combination of pathways that are influenced by genes, age, and environment. In particular, we hypothesize that, in the presence of genetic risk factors, exposure to environment stresses results in an earlier age of onset for glaucoma. This hypothesis is based upon the overlap of the molecular pathways in which glaucoma genes are involved. Because of the interactions between these processes, it is likely that there are common therapies that may be effective for different subtypes of glaucoma.
Collapse
Affiliation(s)
- Lance P Doucette
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Alexandra Rasnitsyn
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Morteza Seifi
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Michael A Walter
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
17
|
Li JB, Lu ZG, Xu L, Wang Q, Zhang ZH, Fang JH. Neuroprotective effects of bis(7)-tacrine in a rat model of pressure-induced retinal ischemia. Cell Biochem Biophys 2014; 68:275-82. [PMID: 23832279 DOI: 10.1007/s12013-013-9707-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The retinal ischemia-reperfusion model has been studied extensively and is an ideal animal model for studying clinical situations such as acute glaucoma and optic neuropathy. Our previous reports showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced retinal ganglion cells damage through the drug's anti-NMDA receptor effects. Here, we investigated whether bis(7)-tacrine protects the retina from ischemic injury in a rat model. Retinal ischemia was induced by raising the intraocular pressure to 120 mmHg for 90 min. Rats received intraperitoneal injections of 0.2 mg/kg bis(7)-tacrine or saline at 30 min before ischemia, and then twice a day after retinal ischemia. Morphometric evaluation showed that bis(7)-tacrine dramatically reduced the retinal damage compared with the control group. Moreover, bis(7)-tacrine suppressed ischemia-induced reductions in a- and b-wave amplitudes of electroretinography. Protein levels of p53, the tumor suppressor gene known to induce apoptosis, were increased after ischemic injury, and treatment with bis(7)-tacrine reduced the expression of the protein. Our results suggest that bis(7)-tacrine has a neuroprotective effect against ischemic injury in the rat retina, possibly through the drug's anti-apoptotic effects. Bis(7)-tacrine may potentially be useful as a therapeutic drug in the management of ischemic retinal diseases.
Collapse
Affiliation(s)
- Jing-bo Li
- Department of Ophthalmology, First Hospital of Jingzhou, Yangtze University, Jingzhou, 434000, Hubei, China
| | | | | | | | | | | |
Collapse
|
18
|
Li C, Wang L, Kern TS, Zheng L. Inhibition of poly(ADP-ribose) polymerase inhibits ischemia/reperfusion induced neurodegeneration in retina via suppression of endoplasmic reticulum stress. Biochem Biophys Res Commun 2012; 423:276-81. [PMID: 22640737 DOI: 10.1016/j.bbrc.2012.05.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 01/01/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have neuroprotective effects after retinal ischemia and reperfusion (I/R) injury, but mechanisms of this action are not clear. A second generation PARP inhibitor, GPI 15427, was administrated to mice to investigate the possible mechanisms underlying its neuroprotective effects after retinal I/R injury. Ischemia was induced by increasing intraocular pressure to 80-90 mm Hg for 60 min followed by reperfusion, and mice were treated with GPI 15427 (40 mg/kg(-1) day(-1), orally) 2 days before or 1 day after injury. Histopathology caused by the retinal I/R injury was estimated by TUNEL assay and histological analyses. Relative gene expressions were evaluated by RT-PCR, Western blotting and immunohistological studies. GPI 15427 inhibited the retinal I/R-induced PARP activation and glial cell activation. GPI 15427 also significantly inhibited the I/R-induced neurodegeneration, as well as increase in TUNEL-positive cells. I/R-induced PERK-eIF2α-CHOP activation and Bip over-expression were inhibited by GPI 15427, while it did not suppress I/R-induced CHOP over-expression and degeneration of retinal capillaries. Our results suggest that GPI 15427 inhibited retinal I/R-induced neurodegeneration and glial cell activation, and this was associated with an effect of the drug to suppress PERK-eIF2α-CHOP activation and Bip over-expression. These results provide evidence that GPI 15427 inhibits retinal I/R injury at least in part via inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Chuanzhou Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
19
|
Abstract
Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia.
