1
|
Zhou H, Wei YJ, Xie GY. Research progress on post-stroke depression. Exp Neurol 2024; 373:114660. [PMID: 38141804 DOI: 10.1016/j.expneurol.2023.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Stroke is a highly prevalent and widely detrimental cardiovascular disease, frequently resulting in impairments of both motor function and neural psychological capabilities, such as post-stroke depression (PSD). PSD is the most prevalent neuropsychological disorder among stroke patients, characterized by persistent emotional lowness and diminished interest as its primary features. This article summarizes the mechanism research, animal models and related treatments of PSD. Further improvements are needed in the screening of research subjects and the construction of animal models in the study of PSD. At the same time, in the study of the mechanism of PSD, we need to consider the interaction between multiple systems. The treatment of PSD requires more careful consideration. This can help us to find something new in the study of the mechanism of complex PSD, which provides a new direction for us to develop new treatment delivery.
Collapse
Affiliation(s)
- Hui Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Yu-Jiao Wei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Guang-Yao Xie
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Bukatova S, Bacova Z, Osacka J, Bakos J. Mini review of molecules involved in altered postnatal neurogenesis in autism. Int J Neurosci 2023:1-15. [PMID: 37815399 DOI: 10.1080/00207454.2023.2269304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
4
|
Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features. Nat Neurosci 2022; 25:1626-1638. [PMID: 36443610 DOI: 10.1038/s41593-022-01192-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease.
Collapse
|
5
|
Qin Q, Wang T, Xu Z, Liu S, Zhang H, Du Z, Wang J, Wang Y, Wang Z, Yuan S, Wu J, He W, Wang C, Yan X, Wang Y, Jiang X. Ectoderm-derived frontal bone mesenchymal stem cells promote traumatic brain injury recovery by alleviating neuroinflammation and glutamate excitotoxicity partially via FGF1. Stem Cell Res Ther 2022; 13:341. [PMID: 35883153 PMCID: PMC9327213 DOI: 10.1186/s13287-022-03032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. Methods A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. Results Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2β. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. Conclusions Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03032-6.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Ting Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhangzhen Du
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jianing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yadi Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenning Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shanshan Yuan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jiamei Wu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Ren C, He KJ, Hu H, Zhang JB, Dong LG, Li D, Chen J, Mao CJ, Wang F, Liu CF. Induction of Parkinsonian-Like Changes via Targeted Downregulation of Astrocytic Glutamate Transporter GLT-1 in the Striatum. JOURNAL OF PARKINSONS DISEASE 2021; 12:295-314. [PMID: 34719508 DOI: 10.3233/jpd-212640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous investigations have suggested that decreased expression of glutamate transporter-1 (GLT-1) is involved in glutamate excitotoxicity and contribute to the development of Parkinson's disease (PD), GLT-1 is decreased in animal models of PD. GLT-1 is mainly expressed in astrocytes, and the striatum is a GLT-1-rich brain area. OBJECTIVE The aim was to explore the function and mechanism of astrocytic GLT-1 in PD-like changes. METHODS In the study, PD-like changes and their molecular mechanism in rodents were tested by a behavioral assessment, micro-positron emission tomography/computed tomography (PET/CT), western blotting, immunohistochemical and immunofluorescence staining, and high performance liquid chromatography pre-column derivatization with O-pthaldialdehida after downregulating astrocytic GLT-1 in vivo and in vitro. RESULTS In vivo, after 6 weeks of brain stereotactic injection of adeno-associated virus into the striatum, rats in the astrocytic GLT-1 knockdown group showed poorer motor performance, abnormal gait, and depression-like feature; but no olfactory disorders. The results of micro-PET/CT and western blotting indicated that the dopaminergic system was impaired in astrocytic GLT-1 knockdown rats. Similarly, tyrosine hydroxylase (TH) positive immune-staining in neurons of astrocytic GLT-1 knockdown rats showed deficit in cell count. In vitro, knockdown of astrocytic GLT-1 via RNA interference led to morphological injury of TH-positive neurons, which may be related to the abnormal calcium signal induced by glutamate accumulation after GLT-1 knockdown. Furthermore, the GLT-1 agonist ceftriaxone showed a protective effect on TH-positive neuron impairment. CONCLUSION The present findings may shed new light on the future prevention and treatment of PD based on blocking glutamate excitotoxicity.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China.,Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Nam MH, Won W, Han KS, Lee CJ. Signaling mechanisms of μ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation. Cell Mol Life Sci 2021; 78:415-426. [PMID: 32671427 PMCID: PMC11073310 DOI: 10.1007/s00018-020-03595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
