1
|
Folda A, Scalcon V, Tonolo F, Rigobello MP, Bindoli A. Thiamine disulfide derivatives in thiol redox regulation: Role of thioredoxin and glutathione systems. Biofactors 2025; 51:e2121. [PMID: 39302148 DOI: 10.1002/biof.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Thiamine (vitamin B1), under the proper conditions, is able to reversibly open the thiazole ring, forming a thiol-bearing molecule that can be further oxidized to the corresponding disulfide. To improve the bioavailability of the vitamin, several derivatives of thiamine in the thioester or disulfide form were developed and extensively studied over time, as apparent from the literature. We have examined three thiamine-derived disulfides: thiamine disulfide, sulbutiamine, and fursultiamine with reference to their intervention in modulating the thiol redox state. First, we observed that both glutathione and thioredoxin (Trx) systems were able to reduce the three disulfides. In particular, thioredoxin reductase (TrxR) reduced these disulfides either directly or in the presence of Trx. In Caco-2 cells, the thiamine disulfide derivatives did not modify the total thiol content, which, however, was significantly decreased by the concomitant inhibition of TrxR. When oxidative stress was induced by tert-butyl hydroperoxide, the thiamine disulfides exerted a protective effect, indicating that the thiol form deriving from the reduction of the disulfides might be the active species. Further, the thiamine disulfides examined were shown to increase the nuclear levels of the transcription factor nuclear factor erythroid 2 related factor 2 and to stimulate both expression and activity of NAD(P)H quinone dehydrogenase 1 and TrxR. However, other enzymes of the glutathione and Trx systems were scarcely affected. As the thiol redox balance plays a critical role in oxidative stress and inflammation, the information presented can be of interest for further research, considering the potential favorable effect exerted in the cell by many sulfur compounds, including the thiamine-derived disulfides.
Collapse
Affiliation(s)
- Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience (CNR), University of Padova, Padova, Italy
| |
Collapse
|
2
|
Cardinali CAEF, Martins YA, Moraes RCM, Costa AP, Alencar MB, Silber AM, Torrão AS. Exploring the Therapeutic Potential of Benfotiamine in a Sporadic Alzheimer's-Like Disease Rat Model: Insights into Insulin Signaling and Cognitive function. ACS Chem Neurosci 2024; 15:2982-2994. [PMID: 39007352 PMCID: PMC11342302 DOI: 10.1021/acschemneuro.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.
Collapse
Affiliation(s)
- Camila A. E. F. Cardinali
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Yandara A. Martins
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ruan C. M. Moraes
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department
of Psychiatry & Behavioral Neurosciences, The University of Alabama at Birmingham, Birmingham Alabama 35294, United States
| | - Andressa P. Costa
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayke B. Alencar
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ariel M. Silber
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andrea S. Torrão
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
4
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
5
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
6
|
Bozic I, Lavrnja I. Thiamine and benfotiamine: Focus on their therapeutic potential. Heliyon 2023; 9:e21839. [PMID: 38034619 PMCID: PMC10682628 DOI: 10.1016/j.heliyon.2023.e21839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Thiamine, also known as vitamin B1, is an essential nutrient that plays a crucial role in energy metabolism and overall health. It is a water-soluble vitamin that plays an important role in the conversion of carbohydrates into energy in the body. Thiamine is essential for the proper functioning of the nervous system, heart and muscles. Thiamine deficiency is a life-threatening disease that leads to various disorders and lesions in the nerves and brain, at least in vertebrates. Several thiamine precursors with higher bioavailability have been developed to compensate for thiamine deficiency, including benfotiamine. Benfotiamine is more bioavailable and has higher tissue penetration than thiamine. Studies have shown its antioxidant and anti-inflammatory potential in activated immune and glial cells. It also improves complications observed in type 2 diabetes and has beneficial effects in mouse models of neurodegenerative disease. Benfotiamine represents an off-the-shelf agent used to support nerve health, promote healthy aging and support glucose metabolism. Accordingly, the present review aimed to provide an overview of the neuroprotective effects of thiamine/benfotiamine in the context of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep 2023; 43:BSR20230374. [PMID: 37389565 PMCID: PMC10568373 DOI: 10.1042/bsr20230374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Thiamine (thiamin, B1) is a vitamin necessary for proper cell function. It exists in a free form as a thiamine, or as a mono-, di- or triphosphate. Thiamine plays a special role in the body as a coenzyme necessary for the metabolism of carbohydrates, fats and proteins. In addition, it participates in the cellular respiration and oxidation of fatty acids: in malnourished people, high doses of glucose result in acute thiamine deficiency. It also participates in energy production in the mitochondria and protein synthesis. In addition, it is also needed to ensure the proper functioning of the central and peripheral nervous system, where it is involved in neurotransmitter synthesis. Its deficiency leads to mitochondrial dysfunction, lactate and pyruvate accumulation, and consequently to focal thalamic degeneration, manifested as Wernicke's encephalopathy or Wernicke-Korsakoff syndrome. It can also lead to severe or even fatal neurologic and cardiovascular complications, including heart failure, neuropathy leading to ataxia and paralysis, confusion, or delirium. The most common risk factor for thiamine deficiency is alcohol abuse. This paper presents current knowledge of the biological functions of thiamine, its antioxidant properties, and the effects of its deficiency in the body.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jerzy Mrowicki