Collapse
|
20
|
Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res 2012; 66:19-32. [PMID: 22433276 DOI: 10.1016/j.phrs.2012.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 01/01/2023]
Abstract
The retina is theater of a number of biochemical reactions allowing, within its layers, the conversion of light impulses into electrical signals. The axons of the last neuronal elements, the ganglion cells, form the optic nerve and transfer the signals to the brain. Therefore, an appropriate cellular communication, not only within the different retinal cells, but also between the retina itself and the other brain structures, is fundamental. One of the most diffuse pathologies affecting retinal function and communication, which thus reverberates in the whole visual system, is glaucoma. This insidious disease is characterized by a progressive optic nerve degeneration and sight loss which may finally lead to irreversible blindness. Nevertheless, the progressive nature of this pathology offers an opportunity for therapeutic intervention. To better understand the cellular processes implicated in the development of glaucoma useful to envision a targeted pharmacological strategy, this manuscript first examines the complex cellular and functional organization of the retina and subsequently identifies the targets sensitive to neurodegeneration. Within this context, high ocular pressure represents a key risk factor. However, recent literature findings highlight the concept that lowering ocular pressure is not enough to prevent/slow down glaucomatous damage, suggesting the importance of combining the hypotensive treatment with other pharmacological approaches, such as the use of neuroprotectants. Therefore, this important and more novel aspect is extensively considered in this review, also emphasizing the idea that the neuroprotective strategy should be extended to the entire visual system and not restricted to the retina.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The concept of neuroprotective therapy for glaucoma is that damage to retinal ganglion cells (RGCs) may be prevented by intervening in neuronal death pathways. This review focuses on strategies for neuroprotection and summarizes preclinical studies that have investigated potential agents over the last 2 years. RECENT FINDINGS Part of the challenge of studies in neuroprotection has been the utilization of an animal model that resembles human glaucoma. Several models have been utilized including acute and chronic intraocular pressure elevation, the DBA/2J mouse, optic nerve axotomy and crush. NMDA inhibitors continued to be explored however with limited success in human trials. Memantine failed to demonstrate neuroprotection in phase III clinical trials. Although its mechanism of neuroprotection has not been fully elaborated, topical brimonidine has shown some neuroprotective benefits. Exogeneous neurotrophins delay, but do not prevent, RGC death. Bioenergetic neuroprotection that is enhancing the energy supply to RGC has been explored with benefits in animal models. Other strategies include TNF-α, modulation of the immune system and inflammation, and blocking apoptotic signals and stem cells. SUMMARY Animal models of glaucoma and neuroprotective strategies continue to be refined. Establishing consensus guidelines for the execution and design of translational research in neuroprotection may optimize the facilitation of neuroprotection research.
Collapse
|
22
|
Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF, Wong D, Lo ACY. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One 2011; 6:e16380. [PMID: 21298100 PMCID: PMC3027646 DOI: 10.1371/journal.pone.0016380] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/14/2010] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for “eye health” according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.
Collapse
Affiliation(s)
- Suk-Yee Li
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Di Yang
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Man Yeung
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wing-Yan Yu
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Raymond Chuen-Chung Chang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - David Wong
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- St. Paul's Eye Unit, The Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Amy C. Y. Lo
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
23
|
Obrosova IG, Maksimchyk Y, Pacher P, Agardh E, Smith ML, El-Remessy AB, Agardh CD. Evaluation of the aldose reductase inhibitor fidarestat on ischemia-reperfusion injury in rat retina. Int J Mol Med 2010; 26:135-42. [PMID: 20514433 DOI: 10.3892/ijmm_00000445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the effects of retinal ischemia-reperfusion (IR) injury and pre-treatment with the potent and specific aldose reductase inhibitor fidarestat on apoptosis, aldose reductase and sorbitol dehydrogenase expression, sorbitol pathway intermediate concentrations, and oxidative-nitrosative stress. Female Wistar rats were pre-treated with either vehicle (N-methyl-D-glucamine) or fidarestat, 32 mg kg(-1) d(-1) for both, in the right jugular vein, for 3 consecutive days. A group of vehicle- and fidarestat-treated rats were subjected to 45-min retinal ischemia followed by 24-h reperfusion. Ischemia was induced 30 min after the