1
|
Melcangi RC. Role of Neuroactive Steroids in Health and Disease. Biomolecules 2024; 14:941. [PMID: 39199329 PMCID: PMC11352212 DOI: 10.3390/biom14080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Steroidogenesis occurs not only in endocrine peripheral glands (i [...].
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Asbelaoui N, Abi-Ghanem C, Schlecht-Louf G, Oukil H, Degerny C, Schumacher M, Ghoumari AM. Interplay between androgen and CXCR4 chemokine signaling in myelin repair. Acta Neuropathol Commun 2024; 12:18. [PMID: 38291527 PMCID: PMC10826258 DOI: 10.1186/s40478-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
In men, reduced levels of testosterone are associated with the prevalence and progression of multiple sclerosis (MS), a chronic and disabling demyelinating disorder. Testosterone has been shown to promote myelin repair. Here, we demonstrate that the cooperation between testosterone and CXCR4 signaling involving astrocytes is required for myelin regeneration after focal demyelination produced in the ventral mouse spinal cord by the infusion of lysolecithin. The testosterone-dependent remyelination of axons by oligodendrocytes was accompanied by an increase in astrocytes expressing CXCR4, its ligand CXCL12 and the androgen receptor (AR) within the demyelinated area. Depriving males of their testosterone or pharmacological inhibition of CXCR4, with the selective antagonist AMD3100, prevented the appearance of astrocytes expressing CXCR4, CXCL12 and AR within the demyelinated area and the concomitant recruitment of myelin forming oligodendrocytes. Conditional genetic ablation of either CXCR4 or AR in astrocytes also completely blocked the formation of new myelin by oligodendrocytes. Interestingly, the gain of function mutation in CXCR4 causing WHIM syndrome allows remyelination to take place, even in the absence of testosterone, but its potentiating effects remained observable. After testosterone deprivation or CXCR4 inhibition, the absence of astrocytes within the demyelinated area led to the incursion of Schwann cells, most likely derived from spinal nerves, and the formation of peripheral nerve type myelin. In patients with progressive MS, astrocytes expressing CXCR4 and AR surrounded myelin lesions, and their presence opposed the incursion of Schwann cells. These results highlight a mechanism of promyelinating testosterone signaling and the importance of normalizing its levels in combined myelin repair therapies.
Collapse
Affiliation(s)
- Narimène Asbelaoui
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Charly Abi-Ghanem
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Géraldine Schlecht-Louf
- INSERM UMR 996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hania Oukil
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Cindy Degerny
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Abdel Mouman Ghoumari
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| |
Collapse
|
3
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
4
|
Wu R, Su Y, Yuan Q, Li L, Wuri J, Liu X, Yan T. Sex Effect on Cardiac Damage in Mice With Experimental Autoimmune Encephalomyelitis. ASN Neuro 2021; 13:1759091421991771. [PMID: 33541127 PMCID: PMC7868497 DOI: 10.1177/1759091421991771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. Recent clinical study suggested that MS patient exhibited acute heart failure. Further, 12-lead electrocardiographic study showed a longer QTc interval in both MS patient and experimental autoimmune encephalomyelitis (EAE) Lewis rat. However, there is limited study regarding the effect of sex on cardiac injury in EAE. To our knowledge, sex effect on cardiac damage in mice with EAE has not yet been published. Herein, we examined the role of the immune system in mediating cardiac dysfunction after EAE in female and male mice. Neurological function was subsequently evaluated and cardiac function was assessed by echocardiography at multiple time points after EAE. EAE mice exhibited severe neurological deficit and significant cardiac dysfunction, including decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) at 1 and 2 months after EAE induction. Meanwhile male EAE presented increased expression of the oxidative stress (e.g., nicotinamaide adenine dinucleotide phosphate oxidase-2; NOX-2) in heart, as well as cardiac hypertrophy, increased left ventricle (LV) mass and more severe cardiac fibrosis compared with male control mice. In addition, male EAE mice showed significantly increased cardiac canonical inflammatory mediator (e.g., monocyte chemoattractant protein-1; MCP-1, transforming growth factor-β; TGF-β and toll-like receptor 2; TLR-2) compared with female EAE mice at 2 months after EAE induction. In conclusion, EAE increases inflammatory factor expression and aggravates cardiac dysfunction in male mice compared with female mice, which may contribute to different cardiac outcome in EAE mice.
Collapse
Affiliation(s)
- Ruixia Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Quan Yuan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Linlin Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jimusi Wuri
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaoxuan Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Tao Yan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
5
|
Milosevic A, Janjic MM, Lavrnja I, Savic D, Bozic ID, Tesovic K, Jakovljevic M, Pekovic S, Stojilkovic SS, Bjelobaba I. The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis. Brain Behav Immun 2020; 89:233-244. [PMID: 32592862 DOI: 10.1016/j.bbi.2020.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.
Collapse
Affiliation(s)
- Ana Milosevic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija M Janjic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Iva D Bozic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Tesovic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
7
|
Giatti S, Rigolio R, Diviccaro S, Falvo E, Caruso D, Garcia-Segura LM, Cavaletti G, Melcangi RC. Sex dimorphism in an animal model of multiple sclerosis: Focus on pregnenolone synthesis. J Steroid Biochem Mol Biol 2020; 199:105596. [PMID: 31958635 DOI: 10.1016/j.jsbmb.2020.105596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Neuroactive steroids, molecules produced from cholesterol in steroidogenic cells (i.e., peripheral glands and nervous system) are physiological modulators and protective agents of nervous function. A possible role for neuroactive steroids in the sex-dimorphic clinical manifestation, onset and progression of Multiple Sclerosis (MS) has been recently suggested. To explore this possibility, we assessed the synthesis of the first steroidogenic product (pregnenolone; PREG) in the spinal cord of experimental autoimmune encephalomyelitis rats, a MS model. Data obtained indicate that the synthesis of PREG in the spinal cord is altered by the pathology in a sex-dimorphic way and depending on the pathological progression. Indeed, in male spinal cord the synthesis was already decreased at the acute phase of the disease (i.e., 14 days post induction - dpi) and maintained low during the chronic phase (i.e., 45 dpi), while in females this effect was observed only at the chronic phase. Substrate availability had also a role in the sex-dimorphic kinetics. Indeed, at the chronic phase, male animals showed a reduction in the levels of free cholesterol coupled to alteration of cholesterol metabolism into oxysterols; these effects were not observed in female animals. These findings suggest that the comprehension of the neurosteroidogenic processes could be relevant to better understand the sexual dimorphism of MS and to possibly design sex-oriented therapeutic strategies based on neuroactive steroids.