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Grzegorz Dragan
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
8
|
Rowland FE, Richter CA, Tillitt DE, Walters DM. Evolutionary and ecological correlates of thiaminase in fishes. Sci Rep 2023; 13:18147. [PMID: 37875540 PMCID: PMC10598016 DOI: 10.1038/s41598-023-44654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Thiamine (vitamin B1) is required by all living organisms in multiple metabolic pathways. It is scarce in natural systems, and deficiency can lead to reproductive failure, neurological issues, and death. One major cause of thiamine deficiency is an overreliance on diet items containing the enzyme thiaminase. Thiaminase activity has been noted in many prey fishes and linked to cohort failure in salmonid predators that eat prey fish with thiaminase activity, yet it is generally unknown whether evolutionary history, fish traits, and/or environmental conditions lead to production of thiaminase. We conducted literature and GenBank BLAST sequence searches to collect thiaminase activity data and sequence homology data in expressed protein sequences for 300 freshwater and marine fishes. We then tested whether presence or absence of thiaminase could be predicted by evolutionary relationships, trophic level, omega-3 fatty acid concentrations, habitat, climate, invasive potential, and body size. There was no evolutionary relationship with thiaminase activity. It first appears in Class Actinoptergyii (bony ray-finned fishes) and is present across the entire Actinoptergyii phylogeny in both primitive and derived fish orders. Instead, ecological factors explained the most variation in thiaminase: fishes were more likely to express thiaminase if they fed closer to the base of the food web, were high in polyunsaturated fatty acids, lived in freshwater, and were from tropical climates. These data provide a foundation for understanding sources of thiaminase leading to thiamine deficiency in fisheries and other organisms, including humans that eat uncooked fish.
Collapse
Affiliation(s)
- Freya E Rowland
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA.
| | - Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| |
Collapse
|
9
|
Wen A, Zhu Y, Yee SW, Park BI, Giacomini KM, Greenberg AS, Newman JW. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Metabolites 2023; 13:885. [PMID: 37623829 PMCID: PMC10456376 DOI: 10.3390/metabo13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.
Collapse
Affiliation(s)
- Anita Wen
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Ying Zhu
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Brian I. Park
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Andrew S. Greenberg
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- USDA Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
10
|
Wei JD, Xu X. Oxidative stress in Wernicke's encephalopathy. Front Aging Neurosci 2023; 15:1150878. [PMID: 37261263 PMCID: PMC10229051 DOI: 10.3389/fnagi.2023.1150878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Wernicke's encephalopathy (WE) is a severe life-threatening disease that occurs due to vitamin B1 (thiamine) deficiency (TD). It is characterized by acute mental disorder, ataxia, and ophthalmoplegia. TD occurs because of the following reasons: insufficient intake, increased demand, and long-term drinking due to corresponding organ damage or failure. Recent studies showed that oxidative stress (OS) can damage organs and cause TD in the brain, which further leads to neurodegenerative diseases, such as WE. In this review, we discuss the effects of TD caused by OS on multiple organ systems, including the liver, intestines, and brain in WE. We believe that strengthening the human antioxidant system and reducing TD can effectively treat WE.
Collapse
Affiliation(s)
- Jun-Dong Wei
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Xueming Xu
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou, China
| |
Collapse
|
11
|
Muacevic A, Adler JR, Chang JS, Lui F. Wernicke's Encephalopathy Presenting With Confusion in a Patient With Schizophrenia. Cureus 2022; 14:e32320. [PMID: 36628041 PMCID: PMC9825115 DOI: 10.7759/cureus.32320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Wernicke's encephalopathy (WE) is a neuropsychiatric condition caused by thiamine deficiency often associated with alcoholism. Other less common causes include prolonged gastroenterology problems or dietary insufficiencies associated with hyperemesis gravidarum, bariatric surgery, and eating disorders. Prolonged WE without proper treatment can lead to the chronic and irreversible condition, Wernicke-Korsakoff syndrome. Despite being known for its classic triad of clinical symptoms (nystagmus/ophthalmoplegia, gait ataxia, and confusion), WE patients more commonly present with non-specific symptoms of altered mental status. Obscure clinical presentations often led to delays in the appropriate of patients with WE. We are presenting a case of WE that is unusual because the underlying cause is schizophrenia and the lack of alcohol use. For a punctual diagnosis, a high index of suspicion is essential to prevent further exacerbation of neuronal death seen in WE. IV thiamine should be administered to any patient with acute encephalopathy or altered mental status, given its low cost and lack of side effects.
