1
|
Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience 2018; 374:80-90. [DOI: 10.1016/j.neuroscience.2018.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/15/2022]
|
2
|
Wu ZH, Zhang QJ, Du CX, Xi Y, Li WJ, Guo FY, Yu SQ, Yang YX, Liu J. Prelimbic α1-adrenoceptors are involved in the regulation of depressive-like behaviors in the hemiparkinsonian rats. Brain Res Bull 2017; 134:99-108. [DOI: 10.1016/j.brainresbull.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
3
|
Wiesman AI, Heinrichs‐Graham E, McDermott TJ, Santamaria PM, Gendelman HE, Wilson TW. Quiet connections: Reduced fronto-temporal connectivity in nondemented Parkinson's Disease during working memory encoding. Hum Brain Mapp 2016; 37:3224-35. [PMID: 27151624 PMCID: PMC4980162 DOI: 10.1002/hbm.23237] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized primarily by motor symptoms such as bradykinesia, muscle rigidity, and resting tremor. It is now broadly accepted that these motor symptoms frequently co-occur with cognitive impairments, with deficits in working memory and attention being among the most common cognitive sequelae associated with PD. While these cognitive impairments are now recognized, the underlying neural dynamics and precise regions involved remain largely unknown. To this end, we examined the oscillatory dynamics and interregional functional connectivity that serve working memory processing in a group of unmedicated adults with PD and a matched group without PD. Each participant completed a high-load, Sternberg-type working memory task during magnetoencephalography (MEG), and we focused on the encoding and maintenance phases. All data were transformed into the time-frequency domain and significant oscillatory activity was imaged using a beamforming approach. Phase-coherence (connectivity) was also computed among the brain subregions exhibiting the strongest responses. Our most important findings were that unmedicated patients with PD had significantly diminished working memory performance (i.e., accuracy), and reduced functional connectivity between left inferior frontal cortices and left supramarginal-superior temporal cortices compared to participants without PD during the encoding phase of working memory processing. We conclude that patients with PD have reduced neural interactions between left prefrontal executive circuits and temporary verbal storage centers in the left supramarginal/superior temporal cortices during the stimulus encoding phase, which may underlie their diminished working memory function. Hum Brain Mapp 37:3224-3235, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraska
- Center for MagnetoencephalographyUniversity of Nebraska Medical CenterOmahaNebraska
| | - Elizabeth Heinrichs‐Graham
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraska
- Center for MagnetoencephalographyUniversity of Nebraska Medical CenterOmahaNebraska
| | - Timothy J. McDermott
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraska
- Center for MagnetoencephalographyUniversity of Nebraska Medical CenterOmahaNebraska
| | | | - Howard E. Gendelman
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraska
| | - Tony W. Wilson
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraska
- Center for MagnetoencephalographyUniversity of Nebraska Medical CenterOmahaNebraska
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraska
| |
Collapse
|
4
|
Aronsen D, Bukholt N, Schenk S. Repeated administration of the 5-HT₁B/₁A agonist, RU 24969, facilitates the acquisition of MDMA self-administration: role of 5-HT₁A and 5-HT₁B receptor mechanisms. Psychopharmacology (Berl) 2016; 233:1339-47. [PMID: 26856853 DOI: 10.1007/s00213-016-4225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/27/2016] [Indexed: 01/17/2023]
Abstract
RATIONALE 3,4 Methylenedioxymethamphetamine (MDMA) preferentially stimulates the release of serotonin (5-HT) that subsequently produces behavioral responses by activation of post-synaptic receptor mechanisms. The 5-HT1A and 5-HT1B receptors are both well localized to regulate dopamine (DA) release, and have been implicated in modulating the reinforcing effects of many drugs of abuse, but a role in acquisition of self-administration has not been determined. OBJECTIVES This study was designed to determine the effect of pharmacological manipulation of 5-HT1A and 5-HT1B receptor mechanisms on the acquisition of MDMA self-administration. METHODS The 5-HT1B/1A receptor agonist, RU 24969 (0.0 or 3.0 mg/kg, bid), was administered for 3 days in order to down-regulate both 5-HT1A and 5-HT1B receptors. Following the pretreatment phase, latency to acquisition of MDMA self-administration was measured. RESULTS Repeated administration of RU 24969 significantly decreased the latency to acquisition and increased the proportion of animals that acquired MDMA self-administration. Dose-effect curves for the 5-HT1A-mediated hyperactivity produced by the 5-HT1A agonist, 8-OH-DPAT, and the 5-HT1B-mediated adipsic response produced by RU 24969 were shifted rightward, suggesting a desensitization of 5-HT1A and 5-HT1B receptor mechanisms. CONCLUSIONS These data suggest that the initial reinforcing effects of MDMA are modulated by 5-HT1A and/or 5-HT1B receptor mechanisms. The potential impact of these changes on the DAergic response relevant to self-administration and a possible role in conditioned reinforcement pertaining to acquisition of self-administration are discussed.