Collapse
Affiliation(s)
- S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
9
|
Wang Q, Shimizu K, Maehata K, Pan Y, Sakurai K, Hikida T, Fukada Y, Takao T. Lithium ion adduction enables UPLC-MS/MS-based analysis of multi-class 3-hydroxyl group-containing keto-steroids. J Lipid Res 2020; 61:570-579. [PMID: 32102801 DOI: 10.1194/jlr.d119000588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Indexed: 01/13/2023] Open
Abstract
Steroids that contain a 3-hydroxyl group (3-OH steroids) are widely distributed in nature. During analysis with ESI-MS, they easily become dehydrated while in the protonated form, resulting in the production of several precursor ions and leading to low sensitivity of detection. To address this analytical challenge, here, we developed a method for the quantitation of 3-OH steroids by LC-MS/MS coupled with post-column addition of lithium (Li) ions to the mobile phase. The Li ion has a high affinity for the keto group of steroids, stabilizing their structures during ionization and permitting detection of analytes exclusively as the lithiated form. This not only improved the intensities of the precursor ions, but also promoted the formation of typical lithiated fragment ions. This improvement made the quantitation by multiple reaction monitoring more sensitive and reliable, as evidenced by 1.53-188 times enhanced detection sensitivity of 13 steroids that contained at least one keto and two hydroxyl groups or one keto and one 5-olefinic double bond, among 16 different 3-OH steroids. We deployed our newly developed method for profiling steroids in mouse brain tissue and identified six steroids in one tissue sample. Among these, 16-hydroxyestrone, tetrahydrocorticosterone, and 17α-hydroxypregnenolone were detected for the first time in the mouse brain. In summary, the method described here enables the detection of lithiated steroids by LC-MS/MS, including three 3-OH steroids not previously reported in the mouse brain. We anticipate that this new method may allow the determination of 3-OH steroids in different brain regions.
Collapse
Affiliation(s)
- Qiuyi Wang
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Kimiko Shimizu
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Kanako Maehata
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yue Pan
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Koki Sakurai
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takatoshi Hikida
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
11
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
12
|
Leicaj ML, Pasquini LA, Lima A, Gonzalez Deniselle MC, Pasquini JM, De Nicola AF, Garay LI. Changes in neurosteroidogenesis during demyelination and remyelination in cuprizone-treated mice. J Neuroendocrinol 2018; 30:e12649. [PMID: 30303567 DOI: 10.1111/jne.12649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.
Collapse
Affiliation(s)
- María L Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura A Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Maria C Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Physiological Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Juana M Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Mendell AL, MacLusky NJ. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front Mol Neurosci 2018; 11:359. [PMID: 30344476 PMCID: PMC6182082 DOI: 10.3389/fnmol.2018.00359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gonadal steroid hormones are neurotrophic and neuroprotective. These effects are modulated by local metabolism of the hormones within the brain. Such control is necessary to maintain normal function, as several signaling pathways that are activated by gonadal steroid hormones in the brain can also become dysregulated in disease. Metabolites of the gonadal steroid hormones—particularly 3α-hydroxy, 5α-reduced neurosteroids—are synthesized in the brain and can act through different mechanisms from their parent steroids. These metabolites may provide a mechanism for modulating the responses to their precursor hormones, thereby providing a regulatory influence on cellular responses. In addition, there is evidence that the 3α-hydroxy, 5α-reduced neurosteroids are neuroprotective in their own right, and therefore may contribute to the overall protection conferred by their precursors. In this review article, the rapidly growing body of evidence supporting a neuroprotective role for this class of neurosteroids will be considered, including a discussion of potential mechanisms that may be involved. In addition, we explore the hypothesis that differences between males and females in local neurosteroid production may contribute to sex differences in the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Mifflin K, Baker GB, Kerr BJ. Effect of voluntary wheel running on neuroactive steroid levels in murine experimental autoimmune encephalomyelitis. Neurosci Lett 2018; 685:150-154. [PMID: 30171909 DOI: 10.1016/j.neulet.2018.08.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Increasing evidence from both clinical and animal research has implicated changes in neuroactive steroids (rapid acting steroids that act as allosteric modulators at NMDA and/or GABA-A receptors) in multiple sclerosis. These changes have been linked to clinical differences in disease severity, prevention of disease development, as well as the disease state (relapsing vs progressive) in patients with multiple sclerosis. Previous research has also linked changes in neuroactive steroid levels to the beneficial effects of exercise in certain disorders such as traumatic brain injury and post-traumatic stress disorder. The present study therefore examined whether voluntary wheel running could modulate any of the reported changes in neuroactive steroids associated with the EAE model of multiple sclerosis. Female mice with EAE who ran were found to have significantly increased levels of brain pregnenolone compared to male EAE mice who ran. In contrast, male mice with EAE were found to have significantly higher levels of brain allopregnanolone compared to female mice with EAE regardless of exercise. Overall, these results indicate that exercise has moderate beneficial effects on brain neuroactive steroid levels in EAE. These changes may be related to other beneficial responses to exercise, such as improvements in disease severity, in EAE and/or multiple sclerosis.