Collapse
|
12
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
13
|
Wong DM, Young L, Dembek KA. Blood thiamine (vitamin B 1 ), ascorbic acid (vitamin C), and cortisol concentrations in healthy and ill neonatal foals. J Vet Intern Med 2021; 35:1988-1994. [PMID: 34056771 PMCID: PMC8295700 DOI: 10.1111/jvim.16188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Sepsis is common in foals and several treatments are used to facilitate recovery. Evidence in people suggests an association between low blood concentrations of thiamine, ascorbic acid, and cortisol and sepsis, with further evidence suggesting that administration of hydrocortisone, thiamine, and ascorbic acid may improve outcome. No information is available with regard to these treatments in foals. Hypothesis/Objectives To compare blood concentrations of thiamine, ascorbic acid, and cortisol in healthy and ill foals. Animals Fifteen healthy and 27 ill (septic and sick‐nonseptic [SNS]) foals were evaluated at admission. Fewer healthy and ill foals were available for sampling at 72 and 120 hours. Methods Prospective study. Blood was collected from healthy foals at 12 (n = 15), 72 (n = 11), and 120 (n = 9) hours of age and from ill foals <48 hours old at admission (n = 27), 72 (n = 8), and 120 (n = 8) hours after presentation. Thiamine, ascorbic acid, and cortisol concentrations were measured in blood samples and compared between groups of foals. Results Blood concentrations of thiamine were significantly lower in septic compared to healthy foals at 72 (median, 1.72 ng/mL; P = .02) and 120 (median, 2.0 ng/mL; P = .04) hours after admission; blood concentrations of ascorbic acid also were significantly lower in septic compared to healthy foals at 72 (median, 4.4 μg/mL; P = .02) and 120 hours (median, 4.8 μg/mL; P = .03). Blood concentrations of ascorbic acid were lower in SNS compared to healthy foals at 72 (median, 6.9 μg/mL; P = .03) and 120 (median, 6.4 μg/mL; P = .04) hours after admission. Serum cortisol concentrations were significantly higher at admission in septic (median, 4.23 μg/dL) compared to SNS (median, 1.8 μg/dL; P = .01) and healthy (median, 2.2 μg/dL; P = .002) foals. Conclusions and Clinical Importance A potential association exists between illness in foals and lower blood concentrations of thiamine and ascorbic acid during hospitalization. Additional studies are needed to examine a larger population of foals and determine the clinical impact of low vitamin concentrations, if any, on morbidity and mortality.
Collapse
Affiliation(s)
- David M Wong
- Lloyd Veterinary Medical Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Katarzyna A Dembek
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
14
|
Sambon M, Wins P, Bettendorff L. Neuroprotective Effects of Thiamine and Precursors with Higher Bioavailability: Focus on Benfotiamine and Dibenzoylthiamine. Int J Mol Sci 2021; 22:ijms22115418. [PMID: 34063830 PMCID: PMC8196556 DOI: 10.3390/ijms22115418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Thiamine (vitamin B1) is essential for brain function because of the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. In order to compensate thiamine deficiency, several thiamine precursors with higher bioavailability were developed since the 1950s. Among these, the thioester benfotiamine (BFT) has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. BFT has no adverse effects and improves cognitive outcome in patients with mild Alzheimer’s disease (AD). Recent in vitro studies show that another thiamine thioester, dibenzoylthiamine (DBT) is even more efficient that BFT, especially with respect to its anti-inflammatory potency. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified metabolites in particular open thiazole ring derivatives. The identification of the active neuroprotective derivatives and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental and psychiatric conditions.
Collapse
|
15
|
Hazell AS, Butterworth RF. Region-selective permeability of the blood-brain barrier to α-aminoisobutyric acid during thiamine deficiency and following its reversal. Metab Brain Dis 2021; 36:239-246. [PMID: 33245475 DOI: 10.1007/s11011-020-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Thiamine deficiency (TD) results in focal lesions in several regions of the rat brain including the thalamus and inferior colliculus. Since alterations in blood-brain barrier (BBB) integrity may play a role in this damage, we have examined the influence of TD on the unidirectional blood-to-brain transfer constant (Ki) of the low molecular weight species α-aminoisobutyric acid (AIB) in vulnerable and non-vulnerable brain regions at different stages during progression of the disorder, and following its reversal with thiamine. Analysis of the regional distribution of Ki values showed early (day 10) increased transfer of [14C]-AIB across the BBB in the vulnerable medial thalamus as well as the non-vulnerable caudate and hippocampus. At the acute symptomatic stage (day 14), more widespread BBB permeability changes were detected in most areas including the lateral thalamus, inferior colliculus, and non-vulnerable cerebellum and pons. Twenty-four hours following thiamine replenishment, a heterogeneous pattern of increased BBB permeability was observed in which many structures maintained increased uptake of [14C]-AIB. No increase in the [3H]-dextran space, a marker of intravascular volume, was detected in brain regions during the progress of TD, suggesting that BBB permeability to this large tracer was unaffected. These results indicate that BBB opening i) occurs early during TD, ii) is not restricted to vulnerable areas of the brain, iii) is progressive, iv) persists for at least 24 h following treatment with thiamine, and v) is likely selective in nature, depending on the molecular species being transported.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada.
