1
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
2
|
Vianello C, Salluzzo M, Anni D, Boriero D, Buffelli M, Carboni L. Increased Expression of Autophagy-Related Genes in Alzheimer's Disease-Type 2 Diabetes Mellitus Comorbidity Models in Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054540. [PMID: 36901549 PMCID: PMC10002426 DOI: 10.3390/ijerph20054540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/31/2023]
Abstract
The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.
Collapse
Affiliation(s)
- Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Daniela Anni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Diana Boriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
3
|
Investigating a Curcumin-Loaded PLGA-PEG-PLGA Thermo-Sensitive Hydrogel for the Prevention of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11040727. [PMID: 35453412 PMCID: PMC9026862 DOI: 10.3390/antiox11040727] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
In Alzheimer’s disease (AD), the most common cause of dementia, patients generally forget to take pills or skip medication due to side effects, affecting the treatment efficacy. In this study, we combined a poly(lactic-co-glycolic acid), (PLGA)-poly(ethylene glycol), and (PEG)-PLGA thermo-sensitive hydrogel with curcumin (PGC) to deliver an intramuscular injection that could continuously release curcumin and maintain it at a constant level in blood to prevent AD development or progression. We evaluated the drug release profile and cytotoxicity of PGC and its effects on AD pathology through in vitro and in vivo studies and on cognitive function through an aluminum-chloride-induced AD rat model. In the in vitro study, PGC exhibited a lack of cytotoxicity, excellent anti-inflammatory and antioxidant properties, and microglial modulation. In the Morris water maze test, the PGC injection-administered AD rats presented well-focused searching behavior with the shortest swimming path and longest retention times in the quadrant where the platform was initially located. Furthermore, PGC reduced amyloid-beta aggregation and deposition and significantly increased hippocampal activity. This study demonstrated that intramuscular PGC injection can effectively prevent AD development or progression in rats without inducing toxicity; therefore, this strategy could help overcome the present challenges in AD management in humans.
Collapse
|
4
|
Laabbar W, Abbaoui A, Elgot A, Mokni M, Amri M, Masmoudi-Kouki O, Gamrani H. Aluminum induced oxidative stress, astrogliosis and cell death in rat astrocytes, is prevented by curcumin. J Chem Neuroanat 2020; 112:101915. [PMID: 33370573 DOI: 10.1016/j.jchemneu.2020.101915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is recognized potent neurotoxic metal, which causes oxidative stress leading to intracellular accumulation of reactive oxygen species (ROS) and neuronal cell death in various neurodegenerative diseases. Among several medicinal plants with beneficial effects on health, curcumin acts as a multi-functional drug with antioxidant activity. Thus, the purpose of the present study was to evaluate the protective effect of curcumin against aluminum induced-oxidative stress and astrocytes death, in vitro ad in vivo. Incubation of cultured rat astrocytes with two concentrations of Al (37 μM and 150 μM) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by Fluorescein diacetate and lactate dehydrogenase assay. Al-treated cells exhibited a reduction of both superoxide dismutase (SOD) and catalase activities. Pretreatment of astrocytes with curcumin (81 μM) prevented Al-induced cell death. Regarding in vivo study, rats were exposed acutely during three consecutive days to three different doses of Al (25 mg/kg, 50 mg/kg and 100 mg/kg, i.p injection), together with curcumin treatment (30 mg/kg). For the chronic model, animals were exposed to Al (3 g/l) in drinking water from intrauterine age to 4 months ages, plus curcumin treatment (175 mg/kg). Data showed that both acute and chronic Al intoxication induced an obvious astrogliosis within motor cortex and hippocampus, while, such effects were restored by curcumin. We showed herein that Al was highly toxic, induced astrocytes death. Then, curcumin protected astrocytes against Al-toxicity. The cytoprotective potential of curcumin is initiated by stimulation of endogenous antioxidant system.
Collapse
Affiliation(s)
- Wafaa Laabbar
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdeljalil Elgot
- Epidemiology and Biomedical Sciences Unit, Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Meherzia Mokni
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia.