9
|
Wen SJ, Zheng XM, Liu LF, Li NN, Mao HA, Huang L, Yuan QL. Effects of primary microglia and astrocytes on neural stem cells in in vitro and in vivo models of ischemic stroke. Neural Regen Res 2021; 16:1677-1685. [PMID: 33510055 PMCID: PMC8328755 DOI: 10.4103/1673-5374.306093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) can protect neurons in animal stroke models; however, their low rates of survival and neuronal differentiation limit their clinical application. Glial niches, an important location of neural stem cells, regulate survival, proliferation and differentiation of neural stem cells. However, the effects of activated glial cells on neural stem cells remain unclear. In the present study, we explored the effects of activated astrocytes and microglia on neural stem cells in vitro stroke models. We also investigated the effects of combined transplantation of neural stem cells and glial cells after stroke in rats. In a Transwell co-culture system, primary cultured astrocytes, microglia or mixed glial cells were exposed to glutamate or H2O2 and then seeded in the upper inserts, while primary neural stem cells were seeded in the lower uncoated wells and cultured for 7 days. Our results showed that microglia were conducive to neurosphere formation and had no effects on apoptosis within neurospheres, while astrocytes and mixed glial cells were conducive to neurosphere differentiation and reduced apoptosis within neurospheres, regardless of their pretreatment. In contrast, microglia and astrocytes induced neuronal differentiation of neural stem cells in differentiation medium, regardless of their pretreatment, with an exception of astrocytes pretreated with H2O2. Rat models of ischemic stroke were established by occlusion of the middle cerebral artery. Three days later, 5 × 105 neural stem cells with microglia or astrocytes were injected into the right lateral ventricle. Neural stem cell/astrocyte-treated rats displayed better improvement of neurological deficits than neural stem cell only-treated rats at 4 days after cell transplantation. Moreover, neural stem cell/microglia-, and neural stem cell/astrocyte-treated rats showed a significant decrease in ischemic volume compared with neural stem cell-treated rats. These findings indicate that microglia and astrocytes exert different effects on neural stem cells, and that co-transplantation of neural stem cells and astrocytes is more conducive to the recovery of neurological impairment in rats with ischemic stroke. The study was approved by the Animal Ethics Committee of Tongji University School of Medicine, China (approval No. 2010-TJAA08220401) in 2010.
Collapse
Affiliation(s)
- Sheng-Jun Wen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Min Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na-Na Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-An Mao
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Losurdo M, Grilli M. Extracellular Vesicles, Influential Players of Intercellular Communication within Adult Neurogenic Niches. Int J Mol Sci 2020; 21:E8819. [PMID: 33233420 PMCID: PMC7700666 DOI: 10.3390/ijms21228819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, involving the generation of functional neurons from adult neural stem cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone (SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult brain to face the continuously changing external and internal environment and requires coordinated interplay between all cell types within the specialized microenvironment of the neurogenic niche. NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence and self-renewal of NSC, their differentiation programs and the survival and integration of newborn cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication, representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids) by which they modulate the function of the recipient cells. Current knowledge of the physiological role of EVs within adult neurogenic niches is rather limited. In this review, we will summarize and discuss EV-based cross-talk within adult neurogenic niches and postulate how EVs might play a critical role in the regulation of the neurogenic process.