| | | |
Collapse
|
16
|
Ott M, Werneke U. Wernicke's encephalopathy - from basic science to clinical practice. Part 1: Understanding the role of thiamine. Ther Adv Psychopharmacol 2020; 10:2045125320978106. [PMID: 33447357 PMCID: PMC7780320 DOI: 10.1177/2045125320978106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Wernicke's encephalopathy (WE) is an acute neuropsychiatric state. Untreated, WE can lead to coma or death, or progress to Korsakoff syndrome (KS) - a dementia characterized by irreversible loss of anterograde memory. Thiamine (vitamin B1) deficiency lies at the heart of this condition. Yet, our understanding of thiamine regarding prophylaxis and treatment of WE remains limited. This may contribute to the current undertreatment of WE in clinical practice. The overall aim of this review is to identify the best strategies for prophylaxis and treatment of WE in regard to (a) dose of thiamine, (b) mode of administration, (c) timing of switch from one mode of administration to another, (d) duration of administration, and (e) use of magnesium along thiamine as an essential cofactor. Evidence from randomized controlled trials and other intervention studies is virtually absent. Therefore, we have to resort to basic science for proof of principle instead. Here, we present the first part of our clinical review, in which we explore the physiology of thiamine and the pathophysiology of thiamine deficiency. We first explore both of these in their historical context. We then review the pharmacodynamics and pharmacokinetics of thiamine, exploring the roles of the six currently known thiamine compounds, their transporters, and target enzymes. We also explore the significance of magnesium as a cofactor in thiamine-facilitated enzymatic reactions and thiamine transport. In the second (forthcoming) part of this review, we will use the findings of the current review to make evidence-based inferences about strategies for prophylaxis and treatment of WE.
Collapse
Affiliation(s)
- Michael Ott
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Ursula Werneke
- Department of Clinical Sciences, Division of Psychiatry, Sunderby Research Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Marik PE, Kory P, Varon J, Iglesias J, Meduri GU. MATH+ protocol for the treatment of SARS-CoV-2 infection: the scientific rationale. Expert Rev Anti Infect Ther 2020; 19:129-135. [PMID: 32809870 DOI: 10.1080/14787210.2020.1808462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION COVID-19 disease progresses through a number of distinct phases. The management of each phase is unique and specific. The pulmonary phase of COVID-19 is characterized by an organizing pneumonia with profound immune dysregulation, activation of clotting, and a severe microvascular injury culminating in severe hypoxemia. The core treatment strategy to manage the pulmonary phase includes the combination of methylprednisolone, ascorbic acid, thiamine, and heparin (MATH+ protocol). The rationale for the MATH+ protocol is reviewed in this paper. AREAS COVERED We provide an overview on the pathophysiological changes occurring in patients with COVID-19 respiratory failure and a treatment strategy to reverse these changes thereby preventing progressive lung injury and death. EXPERT OPINION While there is no single 'Silver Bullet' to cure COVID-19, we believe that the severely disturbed pathological processes leading to respiratory failure in patients with COVID-19 organizing pneumonia will respond to the combination of Methylprednisone, Ascorbic acid, Thiamine, and full anticoagulation with Heparin (MATH+ protocol).We believe that it is no longer ethically acceptable to limit management to 'supportive care' alone, in the face of effective, safe, and inexpensive medications that can effectively treat this disease and thereby reduce the risk of complications and death.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School , Norfolk, VA, USA
| | - Pierre Kory
- Trauma and Life Support Center, Critical Care Service, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Joseph Varon
- Department of Critical Care Medicine, United Memorial, Medical Center , Houston, TX, USA
| | - Jose Iglesias
- Department of Nephrology and Critical Care, Hackensack Meridian School of Medicine at Seton Hall University , Nutley, NJ, USA.,Department of Nephrology and Critical Care, Community Medical Center , Toms River, NJ, USA
| | - G Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center , Memphis, TN, USA.,Memphis Veterans Affairs Medical Center , Memphis, TN, USA
| |
Collapse
|
18
|
Reddy PR, Samavedam S, Aluru N, Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently? Indian J Crit Care Med 2020; 24:649-652. [PMID: 33024369 PMCID: PMC7519600 DOI: 10.5005/jp-journals-10071-23515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims and objective To study the effects of various components of “metabolic resuscitation” on the shock reversal among patients with septic shock Introduction Sepsis is characterized by dysregulated host response to infection. Mitochondrial dysfunction which occurs early in sepsis is associated with multiorgan dysfunction. Therapies such as adequate resuscitation, early administration of antibiotics, and aggressive monitoring reduced mortality substantially but it still remains high for those with septic shock. Combination of vitamin C, hydrocortisone, and thiamine improved outcome in a retrospective study, but how effective is this therapy in isolation compared to combination has to be known before implementation. Materials and methods This study is single-center, prospective, randomized nonblinded trial done in septic shock patients admitted to the medical intensive care unit. Subjects were randomized to three groups of hydrocortisone (H), hydrocortisone, ascorbic acid (HA), hydrocortisone, ascorbic acid, thiamine (HAT). Following randomization, they received hydrocortisone 200 mg over 24 hours as infusion, intravenous ascorbic acid 1.5 g every 6 hours, thiamine 200 mg twice daily as allotted and continued till shock reversal or death. Primary outcome is time to shock reversal and secondary outcome is time to vasopressor dose reduction from hemodynamic SOFA score 4–3. Results Twenty seven subjects were randomized into 3 groups of 9 each, of which 17 (63%) patients met primary outcome and secondary outcome has been studied in 16 (59%) patients. Eight patients (29.5%) died and did not meet either outcome and two patients (7.5%) met secondary outcome but not primary outcome because of discharge to other hospital. There is no difference in time to shock reversal [mean, SD in H (7422, 8348), HA (2528, 3086), HAT (1860, 749), p value 0.17]. There is no difference in time to shock reversal from hemodynamic SOFA 4–3 [mean, SD in H (4935, 6406), HA (2310, 2515), HAT (1800, 1282), p value 0.35]. Conclusion In patients with septic shock, there is no difference in time to shock reversal comparing individual components of metabolic resuscitation. How to cite this article Reddy PR, Samavedam S, Aluru N, Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently? Indian J Crit Care Med 2020;24(8):649–652.