Collapse
Affiliation(s)
- Katherine Mifflin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Glen B Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada; Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
15
|
Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC. Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol 2018; 176:1-17. [PMID: 29981391 DOI: 10.1016/j.pneurobio.2018.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The nervous system is a target and a source of steroids. Neuroactive steroids are steroids that target neurons and glial cells. They include hormonal steroids originated in the peripheral glands, steroids locally synthesized by the neurons and glial cells (neurosteroids) and synthetic steroids, some of them used in clinical practice. Here we review the mechanisms of synthesis, metabolism and action of neuroactive steroids, including the role of epigenetic modifications and the mitochondria in their sex specific actions. We examine sex differences in neuroactive steroid levels under physiological conditions and their role in the establishment of sex dimorphic structures in the nervous system and sex differences in its function. In addition, particular attention is paid to neuroactive steroids under pathological conditions, analyzing how pathology alters their levels and their role as neuroprotective factors, considering the influence of sex in both cases.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
16
|
Collongues N, Patte-Mensah C, De Seze J, Mensah-Nyagan AG, Derfuss T. Testosterone and estrogen in multiple sclerosis: from pathophysiology to therapeutics. Expert Rev Neurother 2018; 18:515-522. [PMID: 29799288 DOI: 10.1080/14737175.2018.1481390] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Neuroprotection and remyelination are two unmet needs in the treatment of multiple sclerosis (MS). Therapeutic potential has been identified with sexual hormones, supported in women by a decrease in MS activity during the pregnancy, in men by a greater severity of symptoms and a faster progression than in women. Areas covered: The therapeutic effect of testosterone and estrogens is reviewed. Both hormones have demonstrated an anti-inflammatory effect. Testosterone has an effect in protecting neurons in culture against glutamate-induced toxicity and oxidative stress, and stimulates myelin formation and regeneration mediated through the neural androgen receptor. In experimental autoimmune encephalomyelitis model, estrogens significantly decrease inflammation in the central nervous system via ERα, while its action on ERβ leads to myelin and axon reparation. Estriol therapy in two phase 2 trials showed a decrease in clinical disease activity and inflammatory parameters in MRI. However, evidence of a therapeutic effect of testosterone is scarce. Expert commentary: Phase 3 trials with estriol as an add-on supplementation are now mandatory. Testosterone is another candidate to be tested in phase 2 trials. These hormones should be considered as an adjunctive therapy. New validated tools are needed to assess their effect on neuroprotection and remyelination.
Collapse
Affiliation(s)
- Nicolas Collongues
- a Biopathology of Myelin, Neuroprotection and Therapeutic Strategies , INSERM U1119, University Hospital of Strasbourg , Strasbourg , France.,b Department of Neurology , University Hospital of Strasbourg , Strasbourg , France.,c Clinical Investigation Center , INSERM U1434, University Hospital of Strasbourg , Strasbourg , France
| | - Christine Patte-Mensah
- a Biopathology of Myelin, Neuroprotection and Therapeutic Strategies , INSERM U1119, University Hospital of Strasbourg , Strasbourg , France
| | - Jérôme De Seze
- a Biopathology of Myelin, Neuroprotection and Therapeutic Strategies , INSERM U1119, University Hospital of Strasbourg , Strasbourg , France.,b Department of Neurology , University Hospital of Strasbourg , Strasbourg , France.,c Clinical Investigation Center , INSERM U1434, University Hospital of Strasbourg , Strasbourg , France
| | - Ayikoe-Guy Mensah-Nyagan
- a Biopathology of Myelin, Neuroprotection and Therapeutic Strategies , INSERM U1119, University Hospital of Strasbourg , Strasbourg , France
| | - Tobias Derfuss
- d Departments of Neurology and Biomedicine , University Hospital Basel , Basel , Switzerland
| |
Collapse
|
17
|
Marin R, Diaz M. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Front Neurosci 2018; 12:128. [PMID: 29559883 PMCID: PMC5845729 DOI: 10.3389/fnins.2018.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD). Part of these actions takes place through binding to estrogen receptors (ER) embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA) exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies, namely AD and Parkinson disease. Altogether, these findings indicate that E2 may participate in brain preservation through a dual membrane-related mechanism. On the one hand, E2 interacting with ER related signalosomes may protect against neurotoxic insults. On the other hand, E2 may exert lipostatic actions to preserve lipid balance in neuronal membrane microdomains. The different aspects of the emerging multifunctional role of estrogens in membrane-related signalosomes will be discussed in this review.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine, Faculty of Health Sciences, University of La Laguna, Tenerife, Spain.,Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain
| | - Mario Diaz
- Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, Tenerife, Spain
| |
Collapse
|
18
|
Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci U S A 2018; 115:E302-E309. [PMID: 29279367 PMCID: PMC5777065 DOI: 10.1073/pnas.1716032115] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.