Collapse
Affiliation(s)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
11
|
Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 2019; 16:227. [PMID: 31733648 PMCID: PMC6858703 DOI: 10.1186/s12974-019-1597-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is synthesized and upregulated in astrocytes under stroke. We previously demonstrated that transgenic mice over-expressing astrocytic ET-1 (GET-1) displayed more severe neurological deficits characterized by a larger infarct after transient middle cerebral artery occlusion (tMCAO). ET-1 is a known vasoconstrictor, mitogenic, and a survival factor. However, it is unclear whether the observed severe brain damage in GET-1 mice post stroke is due to ET-1 dysregulation of neurogenesis by altering the stem cell niche. Methods Non-transgenic (Ntg) and GET-1 mice were subjected to tMCAO with 1 h occlusion followed by long-term reperfusion (from day 1 to day 28). Neurological function was assessed using a four-point scale method. Infarct area and volume were determined by 2,3,5-triphenyltetra-zolium chloride staining. Neural stem cell (NSC) proliferation and migration in subventricular zone (SVZ) were evaluated by immunofluorescence double labeling of bromodeoxyuridine (BrdU), Ki67 and Sox2, Nestin, and Doublecortin (DCX). NSC differentiation in SVZ was evaluated using the following immunofluorescence double immunostaining: BrdU and neuron-specific nuclear protein (NeuN), BrdU and glial fibrillary acidic protein (GFAP). Phospho-Stat3 (p-Stat3) expression detected by Western-blot and immunofluorescence staining. Results GET-1 mice displayed a more severe neurological deficit and larger infarct area after tMCAO injury. There was a significant increase of BrdU-labeled progenitor cell proliferation, which co-expressed with GFAP, at SVZ in the ipsilateral side of the GET-1 brain at 28 days after tMCAO. p-Stat3 expression was increased in both Ntg and GET-1 mice in the ischemia brain at 7 days after tMCAO. p-Stat3 expression was significantly upregulated in the ipsilateral side in the GET-1 brain than that in the Ntg brain at 7 days after tMCAO. Furthermore, GET-1 mice treated with AG490 (a JAK2/Stat3 inhibitor) sh owed a significant reduction in neurological deficit along with reduced infarct area and dwarfed astrocytic differentiation in the ipsilateral brain after tMCAO. Conclusions The data indicate that astrocytic endothelin-1 overexpression promotes progenitor stem cell proliferation and astr ocytic differentiation via the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, 510120, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China. .,Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Ke Zhong
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Sookja K Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.
| |
Collapse
|
12
|
Yu D, Cheng Z, Ali AI, Wang J, Le K, Chibaatar E, Guo Y. Down-expressed GLT-1 in PSD astrocytes inhibits synaptic formation of NSC-derived neurons in vitro. Cell Cycle 2018; 18:105-114. [PMID: 30558468 DOI: 10.1080/15384101.2018.1560201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Little is known about the effect of astroglial GLT-1 of post-stroke depression (PSD) rat model on the function of neural stem cells (NSCs). This study aimed to investigate whether astroglial GLT-1 of PSD rats affect differentiation of NSCs from neonatal rat hippocampus and synaptic formation of NSC-derived neurons. Astrocytes were isolated from the left hippocampus of normal adult SD rats and PSD rats. A lentiviral vector was used to silence the expression of GLT-1 in astrocytes of PSD rats. NSCs were respectively co-cultured with normal (control), PSD, and GLT-1 silenced astrocytes for 7 days. GLT-1, GFAP, MAP2, Synaptophysin (SYN), glutamate (Glu) and glutamine (Gln) were respectively measured by qRT-PCR, western blot, immunofluorescence and efficient mass spectrometry (MS). PSD astrocytes increased the number of NSC-derived astrocytes, but inhibited the expression of GLT-1 of NSC-derived astrocytes and synapses of NSC-derived neurons. On the basis of the low expression of GLT-1 in PSD astrocytes, we further silenced GLT-1 in PSD astrocytes. Interestingly, GLT-1 silenced PSD astrocytes more obviously inhibited synapses of NSC-derived neurons, but increased the number of NSC-derived neurons and reversed the expression of GLT-1 in NSC-derived astrocytes. At the same time, concentration of glutamate in the medium elevated, and glutamine in the medium gradually reduced. In NSC-derived neurons and astrocytes, glutamate metabolism was also affected by changed GLT-1. Down-expressed GLT-1 in PSD astrocytes stimulated NSCs differentiating into astrocytes, but inhibiting the formation of functional synapses by influencing glutamate metabolism in vitro.