Collapse
Affiliation(s)
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Narmada Aluru
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Sangeeta Yelle
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Boggu Rajyalakshmi
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Maguire D, Talwar D, Burns A, Catchpole A, Stefanowicz F, Robson G, Ross DP, Young D, Ireland A, Forrest E, Galloway P, Adamson M, Colgan E, Bell H, Orr L, Kerr JL, Roussis X, McMillan DC. A prospective evaluation of thiamine and magnesium status in relation to clinicopathological characteristics and 1-year mortality in patients with alcohol withdrawal syndrome. J Transl Med 2019; 17:384. [PMID: 31752901 PMCID: PMC6873772 DOI: 10.1186/s12967-019-02141-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Alcohol withdrawal syndrome (AWS) is routinely treated with B-vitamins. However, the relationship between thiamine status and outcome is rarely examined. The aim of the present study was to examine the relationship between thiamine and magnesium status in patients with AWS. Methods Patients (n = 127) presenting to the Emergency Department with AWS were recruited to a prospective observational study. Blood samples were drawn to measure whole blood thiamine diphosphate (TDP) and serum magnesium concentrations. Routine biochemistry and haematology assays were also conducted. The Glasgow Modified Alcohol Withdrawal Score (GMAWS) measured severity of AWS. Seizure history and current medications were also recorded. Results The majority of patients (99%) had whole blood TDP concentration within/above the reference interval (275–675 ng/gHb) and had been prescribed thiamine (70%). In contrast, the majority of patients (60%) had low serum magnesium concentrations (< 0.75 mmol/L) and had not been prescribed magnesium (93%). The majority of patients (66%) had plasma lactate concentrations above 2.0 mmol/L. At 1 year, 13 patients with AWS had died giving a mortality rate of 11%. Male gender (p < 0.05), BMI < 20 kg/m2 (p < 0.01), GMAWS max ≥ 4 (p < 0.05), elevated plasma lactate (p < 0.01), low albumin (p < 0.05) and elevated serum CRP (p < 0.05) were associated with greater 1-year mortality. Also, low serum magnesium at time of recruitment to study and low serum magnesium at next admission were associated with higher 1-year mortality rates, (84% and 100% respectively; both p < 0.05). Conclusion The prevalence of low circulating thiamine concentrations were rare and it was regularly prescribed in patients with AWS. In contrast, low serum magnesium concentrations were common and not prescribed. Low serum magnesium was associated more severe AWS and increased 1-year mortality.
Collapse
Affiliation(s)
- Donogh Maguire
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK. .,Academic Unit of Surgery, School of Medicine, University of Glasgow, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK.