Collapse
|
19
|
Stojić-Vukanić Z, Kotur-Stevuljević J, Nacka-Aleksić M, Kosec D, Vujnović I, Pilipović I, Dimitrijević M, Leposavić G. Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action. Mol Neurobiol 2017; 55:3755-3774. [PMID: 28534275 DOI: 10.1007/s12035-017-0595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-γ+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCRαβ- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCRαβ- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Jelena Kotur-Stevuljević
- Department for Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
20
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
21
|
Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev 2016; 67:25-40. [DOI: 10.1016/j.neubiorev.2015.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023]
|
22
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
23
|
Orefice N, Carotenuto A, Mangone G, Bues B, Rehm R, Cerillo I, Saccà F, Calignano A, Orefice G. Assessment of neuroactive steroids in cerebrospinal fluid comparing acute relapse and stable disease in relapsing-remitting multiple sclerosis. J Steroid Biochem Mol Biol 2016; 159:1-7. [PMID: 26892094 DOI: 10.1016/j.jsbmb.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Previous studies have reported an involvement of neuroactive steroids as neuroprotective and anti-inflammatory agents in neurological disorders such as multiple sclerosis (MS); an analysis of their profile during a specific clinical phase of MS is largely unknown. The pregnenolone (PREG), dehydroepiandrosterone (DHEA), and allopregnanolone (ALLO) profile was evaluated in cerebrospinal fluid (CSF) in relapsing-remitting multiple sclerosis (RR-MS) patients as well as those in patients affected by non-inflammatory neurological (control group I) and without neurological disorders (control group II). An increase of PREG and DHEA values was shown in CSF of male and female RR-MS patients compared to those observed in both control groups. The ALLO values were significantly lower in female RR-MS patients than those found in male RR-MS patients and in female without neurological disorder. During the clinical relapse, we observed female RR-MS patients showing significantly increased PREG values compared to female RR-MS patients in stable phase, while their ALLO values showed a significant decrease compared to male RR-MS patients of the same group. Male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Similary, male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than male without gadolinium-enhanced lesions. Female RR-MS patients with gadolinium-enhanced lesions showed DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Male and female RR-MS patients with gadolinium-enhanced lesions showed ALLO values higher than those found in respective gender groups without gadolinium-enhanced lesions. ALLO values were lower in male than in female RR-MS patients without gadolinium-enhanced lesions. Considering the pharmacological properties of neuroactive steroids and the observation that neurological disorders influence their concentrations, these endogenous compounds may have an important role as prognostic factors of the disease and used as markers of MS activity such as relapses.
Collapse
Affiliation(s)
- Ns Orefice
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - A Carotenuto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - G Mangone
- Clinical Investigation Center for Neurosciences, Pitié-Salpêtrière Hospital, Paris, France.
| | - B Bues
- University Medical Center, Göttingen, Germany.
| | - R Rehm
- University Medical Center, Göttingen, Germany.
| | - I Cerillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - F Saccà
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - A Calignano
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - G Orefice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| |
Collapse
|
24
|
Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M, Hering H. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology 2016; 108:229-37. [PMID: 27039042 DOI: 10.1016/j.neuropharm.2016.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Neurosteroids such as progesterone and allopregnanolone have been shown to exert neuroprotective effects under a variety of pathological or insult conditions, and there is evidence that the neurosteroid system is perturbed in Multiple Sclerosis (MS) patients. Neurosteroids are synthesized in the central nervous system (CNS) through a series of metabolic transformations, beginning with a rate-limiting step of cholesterol transport through the outer mitochondrial membrane via the transporter translocator protein (TSPO). We examined the effects of etifoxine and XBD-173, two different brain penetrant TSPO agonists, for their ability to ameliorate clinical signs in two different experimental autoimmune encephalitis (EAE) models. Etifoxine, as previously reported, was efficacious in EAE, while XBD-173 was not. Surprisingly, XBD-173, but not etifoxine elevated relevant neurosteroids in brain of female rats and differed in its ability to exert anti-inflammatory and direct neuroprotective effects in vitro as compared to etifoxine. We conclude that the neurosteroid elevations produced in brain by XBD-173 are not sufficient to ameliorate EAE and suggest that etifoxine may have additional mechanisms of action that provide therapeutic benefit in this model system.
Collapse
Affiliation(s)
- Brinda Ravikumar
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Dan Crawford
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Tammy Dellovade
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Anneli Savinainen
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Danielle Graham
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Philippe Liere
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Jean-Paul Oudinet
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Mike Webb
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Heike Hering
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA.
| |
Collapse
|
25
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
26
|
Traish AM, Melcangi RC, Bortolato M, Garcia-Segura LM, Zitzmann M. Adverse effects of 5α-reductase inhibitors: What do we know, don't know, and need to know? Rev Endocr Metab Disord 2015; 16:177-98. [PMID: 26296373 DOI: 10.1007/s11154-015-9319-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Steroids are important physiological orchestrators of endocrine as well as peripheral and central nervous system functions. One of the key processes for regulation of these molecules lies in their enzymatic processing by a family of 5α-reductase (5α-Rs) isozymes. By catalyzing a key rate-limiting step in steroidogenesis, this family of enzymes exerts a crucial role not only in the physiological control but also in pathological events. Indeed, both 5α-R inhibition and supplementation of 5α-reduced metabolites are currently used or have been proposed as therapeutic strategies for a wide array of pathological conditions. In particular, the potent 5α-R inhibitors finasteride and dutasteride are used in the treatments of benign prostatic hyperplasia (BPH), as well as in male pattern hair loss (MPHL) known as androgenetic alopecia (AGA). Recent preclinical and clinical findings indicate that 5α-R inhibitors evoke not only beneficial, but also adverse effects. Future studies should investigate the biochemical and physiological mechanisms that underlie the persistence of the adverse sexual side effects to determine why a subset of patients is afflicted with such persistence or irreversible adverse effects. Also a better focus of clinical research is urgently needed to better define those subjects who are likely to be adversely affected by such agents. Furthermore, research on the non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function are needed to better understand the broad spectrum of the effects these drugs may elicit during their use in treatment of AGA or BPH. In this review, we will summarize the state of art on this topic, overview the key unresolved questions that have emerged on the pharmacological targeting of these enzymes and their products, and highlight the need for further studies to ascertain the severity and duration of the adverse effects of 5α-R inhibitors, as well as their biological underpinnings.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Biochemistry and Department of Urology, Boston University School of Medicine, 715 Albany Street, A502, Boston, MA, 02118, USA.
