1
|
Huang J, Hao J, Wang P, Xu Y. The Role of Mitochondrial Dysfunction in CKD-Related Vascular Calcification: From Mechanisms to Therapeutics. Kidney Int Rep 2024; 9:2596-2607. [PMID: 39291213 PMCID: PMC11403042 DOI: 10.1016/j.ekir.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and is closely associated with cardiovascular events. The transdifferentiation of vascular smooth muscles (VSMCs) into an osteogenic phenotype is hypothesized to be the primary cause underlying VC. However, there is currently no effective clinical treatment for VC. Growing evidence suggests that mitochondrial dysfunction accelerates the osteogenic differentiation of VSMCs and VC via multiple mechanisms. Therefore, elucidating the relationship between the osteogenic differentiation of VSMCs and mitochondrial dysfunction may assist in improving VC-related adverse clinical outcomes in patients with CKD. This review aimed to summarize the role of mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and metabolic reprogramming, as well as mitochondria-associated oxidative stress (OS) and senescence in VC in patients with CKD to offer valuable insights into the clinical treatment of VC.
Collapse
Affiliation(s)
- Junmin Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yongzhi Xu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Wang L, Liang F, Shang Y, Liu X, Yin M, Shen J, Yuan J. Endothelium-Mimicking Bilayer Vascular Grafts with Dual-Releasing of NO/H 2S for Anti-Inflammation and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:318-331. [PMID: 38156407 DOI: 10.1021/acsami.3c15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Vascular complications caused by diabetes impair the activities of endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE), resulting in decreased physiological levels of nitric oxide (NO) and hydrogen sulfide (H2S). The low bioavailability of NO and H2S hinders the endothelialization of vascular grafts. In this study, endothelium-mimicking bilayer vascular grafts were designed with spatiotemporally controlled dual releases of NO and H2S for in situ endothelialization and angiogenesis. Keratin-based H2S donor was synthesized and electrospun with poly(l-lactide-co-ε-caprolactone) (PLCL) as the outer layer of the graft to release H2S. Hyaluronic acid, one of the major glycosaminoglycans in endothelial glycocalyx, was complexed with Cu ions as the inner layer to mimic glutathione peroxidase (GPx) and maintain long-term physiological NO flux. The synergistic effects of NO and H2S of bilayer grafts selectively promoted the regeneration and migration of human umbilical vascular endothelial cells (HUVECs), while inhibiting the overproliferation of human umbilical artery smooth muscle cells (HUASMCs). Bilayer grafts could effectively prevent vascular calcification, reduce inflammation, and alleviate endothelial dysfunction. The in vivo study in a rat abdominal aorta replacement model for 1 month showed that the graft had a good patency rate and had potential for vascular remodeling in situ.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Róbert L, Bánvölgyi A, Lőrincz K, Holló P, Hidvégi B. Systemic Sodium Thiosulfate as an Adjunct Treatment in Calcinosis: A Retrospective Study. J Clin Med 2023; 12:7741. [PMID: 38137810 PMCID: PMC10743828 DOI: 10.3390/jcm12247741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Calcinosis of the skin mainly appears in connective tissue disorders (dystrophic subtype). It may cause inflammation, ulceration, pain, and restricted joint mobility. Management is difficult; sodium thiosulfate is one potential therapeutic agent with promising data on intralesional and topical formulation for smaller calcified lesions. There are very limited data on systemic administration. (2) Methods: A retrospective study was conducted at our department to assess the efficacy of oral and intravenous sodium thiosulfate in dystrophic calcinosis between 2003 and 2023. (3) Results: Seven patients were identified, who received systemic sodium thiosulfate (intravenous or oral). The mean duration of calcinosis at the time of administration was 3.8 ± 4 years (range 0-11). Intravenous sodium thiosulfate was administered in doses of 12.5-25 g two or three times during one week of the month for 4.5 ± 3.9 months on average. Orally, 1-8 g was administered daily for 29.1 ± 40.9 months on average. Four of seven patients had a partial response (57.1%). Despite no complete response, pain, ulceration and inflammation frequency decreased, and sodium thiosulfate prevented further progression in responsive patients. (4) Conclusions: Based on our experience and literature data, systemic sodium thiosulfate may be a potential adjunct therapy in calcinosis, especially if inflamed or ulcerating.
Collapse
Affiliation(s)
| | | | | | | | - Bernadett Hidvégi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (L.R.)
| |
Collapse
|
4
|
Baskaran K, Johnson JT, Prem PN, Ravindran S, Kurian GA. Evaluation of prophylactic efficacy of sodium thiosulfate in combating I/R injury in rat brain: exploring its efficiency further in vascular calcified brain slice model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2587-2598. [PMID: 37058187 DOI: 10.1007/s00210-023-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemia reperfusion injury (CIR) is one of the clinical manifestations encountered during the management of stroke. High prevalence of intracranial arterial calcification is reported in stroke patients. However, the impact of vascular calcification (VC) in the outcome of CIR and the efficacy of mechanical preconditioning (IPC) and pharmacological conditioning with sodium thiosulphate (STS) in ameliorating IR remains unclear. Two experimental models namely carotid artery occlusion (n = 36) and brain slice models (n = 18) were used to evaluate the efficacy of STS in male Wistar rats. IR was inflicted in rat by occluding carotid artery for 30 min followed by 24-h reperfusion after STS (100 mg/kg) administration. Brain slice model was used to reconfirm the results to account blood brain barrier permeability. Further, brain slice tissue was utilised to evaluate the efficacy of STS in VC rat brain by measuring the histological alterations and biochemical parameters. Pre-treatment of STS prior to CIR in intact animal significantly reduced the IR-associated histopathological alterations in brain, declined oxidative stress and improved the mitochondrial function found to be similar to IPC. Brain slice model data also confirmed the neuroprotective effect of STS similar to IPC in IR challenged tissue slice. Higher tissue injury was noted in VC brain IR tissue than normal IR tissue. Therapeutic efficacy of STS was evident in VC rat brain tissues and normal tissues subjected to IR. On the other hand, IPC-mediated protection was noted only in IR normal and adenine-induced VC brain tissues not in high-fat diet (HFD) induced VC brain tissues. Based on the results, we concluded that similar to IPC, STS was effective in attenuating IR injury in CIR rat brain. Vascular calcification adversely affected the recovery protocol of brain tissues from ischemic insult. STS was found to be an effective agent in ameliorating the IR injury in both adenine and HFD induced vascular calcified rat brain, but IPC-mediated neuroprotection was absent in HFD-induced VC brain tissues.