last vehicle or fidarestat administration. Retinal IR resulted in a remarkable increase in retinal cell death. The number of TUNEL-positive nuclei increased 48-fold in the IR group compared with non-ischemic controls (p<0.01), and this increase was partially prevented by fidarestat. AR expression (Western blot analysis) increased by 19% in the IR group (p<0.05), and this increase was prevented by fidarestat. Sorbitol dehydrogenase and nitrated protein expressions were similar among all experimental groups. Retinal sorbitol concentrations tended to increase in the IR group but the difference with non-ischemic controls did not achieve statistical significance (p=0.08). Retinal fructose concentrations were 2.2-fold greater in the IR group than in the non-ischemic controls (p<0.05). Fidarestat pre-treatment of rats subjected to IR reduced retinal sorbitol concentration to the levels in non-ischemic controls. Retinal fructose concentrations were reduced by 41% in fidarestat-pre-treated IR group vs. untreated ischemic controls (p=0.0517), but remained 30% higher than in the non-ischemic control group. In conclusion, IR injury to rat retina is associated with a dramatic increase in cell death, elevated AR expression and sorbitol pathway intermediate accumulation. These changes were prevented or alleviated by the AR inhibitor fidarestat. The results identify AR as an important therapeutic target for diseases involving IR injury, and provide the rationale for development of fidarestat and other AR inhibitors.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jung SH, Kim BJ, Lee EH, Osborne NN. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem Int 2010; 57:713-21. [PMID: 20708054 DOI: 10.1016/j.neuint.2010.08.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/29/2010] [Accepted: 08/03/2010] [Indexed: 02/06/2023]
Abstract
The shrub Thuja orientalis is extensively used as a herbal medicine in Korea and China. In the present study extracts of the plant were subjected to fractionation and purification, with seven compounds (myricitrin, isoquercitrin, hypoletin-7-O-β-D-xylopyranoside, quercitrin, kaempferin, kaempferol, and amentoflavone) being isolated. Of these seven compounds, isoquercitrin was found to be the most effective at attenuating the death of RGC-5 cells in culture caused by exposure to hydrogen peroxide (H(2)O(2)). It was found that an insult of H(2)O(2) to RGC-5 cells caused them to die by apoptosis, demonstrated not only by staining dead cells for phosphatidylserine but also by the up-regulation (cleaved PARP, AIF, p53) and down-regulation (Bcl-2) of proteins associated with apoptosis and survival. Subsequent studies showed that isoquercitrin acts as a powerful antioxidant. It scavenges ROS generally as demonstrated by staining of cultures as well as the generation of individual radical species (H(2)O(2), OH* and O(2)(*-)). Moreover, isoquercitrin reduced the depletion of glutathione (GSH) caused by elevation of specific radical species (H(2)O(2), OH* and O(2)(*-)) in RGC-5 cells in culture and blunted the decrease in catalase and glutathione peroxidase 1 (Gpx-1) caused by exposure of RGC-5 cells to H(2)O(2). Furthermore, isoquercitrin potently attenuated the lipid peroxidation of rat brain homogenates initiated by nitric oxide, with an IC(50) value of 1.04 μM. Since isoquercitrin can be tolerated when taken orally it is suggested that this substance might reach the retina and therefore be potentially useful for treating glaucoma, in which oxidative stress is thought to play a major role in the demise of retinal ganglion cells.
Collapse
Affiliation(s)
- Sang Hoon Jung
- Nuffield Laboratory of Ophthalmology, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
25
|
Xu P, Sauve AA. Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev 2010; 131:287-98. [PMID: 20307564 DOI: 10.1016/j.mad.2010.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/07/2010] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
Organism aging is a process of time and maturation culminating in senescence and death. The molecular details that define and determine aging have been intensely investigated. It has become appreciated that the process is partly an accumulation of random yet inevitable changes, but it can be strongly affected by genes that alter lifespan. In this review, we consider how NAD(+) metabolism plays important roles in the random patterns of aging, and also in the more programmatic aspects. The derivatives of NAD(+), such as reduced and oxidized forms of NAD(P)(+), play important roles in maintaining and regulating cellular redox state, Ca(2+) stores, DNA damage and repair, stress responses, cell cycle timing and lipid and energy metabolism. NAD(+) is also a substrate for signaling enzymes like the sirtuins and poly-ADP-ribosylpolymerases, members of a broad family of protein deacetylases and ADP-ribosyltransferases that regulate fundamental cellular processes such as transcription, recombination, cell division, proliferation, genome maintenance, apoptosis, stress resistance and senescence. NAD(+)-dependent enzymes are increasingly appreciated to regulate the timing of changes that lead to aging phenotypes. We consider how metabolism, specifically connected with Vitamin B3 and the nicotinamide adenine dinucleotides and their derivatives, occupies a central place in the aging processes of mammals.