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences- Center of Excellence on Neurodegenerative Diseases, Iniversità degli Studi di Milano, Milan, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Michael Zitzmann
- Centre for Reproductive Medicine and Andrology, University Clinics Muenster, Domagkstrasse 11, D-48149, Muenster, Germany
| |
Collapse
|
27
|
Giatti S, Garcia-Segura LM, Melcangi RC. New steps forward in the neuroactive steroid field. J Steroid Biochem Mol Biol 2015; 153:127-34. [PMID: 25797031 DOI: 10.1016/j.jsbmb.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Evidence accumulated in recent years suggests that the systemic treatment with neuroactive steroids, or the pharmacological modulation of its production by brain cells, represent therapeutic options to promote neuroprotection. However, new findings, which are reviewed in this paper, suggest that the factors to be considered for the design of possible therapies based on neuroactive steroids are more complex than previously thought. Thus, although as recently reported, the nervous system regulates neuroactive steroid synthesis and metabolism in adaptation to modifications in peripheral steroidogenesis, the neuroactive steroid levels in the brain do not fully reflect its levels in plasma. Even, in some cases, neuroactive steroid level modifications occurring in the nervous tissues, under physiological and pathological conditions, are in the opposite direction than in the periphery. This suggests that the systemic treatment with these molecules may have unexpected outcomes on neural steroid levels. In addition, the multiple metabolic pathways and signaling mechanisms of neuroactive steroids, which may change from one brain region to another, together with the existence of regional and sex differences in its neural levels are additional sources of complexity that should be clarified. This complexity in the levels and actions of these molecules may explain why in some cases these molecules have detrimental rather than beneficial actions for the nervous system. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
28
|
Lopez-Rodriguez AB, Acaz-Fonseca E, Giatti S, Caruso D, Viveros MP, Melcangi RC, Garcia-Segura LM. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice. Psychoneuroendocrinology 2015; 56:1-11. [PMID: 25770855 DOI: 10.1016/j.psyneuen.2015.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| | | | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maria-Paz Viveros
- Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | | |
Collapse
|
29
|
Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 2015; 7:403-11. [PMID: 25961276 DOI: 10.1515/hmbci.2011.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023]
Abstract
Far beyond its role in reproduction, progesterone exerts neuro-protective, promyelinating, and anti-inflammatory effects in the nervous system. These effects are amplified under pathological conditions, implying that changes of the local environment sensitize nervous tissues to steroid therapy. The present survey covers our results of progesterone neuroprotection in a motoneuron neurodegeneration model and a neuroinflammation model. In the degenerating spinal cord of the Wobbler mouse, progesterone reverses the impaired expression of neurotrophins, increases enzymes of neurotransmission and metabolism, prevents oxidative damage of motoneurons and their vacuolar degeneration (paraptosis), and attenuates the development of mitochondrial abnormalities. After long-term treatment, progesterone also increases muscle strength and the survival of Wobbler mice. Subsequently, this review describes the effects of progesterone in mice with induced experimental autoimmune encephalomyelitis (EAE), a commonly used model of multiple sclerosis. In EAE mice, progesterone attenuates the clinical severity, decreases demyelination and neuronal dysfunction, increases axonal counts, reduces the formation of amyloid precursor protein profiles, and decreases the aberrant expression of growth-associated proteins. These actions of progesterone may be due to multiple mechanisms, considering that classic nuclear receptors, extranuclear receptors, and membrane receptors are all expressed in the spinal cord. Although many aspects of progesterone action in humans remain unsolved, data provided by experimental models makes getting to this objective closer than previously expected.
Collapse
|
30
|
Caruso D, Melis M, Fenu G, Giatti S, Romano S, Grimoldi M, Crippa D, Marrosu MG, Cavaletti G, Melcangi RC. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem 2014; 130:591-7. [PMID: 24766130 DOI: 10.1111/jnc.12745] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Neuroactive steroid family includes molecules synthesized in peripheral glands (i.e., hormonal steroids) and directly in the nervous system (i.e., neurosteroids) which are key regulators of the nervous function. As already reported in clinical and experimental studies, neurodegenerative diseases affect the levels of neuroactive steroids. However, a careful analysis comparing the levels of these molecules in cerebrospinal fluid (CSF) and in plasma of multiple sclerosis (MS) patients is still missing. To this aim, the levels of neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in CSF and plasma of male adults affected by Relapsing-Remitting MS and compared with those collected in control patients. An increase in pregnenolone and isopregnanolone levels associated with a decrease in progesterone metabolites, dihydroprogesterone, and tetrahydroprogesterone was observed in CSF of MS patients. Moreover, an increase of 5α-androstane-3α,17β-diol and of 17β-estradiol levels associated with a decrease of dihydrotestosterone also occurred. In plasma, an increase in pregnenolone, progesterone, and dihydrotestosterone and a decrease in dihydroprogesterone and tetrahydroprogesterone levels were reported. This study shows for the first time that the levels of several neuroactive steroids, and particularly those of progesterone and testosterone metabolites, are deeply affected in CSF of relapsing-remitting MS male patients. We here demonstrated that, the cerebrospinal fluid and plasma levels of several neuroactive steroids are modified in relapsing remitting multiple sclerosis male patients. Interestingly, we reported for the first time that, the levels of progesterone and testosterone metabolites are deeply affected in cerebrospinal fluid. These findings may have an important relevance in therapeutic and/or diagnostic field of multiple sclerosis.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences - Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014; 113:56-69. [DOI: 10.1016/j.pneurobio.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
|
32
|
|
33
|
De Nicola AF, Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Guennoun R, Schumacher M, Carreras MC, Poderoso JJ. Progesterone protective effects in neurodegeneration and neuroinflammation. J Neuroendocrinol 2013; 25:1095-103. [PMID: 23639063 DOI: 10.1111/jne.12043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023]
Abstract
Progesterone is a neuroprotective, promyelinating and anti-inflammatory factor for the nervous system. Here, we review the effects of progesterone in models of motoneurone degeneration and neuroinflammation. In neurodegeneration of the Wobbler mouse, a subset of spinal cord motoneurones showed increased activity of nitric oxide synthase (NOS), increased intramitochondrial NOS, decreased activity of respiratory chain complexes, and decreased activity and protein expression of Mn-superoxide dismutase type 2 (MnSOD2). Clinically, Wobblers suffered several degrees of motor impairment. Progesterone treatment restored the expression of neuronal markers, decreased the activity of NOS and enhanced complex I respiratory activity and MnSOD2. Long-term treatment with progesterone increased muscle strength, biceps weight and survival. Collectively, these data suggest that progesterone prevented neurodegeneration. To study the effects of progesterone in neuroinflammation, we employed mice with experimental autoimmune encephalomyelitis (EAE). EAE mice spinal cord showed increased mRNA levels of the inflammatory mediators tumour necrosis factor (TNF)α and its receptor TNFR1, the microglial marker CD11b, inducible NOS and the toll-like receptor 4. Progesterone pretreatment of EAE mice blocked the proinflammatory mediators, decreased Iba1+ microglial cells and attenuated clinical signs of EAE. Therefore, reactive glial cells became targets of progesterone anti-inflammatory effects. These results represent a starting point for testing the usefulness of neuroactive steroids in neurological disorders.