Collapse
Affiliation(s)
- Dane Aronsen
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Natasha Bukholt
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
5
|
Petri D, de Souza Silva M, Chao OH, Schnitzler A, Huston J. Serotonergic interaction between medial prefrontal cortex and mesotelencephalic DA system underlies cognitive and affective deficits in hemiparkinsonian rats. Neuroscience 2015; 307:51-63. [DOI: 10.1016/j.neuroscience.2015.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/25/2023]
|
6
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
7
|
Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. Mol Neurobiol 2015; 53:3891-3899. [DOI: 10.1007/s12035-015-9330-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
8
|
Di Miceli M, Gronier B. Psychostimulants and atomoxetine alter the electrophysiological activity of prefrontal cortex neurons, interaction with catecholamine and glutamate NMDA receptors. Psychopharmacology (Berl) 2015; 232:2191-205. [PMID: 25572531 DOI: 10.1007/s00213-014-3849-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022]
Abstract
RATIONALE Attention-deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neuropsychiatric disorder in childhood. Currently available ADHD drugs include the psychostimulants methylphenidate (MPH) and D-amphetamine (D-AMP), acting on norepinephrine and dopamine transporters/release, and atomoxetine (ATX), a selective norepinephrine uptake inhibitor. Recent evidence suggests an involvement of glutamate neurotransmission in the pathology and treatment of ADHD, via mechanisms to be clarified. OBJECTIVE We have investigated how ADHD drugs could modulate, through interaction with catecholamine receptors, basal and glutamate-induced excitability of pyramidal neurons in the prefrontal cortex (PFC), a region which plays a major role in control of attention and impulsivity. METHODS We have used the technique of extracellular single-unit recording in anaesthetised rats coupled with microiontophoresis. RESULTS Both MPH (1-3 mg/kg) and D-AMP (1-9 mg/kg) increased the firing activity of PFC neurons in a dopamine D1 receptor-dependent manner. ATX administration (1-6 mg/kg) also increased the firing of neurons, but this effect is not significantly reversed by D1 (SCH 23390) or alpha1 (prazosin) receptor antagonists but potentiated by alpha2 antagonist (yohimbine). All drugs induced a clear potentiation of the excitatory response of PFC neurons to the microiontophoretic application of the glutamate agonist N-methyl-D-aspartate (NMDA), but not to the glutamate agonist α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). The potentiating effect of D-AMP on NMDA-induced activation of PFC neurons was partially reversed or prevented by dopamine D1 receptor blockade. CONCLUSION Our data shows that increase in excitability of PFC neurons in basal conditions and via NMDA receptor activation may be involved in the therapeutic response to ADHD drugs.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | | |
Collapse
|
9
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
10
|
Hui YP, Zhang QJ, Zhang L, Chen L, Guo Y, Qiao HF, Wang Y, Liu J. Activation of prelimbic 5-HT1A receptors produces antidepressant-like effects in a unilateral rat model of Parkinson's disease. Neuroscience 2014; 268:265-75. [PMID: 24680938 DOI: 10.1016/j.neuroscience.2014.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/02/2014] [Accepted: 03/17/2014] [Indexed: 01/28/2023]
Abstract
Depression is a common symptom in Parkinson's disease (PD), but its pathophysiology remains unclear. Several lines of studies have revealed that the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex and 5-HT1A receptors are involved in the regulation of depression. In this study, we examined whether complete unilateral lesions of the medial forebrain bundle (MFB) using 6-hydroxydopamine in rats are able to induce depressive-like behaviors, the role of PrL 5-HT1A receptors in the regulation of these behaviors, and co-localization of 5-HT1A receptor and neuronal glutamate transporter EAAC1-immunoreactive (EAAC1-ir) neurons in the PrL. The MFB lesions induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. The intra-PrL injection of 5HT1A receptor agonist 8-OH-DPAT (50, 100, and 500ng/rat) increased sucrose consumption, and decreased immobility time in both sham-operated and the lesioned rats, indicating the induction of antidepressant effects. Furthermore, the intra-PrL injection of 5HT1A receptor antagonist WAY-100635 (60, 120, and 240ng/rat) showed a decrease in sucrose consumption, and an increase in immobility time, indicating the induction of depressive-like responses. However, the effective doses in the lesioned rats were higher than those in sham-operated rats, which attribute to down-regulation of 5-HT1A receptor expression on EAAC1-ir neurons in the PrL of the lesioned rats. These findings suggest that unilateral lesions of the MFB in rats may induce depressive-like behaviors, and 5-HT1A receptors of the PrL play an important role in the regulation of these behaviors.
