1
|
Habibzadeh A, Ostovan VR, Keshavarzian O, Kardeh S, Mahmoudi SS, Zakeri MR, Tabrizi R. Volatile organic compounds analysis as promising biomarkers for Parkinson's disease diagnosis: A systematic review and meta-analysis. Clin Neurol Neurosurg 2023; 235:108022. [PMID: 37939618 DOI: 10.1016/j.clineuro.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Researchers are investigating the potential of volatile organic compounds (VOCs) obtained from exhaled breath and sebum as non-invasive tools for early Parkinson's disease (PD) diagnosis. The present study aims to assess the feasibility of using VOC analysis for PD diagnosis and determine the overall diagnostic accuracy of the proposed tests. METHODS We performed systematic searches based on the PRISMA guidelines to identify relevant studies on VOCs in PD diagnosis using exhaled breath or sebum samples. The selected articles were described, and meta-analysis was conducted on those that provided the sensitivity and specificity data. RESULTS Out of 1268 articles initially identified, 8 met the inclusion criteria and provided specific sensitivity and specificity data for PD, which were included in the current meta-analysis. The pooled analysis of these findings showed a mean area under the receiver operating characteristic curve of 0.85, a sensitivity of 0.81 (95% confidence interval (CI): 0.72, 0.88), and a specificity of 0.76 (95% CI: 0.66, 0.84). CONCLUSION The analysis of VOCs in exhaled breath and sebum has shown promise as a new avenue for non-invasive diagnosis of PD. VOCs' ability to distinguish PD from healthy controls suggests their potential clinical application in screening for the disease. Consequently, VOCs hold significant potential as biomarkers for PD diagnosis and offer a promising novel approach to identifying and diagnosing the condition.
Collapse
Affiliation(s)
- Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Keshavarzian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Seyed Sasan Mahmoudi
- Student Research Committee, Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Zakeri
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Liu Y, Ge D, Zhou J, Chu Y, Zheng X, Ke L, Li P, Lu Y, Zou X, Xia L, Liu Y, Huang C, Shen C, Chu Y. HS-SPME-GC-MS Untargeted Analysis of Normal Rat Organs Ex Vivo: Differential VOC Discrimination and Fingerprint VOC Identification. Anal Chem 2023. [PMID: 37392185 DOI: 10.1021/acs.analchem.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.
Collapse
Affiliation(s)
- Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiangxue Zheng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Li Ke
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
3
|
Oxner M, Trang A, Mehta J, Forsyth C, Swanson B, Keshavarzian A, Bhushan A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME FRONTIERS 2023; 4:0002. [PMID: 37849665 PMCID: PMC10521665 DOI: 10.34133/bmef.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 10/19/2023] Open
Abstract
A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.
Collapse
Affiliation(s)
- Micah Oxner
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jhalak Mehta
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Barbara Swanson
- Department of Adult Health and Gerontological Nursing, Rush University College of Nursing, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Stott S, Broza YY, Gharra A, Wang Z, Barker RA, Haick H. The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:993-1002. [PMID: 35147553 DOI: 10.3233/jpd-213133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The analysis of volatile organic compounds (VOCs) collected in breath samples has the potential to be a rapid, non-invasive test to aid in the clinical diagnosis and tracking of chronic conditions such as Parkinson's disease (PD). OBJECTIVE To assess the feasibility and utility of breath sample analysis done, both at point of collection in clinic and when sent away to be analyzed remotely, to diagnose, stratify and monitor disease course in a moderately large cohort of patients with PD. METHODS Breath samples were collected from 177 people with PD and 37 healthy matched control individuals followed over time. Standard clinical data (MDS-UPDRS & cognitive assessments) from the PD patients were collected at the same time as the breath sample was taken, these measures were then correlated with the breath test analysis of exhaled VOCs. RESULTS The breath test was able to distinguish patients with PD from healthy control participants and correlated with disease stage. The off-line system (remote analysis) gave good results with overall classification accuracies across a range of clinical measures of between 73.6% to 95.6%. The on-line (in clinic) system showed comparable results but with lower levels of correlation, varying between 33.5% to 82.4%. Chemical analysis identified 29 potential molecules that were different and which may relate to pathogenic pathways in PD. CONCLUSION Breath analysis shows potential for PD diagnostics and monitoring. Both off-line and on-line sensor systems were easy to do and provided comparable results which will enable this technique to be easily adopted in clinic if larger studies confirm our findings.