Collapse
Affiliation(s)
- Dafan Yu
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Zhenxing Cheng
- b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Abdoulaye Idriss Ali
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Jiamin Wang
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Kai Le
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Enkhmurun Chibaatar
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| | - Yijing Guo
- a Department of Neurology Affiliated , Zhongda Hospital of Southeast University , Nanjing , Jiangsu Province , China.,b School of Medicine , Southeast University , Nanjing , Jiangsu Province , China
| |
Collapse
|
13
|
Cheng Z, Ou Y, Zhang L, Zhang P, Yuan X, Peng W, Wang S, Zhu X, Zhang L, Meng Y. The glutamate clearance function of adipose stromal cells-derived astrocytes. Neurosci Lett 2018; 677:94-102. [PMID: 29704575 DOI: 10.1016/j.neulet.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
ADSCs-derived astrocytes qualify the morphology, ultrastructure and membrane electrical potential, which are all unique to astrocytes. But whether they have the glutamate clearance function like mature astrocytes is under exploration. ADSCs were extracted, cultured and induced into astrocytes for 48 h, 7d, 14d and 21d in vitro. Inverted phase contrast microscope was used to observe the morphology of the cells in each group. Immunocytochemistry assay, immunofluorescence assay and Western blotting were used to detect the expression of GFAP, EAAT2 and GS of the cells in each group. The cells were cultured in glutamate solution for 1, 2, 3 and 4 h respectively before the solution collected. The glutamate concentration of the solution was detected using Glutamate Colorimetric Assay Hit. ADSCs-derived astrocytes expressed GFAP, EAAT2 and GS, all of which increased gradually and reached peak when induced for 14 days. In induction for 48 h, 7d and 14d groups, the extracellular glutamate concentration decreased gradually during the cells cultured in glutamate solution for 1, 2, 3 and 4 h, among which the decrease extent was most prominent in 14d group, while the extracellular glutamate concentration had no change in uninduction and induction for 21d group. ADSCs-derived astrocytes expressed EAAT2 and GS, meanwhile had the function of clearing glutamate, which was prominent when induced into astrocytes for 7-14 days.
Collapse
Affiliation(s)
- Zanzan Cheng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Ya Ou
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Lili Zhang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Pingshu Zhang
- Key Laboratory of Neurological and Biological Function of Hebei Province, Tangshan 063000, Hebei Province, China; Key Laboratory of Neurology of Tangshan, Tangshan 063000, Hebei Province, China
| | - Xiaodong Yuan
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China; Key Laboratory of Neurological and Biological Function of Hebei Province, Tangshan 063000, Hebei Province, China.