| | - Dinesh Talwar
- The Scottish Trace Element and Micronutrient Diagnostic and Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK
| | - Alana Burns
- The Scottish Trace Element and Micronutrient Diagnostic and Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK.,Department of Biochemistry, Queen Elizabeth University Hospital, Glasgow, G51 4TF, Scotland, UK
| | - Anthony Catchpole
- The Scottish Trace Element and Micronutrient Diagnostic and Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK
| | - Fiona Stefanowicz
- The Scottish Trace Element and Micronutrient Diagnostic and Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK
| | - Gordon Robson
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - David P Ross
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK.,Academic Unit of Surgery, School of Medicine, University of Glasgow, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK
| | - David Young
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH, Scotland, UK
| | - Alastair Ireland
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Ewan Forrest
- Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow, G4 0SF, Scotland, UK
| | - Peter Galloway
- Department of Biochemistry, Queen Elizabeth University Hospital, Glasgow, G51 4TF, Scotland, UK
| | - Michael Adamson
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Eoghan Colgan
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Hannah Bell
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Lesley Orr
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Joanna-Lee Kerr
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Xen Roussis
- Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, Scotland, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, Scotland, UK
| |
Collapse
|
20
|
Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One 2019; 14:e0221016. [PMID: 31415630 PMCID: PMC6695114 DOI: 10.1371/journal.pone.0221016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a recently identified, web-like, extracellular structure composed of decondensed nuclear DNA and associated antimicrobial granules. NETs are extruded into the extracellular environment via the reactive oxygen species (ROS)-dependent cell death pathway participating in inflammation and autoimmune diseases. Transketolase (TKT) is a thiamine pyrophosphate (vitamin B1)-dependent enzyme that links the pentose phosphate pathway with the glycolytic pathway by feeding excess sugar phosphates into the main carbohydrate metabolic pathways to generate biosynthetic reducing capacity in the form of NADPH as a substrate for ROS generation. In this work, TKT was selected as a lead candidate from 24 NET-associated proteins obtained by literature screening and knowledge gap assessment. Consequently, we determined whether TKT influenced NET formation in vitro. We firstly established that the release of ROS-dependent NETs was significantly decreased after purified human PMNs were pretreated with oxythiamine, a TKT inhibitor, and in a concentration dependent manner. As a cofactor for TKT reaction, we evaluated the release of NET formation either in vitamin B1 treatment or in combined use of oxythiamine and vitamin B1, and found that those treatments also exerted a significant suppressive effect on the amount of NET-DNA and ROS production. The regulation of TKT by oxythiamine and/or vitamin B1 may therefore be associated with response to the modulation of NET formation by preventing generation of excessive NETs in inflammatory diseases.
Collapse
|
21
|
Sambon M, Napp A, Demelenne A, Vignisse J, Wins P, Fillet M, Bettendorff L. Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon 2019; 5:e01710. [PMID: 31193162 PMCID: PMC6520661 DOI: 10.1016/j.heliyon.2019.e01710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Background Benfotiamine (BFT) is a synthetic thiamine precursor with high bioavailability. It is efficient in treating complications of type 2 diabetes and has beneficial effects in mouse models of neurodegenerative diseases. The mechanism of action of BFT remains unknown, though it is sometimes suggested that it may be linked to increased thiamine diphosphate (ThDP) coenzyme function. Methods We used a mouse neuroblastoma cell line (Neuro2a) grown in thiamine-restricted medium. The cells were stressed by exposure to paraquat (PQ) or amyloid β1-42 peptide in the presence or absence of BFT and the cell survival was measured using the MTT method. In each case, BFT was compared with sulbutiamine (SuBT), an unrelated thiamine precursor, and thiamine. Metabolites of BFT were determined by HPLC and mass spectrometry. Results At 50 μM, BFT protects the cells against PQ and amyloid β1-42 peptide-induced toxicity with the same efficacy. Protective effects were also observed with SuBT and with higher concentrations of thiamine. The main metabolites of BFT were thiamine and S-benzoylthiamine (S-BT). Treatment with both precursors induces a strong increase in intracellular content of thiamine. Protective effects of BFT and SuBT are directly related to thiamine (but not ThDP) levels in Neuro2a cells. Conclusions BFT, SuBT and thiamine all protect the cells against oxidative stress, suggesting an antioxidant effect of thiamine. Our results are not in favor of a direct ROS scavenging effect of thiamine but rather an indirect effect possibly mediated by some antioxidant signaling pathway. It is however not clear whether this effect is due to thiamine itself, its thiol form or an unknown metabolite. General significance Our results suggest a role of thiamine in protection against oxidative stress, independent of the coenzyme function of thiamine diphosphate.
Collapse
Key Words
- ARE, antioxidant response element
- BFT, benfotiamine
- Cell biology
- FBS, fetal bovine serum
- Neuroscience
- O-BT, O-benzoylthiamine
- PQ, paraquat
- ROS, reactive oxygen species
- S-BT, S-benzoylthiamine
- SuBT, sulbutiamine
- TPK, thiamine pyrophosphokinase
- ThDP, thiamine diphosphate
- ThMP, thiamine monophosphate
Collapse
Affiliation(s)
- Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Aurore Napp
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Fama R, Le Berre AP, Hardcastle C, Sassoon SA, Pfefferbaum A, Sullivan EV, Zahr NM. Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism. Addict Biol 2019; 24:290-302. [PMID: 29243370 DOI: 10.1111/adb.12584] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/12/2017] [Accepted: 10/29/2017] [Indexed: 01/14/2023]
Abstract
Variations in pattern and extent of cognitive and motor impairment occur in alcoholism (ALC). Causes of such heterogeneity are elusive and inconsistently accounted for by demographic or alcohol consumption differences. We examined neurological and nutritional factors as possible contributors to heterogeneity in impairment. Participants with ALC (n = 96) and a normal comparison group (n = 41) were examined on six cognitive and motor domains. Signs of historically determined subclinical Wernicke's encephalopathy were detected using the Caine et al. criteria, which were based on postmortem examination and chart review of antemortem data of alcoholic cases with postmortem evidence for Wernicke's encephalopathy. Herein, four Caine criteria provided quantification of dietary deficiency, cerebellar dysfunction, low general cognitive functioning and oculomotor abnormalities in 86 of the 96 ALC participants. Subgroups based on Caine criteria yielded a graded effect, where those meeting more criteria exhibited greater impairment than those meeting no to fewer criteria. These results could not be accounted for by history of drug dependence. Multiple regression indicated that compromised performance on ataxia, indicative of cerebellar dysfunction, predicted non-mnemonic and upper motor deficits, whereas low whole blood thiamine level, consistent with limbic circuit dysfunction, predicted mnemonic deficits. This double dissociation indicates biological markers that contribute to heterogeneity in expression of functional impairment in ALC. That non-mnemonic and mnemonic deficits are subserved by the dissociable neural systems of frontocerebellar and limbic circuitry, both commonly disrupted in ALC, suggests neural mechanisms that can differentially affect selective functions, thereby contributing to heterogeneity in pattern and extent of dysfunction in ALC.