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
5
|
Van Dyke N, Yenugadhati N, Birkett NJ, Lindsay J, Turner MC, Willhite CC, Krewski D. Association between aluminum in drinking water and incident Alzheimer's disease in the Canadian Study of Health and Aging cohort. Neurotoxicology 2020; 83:157-165. [PMID: 32360354 DOI: 10.1016/j.neuro.2020.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Epidemiological evidence linking aluminum in drinking water and Alzheimer's disease (AD) has been inconsistent, with previous studies often limited by small sample sizes. The present study addresses this issue using data from the Canadian Study of Health and Aging (CSHA), a prospective cohort of 10,263 subjects followed-up from 1991-1992 through 2001-2002. Participants' residential histories were linked to municipal drinking water sources in 35 Canadian municipalities to obtain ecologic pH, aluminum, fluoride, iron and silica concentrations in drinking water. Cox proportional hazards models were used to examine associations between aluminum and incident AD [Hazard Ratios (HRs), 95% confidence intervals (CIs)], adjusting for age, gender, history of stroke, education, and high blood pressure. A total of 240 incident AD cases were identified during follow-up of 3, 638 subjects derived from the CSHA cohort with complete data on all covariates. With categorical aluminum measurements, there was an increasing, but not statistically significant, exposure-response relationship (HR = 1.34, 95% CI 0.88-2.04, in the highest aluminum exposure category; p = 0.13 for linear trend). Similar results were observed using continuous aluminum measurements (HR=1.21, 95% CI 0.97-1.52, at the interquartile range of 333.8 μg/L; p = 0.09 for linear trend). In a subsample genotyped for ApoE-ε4, there was some evidence of an association between aluminum and AD (p = 0.03 for linear trend). Although a clear association between aluminum in drinking water and AD was not found, the linear trend observed in ApoE-ε4 subsample warrants further examination.
Collapse
Affiliation(s)
- Nicole Van Dyke
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Nagarajkumar Yenugadhati
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Risk Sciences International, Ottawa, Canada; Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Nicholas J Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Joan Lindsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Michelle C Turner
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Risk Sciences International, Ottawa, Canada
| |
Collapse
|
6
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
7
|
Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2018; 9:619-633. [PMID: 28516990 DOI: 10.1039/c7mt00046d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, prion diseases, Lewy body diseases, and vascular dementia. Conformational changes of disease-related proteins (amyloidogenic proteins), such as β-amyloid protein, prion proteins, and α-synuclein, are well-established contributors to neurotoxicity and to the pathogenesis of these diseases. Recent studies have demonstrated that these amyloidogenic proteins are metalloproteins that bind trace elements, including zinc, iron, copper, and manganese, and play significant roles in the maintenance of metal homeostasis. We present a current review of the role of trace elements in the functions and toxicity of amyloidogenic proteins, and propose a hypothesis integrating metal homeostasis and the pathogenesis of neurodegenerative diseases that is focused on the interactions among metals and between metals and amyloidogenic proteins at the synapse, considering that these amyloidogenic proteins and metals are co-localized at the synapse.
Collapse
Affiliation(s)
- M Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | |
Collapse
|
8
|
Borin M, Saraceno C, Catania M, Lorenzetto E, Pontelli V, Paterlini A, Fostinelli S, Avesani A, Di Fede G, Zanusso G, Benussi L, Binetti G, Zorzan S, Ghidoni R, Buffelli M, Bolognin S. Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:61. [PMID: 30005699 PMCID: PMC6045891 DOI: 10.1186/s40478-018-0567-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
One of the earliest pathological features characterizing Alzheimer’s disease (AD) is the loss of dendritic spines. Among the many factors potentially mediating this loss of neuronal connectivity, the contribution of Rho-GTPases is of particular interest. This family of proteins has been known for years as a key regulator of actin cytoskeleton remodeling. More recent insights have indicated how its complex signaling might be triggered also in pathological conditions. Here, we showed that the Rho-GTPase family member Rac1 levels decreased in the frontal cortex of AD patients compared to non-demented controls. Also, Rac1 increased in plasma samples of AD patients with Mini-Mental State Examination < 18 compared to age-matched non demented controls. The use of different constitutively active peptides allowed us to investigate in vitro Rac1 specific signaling. Its activation increased the processing of amyloid precursor protein and induced the translocation of SET from the nucleus to the cytoplasm, resulting in tau hyperphosphorylation at residue pT181. Notably, Rac1 was abnormally activated in the hippocampus of 6-week-old 3xTg-AD mice. However, the total protein levels decreased at 7-months. A rescue strategy based on the intranasal administration of Rac1 active peptide at 6.5 months prevented dendritic spine loss. This data suggests the intriguing possibility of a dual role of Rac1 according to the different stages of the pathology. In an initial stage, Rac1 deregulation might represent a triggering co-factor due to the direct effect on Aβ and tau. However, at a later stage of the pathology, it might represent a potential therapeutic target due to the beneficial effect on spine dynamics.