| | - Wei Peng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Shujuan Wang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Xuhong Zhu
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Liping Zhang
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Yan Meng
- Department of Neurology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
14
|
Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci 2018; 128:1061-1077. [DOI: 10.1080/00207454.2018.1466781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Joshua Kuruvilla
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson's disease dementia. Brain Res Bull 2017; 132:129-138. [PMID: 28576659 DOI: 10.1016/j.brainresbull.2017.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/22/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) so that glutamatergic modulation maybe a potential therapeutic target for PD. Ceftriaxone (CEF) has been reported to increase glutamate uptake by increasing glutamate transporter expression and has been demonstrated neuroprotective effects in animal study. The aim of this study was to determine the effects of CEF on behavior and neurogenesis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Starting on the same day after MPTP lesioning (day 0), the rats were injected daily with either CEF or saline for 14days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased motor function, working memory, and object recognition and reduced neurogenesis in the substantial nigra and dentate gyrus of the hippocampus. These behavioral and neuronal changes were prevented by CEF treatment. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- Department of Psychiatry, Chung Shan Medical University Hospital, Department of Psychiatry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
16
|
Feng S, Ma S, Jia C, Su Y, Yang S, Zhou K, Liu Y, Cheng J, Lu D, Fan L, Wang Y. Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy. EMBO Rep 2016; 17:682-94. [PMID: 27113760 DOI: 10.15252/embr.201541569] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 12/23/2022] Open
Abstract
Sonic hedgehog (Shh), both as a mitogen and as a morphogen, plays an important role in cell proliferation and differentiation during early development. Here, we show that Shh inhibits glutamate transporter activities in neurons, rapidly enhances extracellular glutamate levels, and affects the development of epilepsy. Shh is quickly released in response to epileptic, but not physiological, stimuli. Inhibition of neuronal glutamate transporters by Shh depends on heterotrimeric G protein subunit Gαi and enhances extracellular glutamate levels. Inhibiting Shh signaling greatly reduces epileptiform activities in both cell cultures and hippocampal slices. Moreover, pharmacological or genetic inhibition of Shh signaling markedly suppresses epileptic phenotypes in kindling or pilocarpine models. Our results suggest that Shh contributes to the development of epilepsy and suppression of its signaling prevents the development of the disease. Thus, Shh can act as a modulator of neuronal activity, rapidly regulating glutamate levels and promoting epilepsy.
Collapse
Affiliation(s)
- Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Shanghai, China
| | - Shaorong Ma
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Shanghai, China
| | - Caixia Jia
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Shanghai, China
| | - Shenglian Yang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kechun Zhou
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yani Liu
- Center of Cognition and Brain Science, AMMS, Beijing, China
| | - Ju Cheng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Shanghai, China
| | - Dunguo Lu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Aromatase, estrogen receptors and brain development in fish and amphibians. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:152-62. [PMID: 25038582 DOI: 10.1016/j.bbagrm.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Abstract
Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
18
|
Li M, Sun L, Luo Y, Xie C, Pang Y, Li Y. High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int J Mol Med 2014; 34:705-14. [PMID: 24970310 PMCID: PMC4121357 DOI: 10.3892/ijmm.2014.1820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are major components of the adult neurogenic niche and play a crucial role in regulating neural stem cell proliferation and differentiation. Following brain injury, astrocytes become reactive and release high-mobility group box 1 (HMGB1), which plays a crucial role in the inflammatory process. However, although it has been reported that HMGB1 promotes neural stem/progenitor cell (NS/PC) proliferation in the developing brain, whether HMGB1 released by reactive astrocytes regulates NS/PC proliferation remains unknown. In this study, we aimed to investigate whether HMGB1 released from reactive astrocytes enhances NS/PC proliferation and to elucidate the possible mechanisms involved in this process. To evaluate the effects of HMGB1 on NS/PC proliferation, NS/PCs were cultured in HMGB1 culture medium and astrocyte-conditioned medium with or without reactive astrocyte-derived HMGB1 by RNA interference (RNAi). To explore the possible mechanisms, the HMGB1 receptor for advanced glycation endproducts (RAGE) in the NS/PCs was blocked with anti-RAGE antibody, and c-Jun N-terminal protein kinase (JNK) in the NS/PCs was inhibited using the potent JNK inhibitor, SP600125. Our results suggested that HMGB1 released from reactive astrocytes promoted NS/PC proliferation in vitro, and the blockade of RAGE or the inhibition of the JNK signaling pathway in the NS/PCs prevented the HMGB1-induced NS/PC proliferation. Our findings demonstrated that HMGB1 released by reactive astrocytes promoted NS/PC proliferation by binding RAGE and enhancing the phosphorylation of the JNK signaling pathway. These findings support a previously described mechanism of a crosstalk between astrocytes and NS/PCs, and suggest that reactive astrocyte-derived HMGB1 plays an important role in the repair of the central nervous system following brain injury.
Collapse
Affiliation(s)
- Man Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Lin Sun
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Chenchen Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yueshan Pang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yuan Li
- Basic Medicine College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|