Collapse
Affiliation(s)
- A F De Nicola
- Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 2013; 38:2278-90. [PMID: 23706961 DOI: 10.1016/j.psyneuen.2013.04.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 01/31/2023]
Abstract
Physiological changes and pathological alterations in the nervous system of rodents are associated with modifications in the levels of neuroactive steroids in the brain, spinal cord and/or peripheral nerves. Measures of tissue levels of steroids in the nervous system present serious limitations for human studies and for longitudinal studies in animals. In this study we have explored whether levels of neuroactive steroids in plasma and the cerebrospinal fluid reflect their levels in neural tissues. To this aim, we have evaluated by liquid chromatography-tandem mass spectrometry the levels of several neuroactive steroids in plasma, cerebrospinal fluid, cerebral cortex, cerebellum, hippocampus, spinal cord and sciatic nerve of male and female rats. Data indicate that plasma and cerebrospinal fluid levels of steroids do not fully reflect their tissue levels. However, the interindividual variations in the levels of all the steroids assessed, with the exception of dehydroepiandrosterone, showed a positive correlation in plasma and cerebral cortex. Most steroids also showed a positive correlation in plasma and the cerebellum, the spinal cord and the sciatic nerve. In the hippocampus, the levels of tetrahydroprogesterone, testosterone and testosterone metabolites showed a significant positive correlation with their respective levels in plasma. The cerebrospinal fluid levels of some steroids, such as testosterone and dihydrotestosterone, showed a full correlation with tissue levels. In addition, cerebrospinal fluid levels of pregnenolone, progesterone, and 17β-estradiol showed a positive correlation with their corresponding levels in the majority of the neural structures analyzed. These findings suggest that the levels of some neuroactive steroids in cerebrospinal fluid as well as in plasma may be valuable to predict their levels in the nervous system.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Giatti S, Boraso M, Melcangi RC, Viviani B. Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 2012; 49:R125-34. [PMID: 22966132 DOI: 10.1530/jme-12-0127] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroinflammation represents a common feature of many neurodegenerative diseases implicated both in their onset and progression. Neuroactive steroids act as physiological regulators and protective agents in the nervous system. Therefore, the attention of biomedical research has been recently addressed in evaluating whether neuroactive steroids, such as progestagens, androgens, and estrogens may also affect neuroinflammatory pathways. Observations so far obtained suggest a general anti-inflammatory effect with a beneficial relapse on several neurodegenerative experimental models, thus confirming the potentiality of a neuroprotective strategy based on neuroactive steroids. In this scenario, neuroactive steroid metabolism and the sophisticated machinery involved in their signaling are becoming especially attractive. In particular, because metabolism of neuroactive steroids as well as expression of their receptors is affected during the course of neurodegenerative events, a crucial role of progesterone and testosterone metabolites in modulating neuroinflammation and neurodegeneration may be proposed. In the present review, we will address this issue, providing evidence supporting the hypothesis that the efficacy of neuroactive steroids could be improved through the use of their metabolites.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|
36
|
Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, Garcia-Segura LM, Melcangi RC. Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 2012; 34:1080-9. [PMID: 23122920 DOI: 10.1016/j.neurobiolaging.2012.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 11/19/2022]
Abstract
Although neuroactive steroids exert neuroprotective actions in different experimental models of neurodegenerative diseases, including those of Alzheimer's disease (AD), their relationships with aged related physiologic and pathologic brain changes remain to be clarified. In this study the levels of pregnenolone, dehydroepiandrosterone, progesterone, dihydroprogesterone, tetrahydroprogesterone, isopregnanolone, testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol, 5α-androstane-3β,17β-diol, 17α-estradiol, and 17β-estradiol were assessed in the limbic region of young adult (7 months) and aged (24 months) male wild type and triple transgenic AD mice. Age related neuropathological changes in AD brains, such as β-amyloid accumulation and gliosis, were associated with modified levels of specific neuroactive steroids and particularly with changes in the levels of progesterone and testosterone metabolites. The altered levels of neuroactive steroids in aged AD brains might impact on the activation of neuroprotective signaling mediated by classic and nonclassic steroid receptors, like the gamma-aminobuttyric acid (GABA)-A receptor.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tatar C, Bessert D, Tse H, Skoff RP. Determinants of central nervous system adult neurogenesis are sex, hormones, mouse strain, age, and brain region. Glia 2012; 61:192-209. [PMID: 23027402 DOI: 10.1002/glia.22426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis is a sexually dimorphic (SD) disease that causes oligodendrocyte death, but SD of glial cells is poorly studied. Here, we analyze SD of neural progenitors in 6-8 weeks and 6-8 months normal C57BL/6, SJL/J, and BALB/c mice in the subventricular zone (SVZ), dorsolateral horn (DLC), corpus callosum (CC), and parenchyma. With a short 2-h bromodeoxyuridine (BrdU) pulse, no gender and strain differences are present at 6-8 weeks. At 6-8 months, the number of BrdU(+) cells decreases twofold in each sex, strain, and region, indicating that a common aging mechanism regulates BrdU incorporation. Strikingly, 2× more BrdU(+) cells are found in all brain regions in 6-8 months C57BL/6 females versus males, no gender differences in 6-8 months SJL/J, and fewer BrdU(+) cells in females versus males in BALB/cs. The number of BrdU(+) cells modestly fluctuates throughout the estrous cycle in C57BL/6 and SJLs. Castration causes a dramatic increase in BrdU(+) cells in SVZ and DLC. These findings indicate that testosterone is a major regulator of adult neural proliferation. At 6-8 months, the ratio of PDGFRα(+) cells in the CC to BrdU(+) cells in the DLC of both strains, sexes, estrous cycle, and castrated mice was essentially the same, suggesting that BrdU(+) cells in the DLC differentiate into CC oligodendrocytes. The ratio of TUNEL(+) to BrdU(+) cells does not match proliferation, indicating that these events are differentially regulated. Differential regulation of these two processes leads to the variation in glial numbers between gender and strain. Explanations of neural proliferation based upon data from one sex or strain may be very misleading.