Collapse
|
9
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
10
|
Mizuno D, Kawahara M. Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
11
|
Heusinkveld HJ, Wahle T, Campbell A, Westerink RHS, Tran L, Johnston H, Stone V, Cassee FR, Schins RPF. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 2016; 56:94-106. [PMID: 27448464 DOI: 10.1016/j.neuro.2016.07.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022]
Abstract
The world's population is steadily ageing and as a result, health conditions related to ageing, such as dementia, have become a major public health concern. In 2001, it was estimated that there were almost 5 million Europeans suffering from Alzheimer's disease (AD) and this figure has been projected to almost double by 2040. About 40% of people over 85 suffer from AD, and another 10% from Parkinson's disease (PD). The majority of AD and PD cases are of sporadic origin and environmental factors play an important role in the aetiology. Epidemiological research identified airborne particulate matter (PM) as one of the environmental factors potentially involved in AD and PD pathogenesis. Also, cumulating evidence demonstrates that the smallest sizes of the inhalable fraction of ambient particulate matter, also referred to as ultrafine particulate matter or nano-sized particles, are capable of inducing effects beyond the respiratory system. Translocation of very small particles via the olfactory epithelium in the nose or via uptake into the circulation has been demonstrated through experimental rodent studies with engineered nanoparticles. Outdoor air pollution has been linked to several health effects including oxidative stress and neuroinflammation that may ultimately result in neurodegeneration and cognitive impairment. This review aims to evaluate the relationship between exposure to inhaled ambient particles and neurodegeneration.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, The Netherlands; AIR pollutants and Brain Aging research Group.
| | - Tina Wahle
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; AIR pollutants and Brain Aging research Group
| | - Arezoo Campbell
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | | | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Edinburgh, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; AIR pollutants and Brain Aging research Group
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; AIR pollutants and Brain Aging research Group
| |
Collapse
|
12
|
Wu XD, Liu WL, Zeng K, Lei HY, Zhang QG, Zhou SQ, Xu SY. Advanced glycation end products activate the miRNA/RhoA/ROCK2 pathway in endothelial cells. Microcirculation 2015; 21:178-86. [PMID: 25279428 DOI: 10.1111/micc.12104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE AGEs induce endothelial cell dysfunction in HUVECs, resulting in ROS production and triggering apoptosis. This study sought to identify miRNAs involved in AGE-induced endothelial cell injury. METHODS Microarray analysis to identify miRNAs altered with AGE stimulation was undertaken, and results were confirmed using real-time quantitative polymerase chain reaction. The interaction of miRNAs with the RhoA and ROCK2 genes was confirmed using luciferase assays, and their effects on expression were determined using Western blot analysis. The effects of AGEs and miRNAs on endothelial cell permeability were assessed. RESULTS AGEs induced ROS production and apoptosis of HUVECs (p < 0.05). AGE-induced miR-200b and miR-200c downregulation led to increased expression of their target genes, RhoA and ROCK, respectively. AGE-induced endothelial cell permeability and F-actin expression were significantly reduced with both miR-200b and miR-200c mimics (p < 0.05). Furthermore, AGE-induced stress fiber formation was reduced in cells treated with miR-200b mimics. CONCLUSION miR-200b and miR-200c are suppressed in AGE-induced endothelial cell injury, resulting in unregulated RhoA/ROCK2 signaling. Further studies are necessary to evaluate the therapeutic value of targeting miRNAs or their target genes for treatment of vascular diseases.