Collapse
Affiliation(s)
- Y P Hui
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Q J Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - L Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - L Chen
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Y Guo
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - H F Qiao
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Y Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - J Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
11
|
Decreased response of interneurons in the medial prefrontal cortex to 5-HT1A receptor activation in the rat 6-hydroxydopamine Parkinson model. Neurol Sci 2014; 35:1181-7. [DOI: 10.1007/s10072-014-1669-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
|
12
|
Li LB, Han LN, Zhang QJ, Sun YN, Wang Y, Feng J, Zhang L, Wang T, Chen L, Liu J. The theta-related firing activity of parvalbumin-positive neurons in the medial septum-diagonal band of Broca complex and their response to 5-HT1A receptor stimulation in a rat model of Parkinson's disease. Hippocampus 2013; 24:326-40. [PMID: 24174292 DOI: 10.1002/hipo.22226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 11/10/2022]
Abstract
The parvalbumin (PV)-positive neurons in the medial septum-diagonal band of Broca complex (MS-DB) play an important role in the generation of hippocampal theta rhythm involved in cognitive functions. These neurons in this region express a high density of 5-HT1A receptors which regulate the neuronal activity and consequently affect the theta rhythm. In this study, we examined changes in the theta-related firing activity of PV-positive neurons in the MS-DB, their response to 5-HT1A receptor stimulation and the corresponding hippocampal theta rhythm, and the density of PV-positive neurons and their co-localization with 5-HT1A receptors in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The lesion of the SNc decreased the rhythmically bursting activity of PV-positive neurons and the peak frequency of hippocampal theta rhythm. Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT (0.5-128 µg/kg, i.v.) inhibited the firing rate of PV-positive neurons and disrupted rhythmically bursting activity of the neurons and the theta rhythm in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition and disruption in the lesioned rats were higher than that of sham-operated rats. Furthermore, local application of 8-OH-DPAT (0.005 μg) in the MS-DB also inhibited the firing rate of PV-positive neurons and disrupted their rhythmically bursting activity in sham-operated rats, while having no effect on PV-positive neurons in the lesioned rats. The lesion of the SNc decreased the density of PV-positive neurons in the MS-DB, and percentage of PV-positive neurons expressing 5-HT1A receptors. These results indicate that the lesion of the SNc leads to suppression of PV-positive neurons in the MS-DB and hippocampal theta rhythm. Furthermore, the lesion decreases the response of these neurons to 5-HT1A receptor stimulation, which attributes to dysfunction and/or down-regulation of 5-HT1A receptor expression on these neurons. These changes may be involved in cognitive impairments of Parkinson's disease.
Collapse
Affiliation(s)
- Li-Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT2A/2C receptor activation is decreased in rats with 6-hydroxydopamine lesions. Neuropharmacology 2013; 73:404-14. [DOI: 10.1016/j.neuropharm.2013.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
|
14
|
Hou C, Xue L, Feng J, Zhang L, Wang Y, Chen L, Wang T, Zhang QJ, Liu J. Unilateral lesion of the nigrostriatal pathway decreases the response of GABA interneurons in the dorsal raphe nucleus to 5-HT(1A) receptor stimulation in the rat. Neurochem Int 2012; 61:1344-56. [PMID: 23032407 DOI: 10.1016/j.neuint.2012.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 11/17/2022]
Abstract
This study examined the firing rate and pattern of electrophysiologically and chemically identified GABA interneurons in the dorsal raphe nucleus (DRN), and role of 5-HT(1A) receptor agonist 8-OH-DPAT and the medial prefrontal cortex (mPFC) in the firing activity in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The interneurons in rats with lesions of the SNc showed a more burst-firing, while having no change in the firing rate; the mPFC and combined mPFC and SNc lesions in rats decreased the firing rate of the interneurons and firing pattern shifted towards a more burst-firing compared to rats with sham lesions of the SNc, respectively. In rats with sham lesions of the SNc, administration of 8-OH-DPAT (1-243 μg/kg, i.v.) produced excitatory-inhibitory, excitatory and inhibitory effects in the firing rate of individual interneurons. However, when these effects were averaged over the group, 8-OH-DPAT had no significant effect on firing rate. In rats with lesions of the SNc, mPFC and the paired lesions, 8-OH-DPAT, at the same doses, inhibited all interneurons tested, respectively. Cumulative doses producing inhibition in rats with the paired lesions were higher than that of rats with lesions of the mPFC. In contrast to rats with sham lesions of the SNc, SNc lesion reduced expression of 5-HT(1A) receptor on parvalbumin positive neurons in the DRN, a subpopulation of GABA interneurons. Our results indicate that the SNc and mPFC regulate the firing activity of GABA interneurons in the DRN. Furthermore, response of likely GABA interneurons to systemic administration of 8-OH-DPAT is altered by lesion of the SNc and mPFC.
Collapse
Affiliation(s)
- C Hou
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|