Collapse
Affiliation(s)
- Carrie Tatar
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
38
|
Multimodal Analysis in Acute and Chronic Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2012; 8:238-50. [DOI: 10.1007/s11481-012-9385-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/19/2012] [Indexed: 01/01/2023]
|
39
|
Giatti S, Caruso D, Boraso M, Abbiati F, Ballarini E, Calabrese D, Pesaresi M, Rigolio R, Santos-Galindo M, Viviani B, Cavaletti G, Garcia-Segura LM, Melcangi RC. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol 2012; 24:851-61. [PMID: 22283602 DOI: 10.1111/j.1365-2826.2012.02284.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Observations so far obtained in experimental autoimmune encephalomyelitis (EAE) have revealed the promising neuroprotective effects exerted by progesterone (PROG). The findings suggest that this neuroactive steroid may potentially represent a therapeutic tool for multiple sclerosis (MS). However, up to now, the efficacy of PROG has been only tested in the acute phase of the disease, whereas it is well known that MS expresses different features depending on the phase of the disease. Accordingly, we have evaluated the effect of PROG treatment in EAE induced in Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction show that PROG treatment exerts a beneficial effect on clinical score, confirming surrogate parameters of spinal cord damage in chronic EAE (i.e. reactive microglia, cytokine levels, activity of the Na(+) ,K(+) -ATPase pump and myelin basic protein expression). An increase of the levels of dihydroprogesterone and isopregnanolone (i.e. two PROG metabolites) was also observed in the spinal cord after PROG treatment. Taken together, these results indicate that PROG is effective in reducing the severity of chronic EAE and, consequently, may have potential with respect to MS treatment.
Collapse
Affiliation(s)
- S Giatti
- Department of Endocrinology, Pathophysiology and Applied Biology, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, Garcia-Segura LM, Caruso D, Melcangi RC. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int 2012; 60:616-21. [PMID: 22406419 DOI: 10.1016/j.neuint.2012.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/18/2012] [Accepted: 02/21/2012] [Indexed: 01/21/2023]
Abstract
Neuroactive steroid levels are decreased in the central nervous system (CNS) of streptozotocin (STZ) diabetic rats. In agreement, they exert protective effects in this experimental model, counteracting degenerative events occurring in the CNS. Therefore, an interesting therapeutic strategy could be to increase their levels directly in the CNS. In this study we have evaluated whether activation of translocator protein-18kDa (TSPO) or liver X receptors (LXRs) may affect the levels of neuroactive steroids present in the CNS of diabetic and non-diabetic animals. We observed that the treatment with either Ro5-4864 (i.e., a ligand of TSPO) or with GW3965 (i.e., a ligand of LXRs) induced an increase of neuroactive steroids in the spinal cord, the cerebellum and the cerebral cortex of STZ-rats, but not in the CNS of non-pathological animals. Interestingly, the pattern of induction was different among the three CNS areas analyzed and between the two pharmacological tools. In particular, the activation of LXRs might represent a promising neuroprotective strategy, because the treatment with GW3965, at variance to Ro5-4864 treatment, did not induce significant changes in the plasma levels of neuroactive steroids. This suggests that activation of LXRs may selectively increase the CNS levels of neuroactive steroids avoiding possible endocrine side effects exerted by the systemic treatment with these molecules. Interestingly GW3965 treatment induced an increase of dihydroprogesterone in the spinal cord of diabetic animals in association with an increase of myelin basic protein expression. Thus we demonstrated that LXR activation was able to rescue CNS symptoms of diabetes.