Collapse
Affiliation(s)
- Ping Xu
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue LC216, New York, NY 10065, USA
| | | |
Collapse
|
26
|
Zhang M, Hu H, Zhang X, Lu W, Lim J, Eysteinsson T, Jacobson KA, Laties AM, Mitchell CH. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochem Int 2009; 56:35-41. [PMID: 19723551 DOI: 10.1016/j.neuint.2009.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Andrade da Costa BLDS, Kang KD, Rittenhouse KD, Osborne NN. The localization of PGE2 receptor subtypes in rat retinal cultures and the neuroprotective effect of the EP2 agonist butaprost. Neurochem Int 2009; 55:199-207. [PMID: 19524109 DOI: 10.1016/j.neuint.2009.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/10/2009] [Accepted: 02/25/2009] [Indexed: 01/05/2023]
Abstract
It is concluded from immunohistochemical that all four types of prostaglandin-E(2) (PGE(2)) (EP1, EP2, EP3 and EP4) receptors are associated with specific cell-types in primary rat retinal cultures. Analysis specifically of EP2 receptor immunoreactivity shows it to coexist with some neurones expressing Thy-1 and calbindin immunoreactivities as well as with vimentin-positive Müller cells. Moreover, exposure of cultures to the EP2 specific agonist butaprost (100 nM) for a period of 24h results in a generation of cAMP thus providing support for the functionality of EP2 receptors. Cell survival was significantly affected in cultures where the serum concentration was reduced from 10 to 1% for 24h. This was reflected by a reduction in the number of GABA-positive neurons and an elevation of released lactate dehydrogenase (LDH) into the culture medium. Moreover, a number of cells displayed a clear generation of reactive oxygen species (ROS) and a staining for the breakdown of DNA by the TUNEL procedure as an indicator for apoptosis. These negative effects were attenuated when butaprost (100 nM) was present during the serum reduction and 30 min before the insult. The present studies provide evidence to show that all PGE(2) receptor types exist in the retina of rat pups, remain functional when the retinal cells are cultured and that specific activation of EP2 receptors with butaprost can attenuate a detrimental insult caused by insufficient serum that may occur in situ by reduced trophic support.
Collapse
Affiliation(s)
- Belmira Lara da Silveira Andrade da Costa
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas (CCB), CCB-UFPE, Av. Prof. Moraes Rego s/n, Cidade Universitária, 50670901 Recife, PE, Brazil
| | | | | | | |
Collapse
|
28
|
Abstract
The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway.
Collapse
|
29
|
Schober MS, Chidlow G, Wood JP, Casson RJ. Bioenergetic-based neuroprotection and glaucoma. Clin Exp Ophthalmol 2008; 36:377-85. [PMID: 18700928 DOI: 10.1111/j.1442-9071.2008.01740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary open-angle glaucoma (POAG) is a pressure-sensitive optic neuropathy which results in the death of retinal ganglion cells and causes associated loss of vision. Presently, the only accepted treatment strategy is to lower the intraocular pressure; however, for some patients this is insufficient to prevent progressive disease. Although the pathogenesis of POAG remains unclear, there is considerable evidence that energy failure at the optic nerve head may be involved. Neuroprotection, a strategy which directly enhances the survival of neurons, is desirable, but remains clinically elusive. One particular form of neuroprotection involves the notion of enhancing the energy supply of neurons. These 'bioenergetic' methods of neuroprotection have proven successful in animal models of other neurodegenerative diseases and conditions, including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and traumatic brain injury, but have been relatively unexplored in glaucoma models. This review focuses on some of the potential approaches for bioenergetic neuroprotection in the retina, including increasing the energy buffering capacity of damaged cells, decreasing the permeability of the mitochondrial membrane pore and free radical scavenging.