Collapse
Affiliation(s)
- Simon Stott
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Cambridge, UK
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alaa Gharra
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhen Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Cambridge, UK.,Wellcome-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Jaimes-Mogollón AL, Welearegay TG, Salumets A, Ionescu R. Review on Volatolomic Studies as a Frontier Approach in Animal Research. Adv Biol (Weinh) 2021; 5:e2000397. [PMID: 33844886 DOI: 10.1002/adbi.202000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/24/2021] [Indexed: 11/06/2022]
Abstract
This paper presents a comprehensive review of the research studies in volatolomics performed on animals so far. At first, the procedures proposed for the collection, preconcentration, and storing of the volatile organic compounds emitted by various biological samples of different animals are presented and discussed. Next, the results obtained in the analysis of the collected volatile samples with analytical equipment are shown. The possible volatile biomarkers identified for various diseases are highlighted for different types of diseases, animal species, and biological samples analyzed. The chemical classes of these compounds, as well as the biomarkers found in a higher number of animal diseases, are indicated, and their possible origin is analyzed. The studies that dealt with the diagnosis of various diseases from sample measurement with electronic nose systems are also presented and discussed. The paper ends with a final remark regarding the necessity of optimization and standardization of sample collection and analysis procedures for obtaining meaningful results.
Collapse
Affiliation(s)
| | - Tesfalem G Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, 75103, Sweden
| | - Andres Salumets
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, 51014, Estonia.,Competence Centre on Health Technologies, Tartu, 50411, Estonia
| | - Radu Ionescu
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| |
Collapse
|
6
|
Identification of volatile biomarkers of Giardia duodenalis infection in children with persistent diarrhoea. Parasitol Res 2019; 118:3139-3147. [DOI: 10.1007/s00436-019-06433-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
|
7
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
8
|
Finberg JPM, Aluf Y, Loboda Y, Nakhleh MK, Jeries R, Abud-Hawa M, Zubedat S, Avital A, Khatib S, Vaya J, Haick H. Altered Volatile Organic Compound Profile in Transgenic Rats Bearing A53T Mutation of Human α-Synuclein: Comparison with Dopaminergic and Serotonergic Denervation. ACS Chem Neurosci 2018; 9:291-297. [PMID: 29017011 DOI: 10.1021/acschemneuro.7b00318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early diagnosis of Parkinson's disease (PD) is of great importance due its progressive phenotype. Neuroprotective drugs could potentially slow down disease progression if used at early stages. Previously, we have reported an altered content of volatile organic compounds (VOCs) in the breath of rats following a 50% reduction in striatal dopamine (DA) content induced by 6-hydroxydopamine. We now report on the difference in the breath-print and content of VOCs between rats with mild and severe lesions of DA neurons, serotonergic neuronal lesions, and transgenic (Tg) rats carrying the PD-producing A53T mutation of the SNCA (α-synuclein) gene. The Tg rats had an increased content of 3-octen-1-ol and 4-chloro-3-methyl phenol in blood, while in brain tissue, hexanal, hexanol, and 2,3-octanedione were present in controls but absent in Tg rats. Levels of 1-heptyl-2-methyl cyclopropane were increased in brain tissue of Tg rats. The data confirm the potential of breath analysis for detection of human idiosyncratic as well as autosomal dominant PD.