Collapse
Affiliation(s)
- Rosemary Fama
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| | - Anne-Pascale Le Berre
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
| | - Cheshire Hardcastle
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| | | | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| |
Collapse
|
23
|
Marik PE. Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on Ascorbic Acid. Nutrients 2018; 10:nu10111762. [PMID: 30441816 PMCID: PMC6265973 DOI: 10.3390/nu10111762] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a devastating disease that carries an enormous toll in terms of human suffering and lives lost. Over 100 novel pharmacologic agents that targeted specific molecules or pathways have failed to improve the outcome of sepsis. Preliminary data suggests that the combination of Hydrocortisone, Ascorbic Acid and Thiamine (HAT therapy) may reduce organ failure and mortality in patients with sepsis and septic shock. HAT therapy is based on the concept that a combination of readily available, safe and cheap agents, which target multiple components of the host’s response to an infectious agent, will synergistically restore the dysregulated immune response and thereby prevent organ failure and death. This paper reviews the rationale for HAT therapy with a focus on vitamin C.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
24
|
Nakajima K, Masubuchi Y, Ito Y, Inohana M, Takino M, Saegusa Y, Yoshida T, Sugita-Konishi Y, Shibutani M. Developmental exposure of citreoviridin transiently affects hippocampal neurogenesis targeting multiple regulatory functions in mice. Food Chem Toxicol 2018; 120:590-602. [DOI: 10.1016/j.fct.2018.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/18/2022]
|
25
|
Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N, Xu H, Starkov AA, Bettendorff L, Hushpulian DM, Smirnova NA, Gazaryan IG, Kaidery NA, Wakade S, Calingasan NY, Thomas B, Gibson GE, Dumont M, Beal MF. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet 2018; 27:2874-2892. [PMID: 29860433 PMCID: PMC6077804 DOI: 10.1093/hmg/ddy201] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aβ) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aβ burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Victor Tapias
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shari Jainuddin
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Manuj Ahuja
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Cliona Stack
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ceyhan Elipenahli
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Meri Gerges
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Natalia Starkova
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hui Xu
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Dmitry M Hushpulian
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
- Veropharm, Abbott EPD, 115088 Moscow, Russia
| | - Natalya A Smirnova
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
| | - Irina G Gazaryan
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA
- Department of Enzymology, School of Chemistry, 119991 Moscow, Russia
| | - Navneet A Kaidery
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Sushama Wakade
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Noel Y Calingasan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bobby Thomas
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Magali Dumont
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Flint Beal
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
26
|
Thalamic Proteome Changes and Behavioral Impairments in Thiamine-deficient Rats. Neuroscience 2018; 385:181-197. [DOI: 10.1016/j.neuroscience.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/24/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
|
27
|
Zera K, Zastre J. Stabilization of the hypoxia-inducible transcription Factor-1 alpha (HIF-1α) in thiamine deficiency is mediated by pyruvate accumulation. Toxicol Appl Pharmacol 2018; 355:180-188. [PMID: 30008376 DOI: 10.1016/j.taap.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022]
Abstract
Vitamin B1, or thiamine is a critical enzyme cofactor required for metabolic function and energy production. Thiamine deficiency (TD) is common in various diseases, and results in severe neurological complications due to diminished mitochondrial function, oxidative stress, excitotoxicity and inflammation. These pathological sequelae result in apoptotic cell death in both neurons and astrocytes in distinct regions, in particular the thalamus and mammillary bodies. Comparable histological injuries in patients with hypoxia/ischemia (H/I) have also been described, suggesting a congruency between the cellular responses to these stresses. Analogous to H/I, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α) even without changes in physiological oxygen levels. However, the mechanism of HIF-1α stabilization in TD is currently unknown. Using a pyruvate assay, we have demonstrated that TD induces pyruvate accumulation in mouse primary astrocytes which correlates to an increase in HIF-1α expression. Additionally, we utilized an enzymatic assay for pyruvate dehydrogenase to demonstrate a reduction in catalytic activity during TD due to lack of available thiamine pyrophosphate cofactor, resulting in the observed pyruvate accumulation. Finally, a pyruvate kinase inhibitor which limited pyruvate accumulation was utilized to demonstrate the role of pyruvate accumulation in HIF-1α stabilization during TD. These results reveal that stabilization of HIF-1α protein in TD centralizes on pyruvate accumulation in mouse primary astrocytes due to metabolic disruption of PDH.