Collapse
Affiliation(s)
- Michael S Schober
- South Australian Institute of Ophthalmology, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
30
|
Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN. The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 2008; 53:325-37. [PMID: 18835309 DOI: 10.1016/j.neuint.2008.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 12/28/2022]
Abstract
The purpose of the present study was to determine whether the flavonoid, baicalin is effective at blunting the negative influence of ischemia/reperfusion to the rat retina in situ and of various insults to a transformed retinal ganglion cells (RGC-5 cells) in culture. Baicalin was administered intraperitoneally just before and after an ischemic insult to retina of one eye of a rat. Ischemia was delivered by raising the intraocular pressure above the systolic blood pressure for 50min. Seven days after ischemia, retinas were analysed for the localisation of various antigens. Retinal extracts were also analysed for various mRNAs. Moreover, the content of specific proteins was deduced in retinal and optic nerve extracts. Also, RGC-5 cells in culture were given one of three different insults, light (1000lx for 2 days), hydrogen peroxide (200microM H(2)O(2) for 24h) or serum deprivation (48h) where cell survival and reactive oxygen species (ROS) formation was assayed. Moreover, a lipid peroxidation assay was used to compare the antioxidant capacity of baicalin with the flavonoid, epigallocatechin gallate (EGCG). Ischemia/reperfusion to the retina affected the localisation of Thy-1 and choline acetyltransferase (ChAT) and the content of various proteins (optic nerve and retina) and mRNAs (retina). Importantly, baicalin statistically blunted most of the effects induced by ischemia/reperfusion. Only the increase in caspase-8 and caspase-3 mRNAs caused by ischemia/reperfusion were unaffected by baicalin treatment. Baicalin also attenuated significantly the negative insult of light, hydrogen peroxide and serum withdrawal to RGC-5 cells. In the lipid peroxidation studies, baicalin was also found to be equally effective as EGCG to act as an antioxidant. Significantly, the negative insult of serum withdrawal on RGC-5 cell survival was blunted by baicalin but not by EGCG revealing the different properties of the two flavonoids.
Collapse
Affiliation(s)
- S H Jung
- Nuffield Laboratory of Ophthalmology, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Rock N, Chintala SK. Mechanisms regulating plasminogen activators in transformed retinal ganglion cells. Exp Eye Res 2008; 86:492-9. [PMID: 18243176 DOI: 10.1016/j.exer.2007.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/15/2007] [Accepted: 12/09/2007] [Indexed: 01/08/2023]
Abstract
Irreversible loss of retinal ganglion cells (RGCs) is a major clinical issue in glaucoma, but the mechanisms that lead to RGC death are currently unclear. We have previously reported that elevated levels of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) cause the death of RGCs in vivo and transformed retinal ganglion cells (RGC-5) in vitro. Yet, it is unclear how secreted proteases such as tPA and uPA directly cause RGCs' death. In this study, by employing RGC-5 cells, we report that tPA and uPA elicit their direct effect through the low-density lipoprotein-related receptor-1 (LRP-1). We also show that blockade of protease-LRP-1 interaction leads to a complete reduction in autocrine synthesis of tPA and uPA, and prevents protease-mediated death of RGC-5 cells. RGC-5 cells were cultured in serum-free medium and treated with 2.0 microM Staurosporine to induce their differentiation. Neurite outgrowth was observed by a phase contrast microscope and quantified by NeuroJ imaging software. Proteolytic activities of tPA and uPA were determined by zymography assays. Cell viability was determined by MTT assays. Compared to untreated RGC-5 cells, cells treated with Staurosporine differentiated, synthesized and secreted elevated levels of tPA and uPA, and underwent cell death. In contrast, when RGC-5 cells were treated with Staurosporine along with the receptor associated protein (RAP), proteolytic activities of both tPA and uPA were significantly reduced. Under these conditions, a significant number of RGC-5 cells survived and showed increased neurite outgrowth. These results indicate that LRP-1 regulates autocrine synthesis of tPA and uPA in RGC-5 cells and suggest that the use of RAP to antagonize the effect of proteases may be a way to prevent RGC death in glaucoma.
Collapse
Affiliation(s)
- Nathan Rock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
32
|
Osborne NN. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. PROGRESS IN BRAIN RESEARCH 2008; 173:339-52. [DOI: 10.1016/s0079-6123(08)01124-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|