Collapse
Affiliation(s)
- Xiao-Dan Wu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhao Y, Hill JM, Bhattacharjee S, Percy ME, Pogue AID, Lukiw WJ. Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer's disease. Front Neurol 2014; 5:167. [PMID: 25250012 PMCID: PMC4155793 DOI: 10.3389/fneur.2014.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/20/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Microbiology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | - Maire E Percy
- Department of Physiology, University of Toronto , Toronto, ON , Canada ; Department of Obstetrics and Gynaecology, University of Toronto , Toronto, ON , Canada ; Neurogenetics Laboratory, Surrey Place Centre , Toronto, ON , Canada
| | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University , New Orleans, LA , USA ; Alchem Biotech , Toronto, ON , Canada ; Department of Neurology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| |
Collapse
|
14
|
Granzotto A, Zatta P. Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci 2014; 6:95. [PMID: 24860502 PMCID: PMC4030174 DOI: 10.3389/fnagi.2014.00095] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairment is the final outcome of a complex network of molecular mechanisms ultimately leading to dementia. Despite major efforts aimed at unraveling the molecular determinants of dementia of Alzheimer type (DAT), effective disease-modifying approaches are still missing. An interesting and still largely unexplored avenue is offered by nutraceutical intervention. For instance, robust epidemiological data have suggested that moderate intake of red wine may protect against several age-related pathological conditions (i.e., cardiovascular diseases, diabetes, and cancer) as well as DAT-related cognitive decline. Wine is highly enriched in many polyphenols, including resveratrol. Resveratrol is a well recognized antioxidant which may modulate metal ion deregulation outcomes as well as main features of the Alzheimer’s disease (AD) brain. The review will discuss the potentiality of resveratrol as a neuroprotectant in dementia in relation to the oxidative stress produced by amyloid and metal dysmetabolism.
Collapse
Affiliation(s)
- Alberto Granzotto
- Molecular Neurology Unit, Center of Excellence on Aging (Ce.S.I.) Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua "Metalloproteins" Unit, Department of Biology, University of Padua Padua, Italy
| |
Collapse
|
15
|
Yao T, Jiang T, Pan D, Xu ZX, Zhou P. Effect of Al(iii) and curcumin on silk fibroin conformation and aggregation morphology. RSC Adv 2014. [DOI: 10.1039/c4ra04712e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Al(iii) can accelerate the conformation transition of silk fibroin from random coils into β-sheets, and curcumin can reverse the transition.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Teng Jiang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Deng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| |
Collapse
|
16
|
Nam SM, Kim JW, Yoo DY, Kim W, Jung HY, Hwang IK, Seong JK, Yoon YS. Additive or synergistic effects of aluminum on the reduction of neural stem cells, cell proliferation, and neuroblast differentiation in the dentate gyrus of high-fat diet-fed mice. Biol Trace Elem Res 2014; 157:51-9. [PMID: 24265032 DOI: 10.1007/s12011-013-9861-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 01/20/2023]
Abstract
Aluminum is the most plentiful metal on the Earth's crust, and its usage in cooking utensils, cosmetics, drinking containers, food additives, pharmaceutical products, and building materials provides many opportunities for potential aluminum consumption. However, its toxicity is low and harmful effects only develop with large-scale deposition of aluminum. In this study, we investigated the effects of subchronic exposure to aluminum (40 mg/kg/day) on neural stem cells, cell proliferation, neuroblast differentiation, and mature neurons in the dentate gyrus of the hippocampus. These experiments were performed in both high-fat diet and low-fat diet-fed C57BL/6J mice via immunohistochemistry using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN. Subchronic exposure to aluminum in both low-fat and high-fat diet-fed mice reduced neural stem cells, cell proliferation, and neuroblast differentiation without any changes in mature neurons. Furthermore, this reduction effect was exacerbated in high-fat diet-fed mice. These results suggest that aluminum accelerates the reduction of neural stem cells, cell proliferation, and neuroblast differentiation additively or synergistically in high-fat diet-fed mice without any harmful changes in mature neurons.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|