Collapse
Affiliation(s)
- Kristy Zera
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602, Georgia
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602, Georgia.
| |
Collapse
|
28
|
Abdul-Muneer PM, Alikunju S, Schuetz H, Szlachetka AM, Ma X, Haorah J. Impairment of Thiamine Transport at the GUT-BBB-AXIS Contributes to Wernicke’s Encephalopathy. Mol Neurobiol 2017; 55:5937-5950. [DOI: 10.1007/s12035-017-0811-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
|
29
|
Ding D, Jiang H, Chen GD, Longo-Guess C, Muthaiah VPK, Tian C, Sheppard A, Salvi R, Johnson KR. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice. Aging (Albany NY) 2017; 8:730-50. [PMID: 26977590 PMCID: PMC4925825 DOI: 10.18632/aging.100927] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | - Cong Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Adam Sheppard
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
30
|
Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells. Sci Rep 2017; 7:10632. [PMID: 28878400 PMCID: PMC5587765 DOI: 10.1038/s41598-017-10878-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggest that p53 is a key coordinator of cellular events triggered by oxidative stress often associated with the impairment in thiamine metabolism and its functions. However, there are limited data regarding the pursuant feedback between p53 transactivation and thiamine homeostasis. Impairment in thiamine metabolism can be induced experimentally via interference with the thiamine uptake and/or inhibition of the thiamin pyrophosphate–dependent enzymes using thiamine antagonists - amprolium (AM), oxythiamine (OT) or pyrithiamine (PT). We found that exposure of neuronally differentiated SH-SY5Y cells to AM, OT and PT triggered upregulation of p53 gene expression, post-translational modification of p53 via phosphorylation and activation of p53 DNA-binding activity. Phosphorylation of p53 at Ser20 was equally efficient in upregulation of thiamine transporter 1 (THTR1) by all antagonists. However, induction of the expressions of the pyruvate dehydrogenase E1 component subunit beta (PDHB) and oxoglutarate dehydrogenase (OGDH) required dual phosphorylation of p53 at Ser9 and Ser20, seen in cells treated with PT and OT. Moreover, pretreatment of the cells with a decoy oligonucleotide carrying wild-type p53-response element markedly attenuated OT-induced THTR1, PDHB and OGDH gene expression suggesting an important role of p53 in transactivation of these genes. Finally, analysis of gene and metabolic networks showed that OT triggers cell apoptosis through the p53-dependent intrinsic pathway.
Collapse
|
31
|
Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 2016; 54:5440-5448. [PMID: 27596507 DOI: 10.1007/s12035-016-0079-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.
Collapse
|
32
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Reduced regional brain cortical thickness in patients with heart failure. PLoS One 2015; 10:e0126595. [PMID: 25962164 PMCID: PMC4427362 DOI: 10.1371/journal.pone.0126595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
AIMS Autonomic, cognitive, and neuropsychologic deficits appear in heart failure (HF) subjects, and these compromised functions depend on cerebral cortex integrity in addition to that of subcortical and brainstem sites. Impaired autoregulation, low cardiac output, sleep-disordered-breathing, hypertension, and diabetic conditions in HF offer considerable potential to affect cortical areas by loss of neurons and glia, which would be expressed as reduced cortical thicknesses. However, except for gross descriptions of cortical volume loss/injury, regional cortical thickness integrity in HF is unknown. Our goal was to assess regional cortical thicknesses across the brain in HF, compared to control subjects. METHODS AND RESULTS We examined localized cortical thicknesses in 35 HF and 61 control subjects with high-resolution T1-weighted images (3.0-Tesla MRI) using FreeSurfer software, and assessed group differences with analysis-of-covariance (covariates; age, gender; p<0.05; FDR). Significantly-reduced cortical thicknesses appeared in HF over controls in multiple areas, including the frontal, parietal, temporal, and occipital lobes, more markedly on the left side, within areas that control autonomic, cognitive, affective, language, and visual functions. CONCLUSION Heart failure subjects show reduced regional cortical thicknesses in sites that control autonomic, cognitive, affective, language, and visual functions that are deficient in the condition. The findings suggest chronic tissue alterations, with regional changes reflecting loss of neurons and glia, and presumably are related to earlier-described axonal changes. The pathological mechanisms contributing to reduced cortical thicknesses likely include hypoxia/ischemia, accompanying impaired cerebral perfusion from reduced cardiac output and sleep-disordered-breathing and other comorbidities in HF.
Collapse
|