Collapse
Affiliation(s)
- Nico Mitro
- Dept. of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Massella A, D'Intino G, Fernández M, Sivilia S, Lorenzini L, Giatti S, Melcangi RC, Calzà L, Giardino L. Gender effect on neurodegeneration and myelin markers in an animal model for multiple sclerosis. BMC Neurosci 2012; 13:12. [PMID: 22272832 PMCID: PMC3282645 DOI: 10.1186/1471-2202-13-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/24/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) varies considerably in its incidence and progression in females and males. In spite of clinical evidence, relatively few studies have explored molecular mechanisms possibly involved in gender-related differences. The present study describes possible cellular- and molecular-involved markers which are differentially regulated in male and female rats and result in gender-dependent EAE evolution and progression. Attention was focused on markers of myelination (MBP and PDGFαR) and neuronal distress and/or damage (GABA synthesis enzymes, GAD65 and GAD67, NGF, BDNF and related receptors), in two CNS areas, i.e. spinal cord and cerebellum, which are respectively severely and mildly affected by inflammation and demyelination. Tissues were sampled during acute, relapse/remission and chronic phases and results were analysed by two-way ANOVA. RESULTS 1. A strong gender-dependent difference in myelin (MBP) and myelin precursor (PDGFαR) marker mRNA expression levels is observed in control animals in the spinal cord, but not in the cerebellum. This is the only gender-dependent difference in the expression level of the indicated markers in healthy animals; 2. both PDGFαR and MBP mRNAs in the spinal cord and MBP in the cerebellum are down-regulated during EAE in gender-dependent manner; 3. in the cerebellum, the expression profile of neuron-associated markers (GAD65, GAD67) is characterized by a substantial down-regulation during the inflammatory phase of the disease, which does not differ between male and female rats (two-way ANOVA); 4. there is an up-regulation of NGF, trkA and p75 mRNA expression in the early phases of the disease (14 and 21 days post-immunization), which is not different between male and female. CONCLUSIONS It is reported herein that the regulation of markers involved in demyelination and neuroprotection processes occurring during EAE, a well-established MS animal model, is gender- and time-dependent. These findings might contribute to gender- and phase disease-based therapy strategies.
Collapse
Affiliation(s)
- Alessandro Massella
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Giulia D'Intino
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Mercedes Fernández
- Health Sciences and Technology - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Sandra Sivilia
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Luca Lorenzini
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Silvia Giatti
- Dept. of Endocrinology, Pathophysiology and Applied Biology - Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy
| | - Roberto C Melcangi
- Dept. of Endocrinology, Pathophysiology and Applied Biology - Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy
| | - Laura Calzà
- Health Sciences and Technology - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Luciana Giardino
- Health Sciences and Technology - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
- Department of Veterinary Medicine, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| |
Collapse
|
42
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, Baker GB, Power C. Impaired neurosteroid synthesis in multiple sclerosis. ACTA ACUST UNITED AC 2011; 134:2703-21. [PMID: 21908875 DOI: 10.1093/brain/awr200] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription-polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to impaired neurosteroidogenesis in both multiple sclerosis and experimental autoimmune encephalomyelitis. The findings also indicate that allopregnanolone and perhaps other neurosteroid-like compounds might represent potential biomarkers or therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Farshid Noorbakhsh
- Department of Medicine (Neurology), 6-11 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Melcangi R, Panzica G, Garcia-Segura L. Neuroactive steroids: focus on human brain. Neuroscience 2011; 191:1-5. [DOI: 10.1016/j.neuroscience.2011.06.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
45
|
Melcangi RC, Caruso D, Levandis G, Abbiati F, Armentero MT, Blandini F. Modifications of Neuroactive Steroid Levels in an Experimental Model of Nigrostriatal Degeneration: Potential Relevance to the Pathophysiology of Parkinson’s Disease. J Mol Neurosci 2011; 46:177-83. [DOI: 10.1007/s12031-011-9570-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 11/24/2022]
|
46
|
Melcangi RC, Garcia-Segura LM. Sex differences in the injured brain. Horm Mol Biol Clin Investig 2011; 7:385-91. [DOI: 10.1515/hmbci.2011.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/15/2011] [Indexed: 11/15/2022]
Abstract
AbstractObservations obtained in human and in experimental models clearly demonstrate sex differences in degenerative events occurring in the central nervous system. The present review focuses on potential factors that may contribute to these sex-dimorphic features; in particular, morphological organization of the central nervous system and functional influence by neuroactive steroids, genes, and immune system are considered.
Collapse
|
47
|
Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol 2010; 22:1137-47. [PMID: 20819120 DOI: 10.1111/j.1365-2826.2010.02064.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant levels of neuroactive steroids are still detected in the nervous system of rodents after the removal of peripheral steroidogenic glands. However, the influence of the plasma levels of gonadal steroids on the levels of neuroactive steroids in the nervous system has not so far been clarified in detail. Accordingly, by liquid chromatography tandem mass spectrometry, we have analysed the levels of neuroactive steroids in the sciatic nerve, in three central nervous system (CNS) regions (i.e. cerebellum, cerebral cortex and spinal cord) and in the plasma of male and female animals. The levels present in gonadally intact animals were compared with those present in short- and long-term gonadectomised animals. We observed that: (i) changes in neuroactive steroid levels in the nervous system after gonadectomy do not necessarily reflect the changes in plasma levels; (ii) long-term gonadectomy induces changes in the levels of neuroactive steroids in the peripheral nervous system (PNS) and the CNS that, in some cases, are different to those induced by short-term gonadectomy; (iii) the effect of gonadectomy on neuroactive steroid levels is different between the PNS and the CNS and within different CNS regions; and (iv) the effects of gonadectomy on neuroactive steroid levels in the nervous system show sex differences. Altogether, these observations indicate that the nervous system adapts its local levels of neuroactive steroids in response to changes in gonadal hormones with sex and regional specificity and depending on the duration of the peripheral modifications.
Collapse
Affiliation(s)
- D Caruso
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Caruso D, D’Intino G, Giatti S, Maschi O, Pesaresi M, Calabrese D, Garcia-Segura LM, Calza L, Melcangi RC. Sex-dimorphic changes in neuroactive steroid levels after chronic experimental autoimmune encephalomyelitis. J Neurochem 2010; 114:921-32. [DOI: 10.1111/j.1471-4159.2010.06825.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|