Collapse
Affiliation(s)
- John P. M. Finberg
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Aluf
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Loboda
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Morad K. Nakhleh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Raneen Jeries
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Manal Abud-Hawa
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Salman Zubedat
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Avital
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Soliman Khatib
- Laboratory of Natural Medicinal Compounds, Migal-Galilee Research
Institute, Kiryat Shmona and Tel Hai College, Qiryat Shemona, 1220800, Israel
| | - Jacob Vaya
- Laboratory of Natural Medicinal Compounds, Migal-Galilee Research
Institute, Kiryat Shmona and Tel Hai College, Qiryat Shemona, 1220800, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Comparison of common components analysis with principal components analysis and independent components analysis: Application to SPME-GC-MS volatolomic signatures. Talanta 2018; 178:854-863. [DOI: 10.1016/j.talanta.2017.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023]
|
10
|
Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal Chim Acta 2017; 996:1-9. [DOI: 10.1016/j.aca.2017.09.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022]
|
11
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
12
|
Bouhlel J, Ratel J, Abouelkaram S, Mercier F, Travel A, Baéza E, Jondreville C, Dervilly-Pinel G, Marchand P, Le Bizec B, Dubreil E, Mompelat S, Verdon E, Inthavong C, Guérin T, Rutledge DN, Engel E. Solid-phase microextraction set-up for the analysis of liver volatolome to detect livestock exposure to micropollutants. J Chromatogr A 2017; 1497:9-18. [PMID: 28366563 DOI: 10.1016/j.chroma.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Starting from a critical analysis of a first "proof of concept" study on the utility of the liver volatolome for detecting livestock exposure to environmental micropollutants (Berge et al., 2011), the primary aim of this paper is to improve extraction conditions so as to obtain more representative extracts by using an extraction temperature closer to livestock physiological conditions while minimizing analytical variability and maximizing Volatile Organic Compound (VOC) abundancies. Levers related to extraction conditions and sample preparation were assessed in the light of both abundance and coefficient of variation of 22 candidate VOC markers identified in earlier volatolomic studies. Starting with a CAR/PDMS fiber and a 30min extraction, the reduction of SPME temperature to 40°C resulted in a significant decrease in the area of 14 candidate VOC markers (p<0.05), mainly carbonyls and alcohols but also a reduction in the coefficient of variation for 17 of them. In order to restore VOC abundances and to minimize variability, two approaches dealing with sample preparation were investigated. By increasing sample defrosting time at 4°C from 0 to 24h yielded higher abundances and lower variabilities for 15 and 13 compounds, respectively. Lastly, by using additives favouring the release of VOCs (1.2g of NaCl) the sensitivity of the analysis was improved with a significant increase in VOC abundances of more than 50% for 13 out of the 22 candidate markers. The modified SPME parameters significantly enhanced the abundances while decreasing the analytical variability for most candidate VOC markers. The second step was to validate the ability of the revised SPME protocol to discriminate intentionally contaminated broiler chickens from controls, under case/control animal testing conditions. After verification of the contamination levels of the animals by national reference laboratories, data analysis by a multivariate chemometric method (Common Components and Specific Weights Analysis - ComDim) showed that the liver volatolome could reveal dietary exposure of broilers to a group of environmental pollutants (PCBs), a veterinary treatment (monensin), and a pesticide (deltamethrin), thus confirming the usefulness of this analytical set-up.
Collapse
Affiliation(s)
- Jihéne Bouhlel
- INRA, UR370 QuaPA, MASS laboratory, Saint-Genès-Champanelle, France; INRA, UMR GENIAL, AgroParisTech, Université Paris-Saclay, Massy, France
| | - Jérémy Ratel
- INRA, UR370 QuaPA, MASS laboratory, Saint-Genès-Champanelle, France
| | - Said Abouelkaram
- INRA, UR370 QuaPA, MASS laboratory, Saint-Genès-Champanelle, France
| | - Frédéric Mercier
- INRA, UR370 QuaPA, MASS laboratory, Saint-Genès-Champanelle, France
| | | | | | | | | | | | | | - Estelle Dubreil
- ANSES, Reference laboratory for veterinary drug residues in food, Fougères, France
| | - Sophie Mompelat
- ANSES, Reference laboratory for veterinary drug residues in food, Fougères, France
| | - Eric Verdon
- ANSES, Reference laboratory for veterinary drug residues in food, Fougères, France
| | | | - Thierry Guérin
- ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| | | | - Erwan Engel
- INRA, UR370 QuaPA, MASS laboratory, Saint-Genès-Champanelle, France.
| |
Collapse
|