Collapse
Affiliation(s)
- Keerthana Baskaran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Jefri Thimoathi Johnson
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Priyanka N Prem
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Sriram Ravindran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
5
|
Huang C, Duan Z, Xu C, Chen Y. Influence of sodium thiosulfate on coronary artery calcification of patients on dialysis: a meta-analysis. Ren Fail 2023; 45:2254569. [PMID: 37755153 PMCID: PMC10538455 DOI: 10.1080/0886022x.2023.2254569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronary artery calcification (CAC) is common in dialysis patients and is associated with a higher risk of future cardiovascular events. Sodium thiosulfate (STS) is effective for calciphylaxis in dialysis patients; however, the influence of STS on CAC in dialysis patients remains unclear. This systematic review and meta-analysis were conducted to evaluate the effects of STS on CAC in patients undergoing dialysis. PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched from inception to 22 March 2023 for controlled studies comparing the influence of STS versus usual care without STS on CAC scores in dialysis patients. A random effects model incorporating the potential influence of heterogeneity was used to pool the results. Nine studies, including two non-randomized studies and seven randomized controlled trials, were included in the meta-analysis. Among these, 365 patients on dialysis were included in the study. Compared with usual care without STS, intravenous STS for 3-6 months was associated with significantly reduced CAC scores (mean difference [MD] = -180.17, 95% confidence interval [CI]: -276.64 to -83.70, p < 0.001, I2 = 0%). Sensitivity analysis limited to studies of patients on hemodialysis showed similar results (MD: -167.33, 95% CI: -266.57 to -68.09, p = 0.001; I2 = 0%). Subgroup analyses according to study design, sample size, mean age, sex, dialysis vintage of the patients, and treatment duration of STS also showed consistent results (p for subgroup differences all > 0.05). In conclusion, intravenous STS may be effective in attenuating CAC in dialysis patients.
Collapse
Affiliation(s)
- Chong Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhibing Duan
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengyun Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Chen
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Adenylate kinase derived ATP shapes respiration and calcium storage of isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148409. [PMID: 33713654 DOI: 10.1016/j.bbabio.2021.148409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 03/07/2021] [Indexed: 01/09/2023]
Abstract
The ratio of ADP and ATP is a natural indicator of cellular bioenergetic state and thus a prominent analyte in metabolism research. Beyond adenylate interconversion via oxidative phosphorylation and ATPase activities, ADP and ATP act as steric regulators of enzymes, e.g. cytochrome C oxidase, and are major factors in mitochondrial calcium storage potential. Consideration of all routes of adenylate conversion is critical to successfully predict their abundance in an experimental system and to correctly interpret many aspects of mitochondrial function. We showcase here how adenylate kinases elicit considerable impact on the outcome of a variety of mitochondrial assays through their drastic manipulation of the adenylate profile. Parameters affected include cytochrome c oxidase activity, P/O ratio, and mitochondrial calcium dynamics. Study of the latter revealed that the presence of ATP is required for mitochondrial calcium to be shaped into a particularly dense form of mitochondrial amorphous calcium phosphate.
Collapse
|
7
|
Ravindran S, Gopalakrishnan S, Kurian GA. Beneficial effect of sodium thiosulfate extends beyond myocardial tissue in isoproterenol model of infarction: Implication for nootropic effects. J Biochem Mol Toxicol 2020; 34:e22606. [PMID: 32865837 DOI: 10.1002/jbt.22606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 01/13/2023]
Abstract
One of the common negative impacts in the management of acute myocardial infarction is cognitive decline. Using the rat model of isoproterenol (ISO)-induced myocardial infarction, we assessed the cardioprotective effect of sodium thiosulfate (STS) and its influence on cognition. STS treatment reduced the cardiac infarct size by 75%, injury markers (lactate dehydrogenase: 60%, creatine kinase-muscle/brain: 44%) release in the blood, maintain the heart rate within a normal range (365 ± 10 bpm) and minimize postinfarction hypertrophic changes in comparison with the ISO group. At the cellular level, the heart from these rats had reduced reactive oxygen species (ROS) (25%), caspase-9 (60%), and improved mitochondrial function (restored electron transport chain function and copy number) compared to ISO hearts. The brain of STS-treated rats also showed a reduction in ROS (45%), caspase-9 (37%), and improved mitochondrial function relative to the brain of the ISO group, particularly limited to the striatum region, and these rats showed improved cognitive ability. Predominantly, the STS treatment reduced the reference memory defects observed in comparison to rats challenged by ISO. Furthermore, elevated circulating mitochondrial DNA and ATP were found in ISO-challenged rats, which indicate the cardiac mitochondria linked damage-associated patterns were restored to the sham level when pretreated with STS. We found increased H2 S, a well-known metabolite of STS with a neuroprotective role in the brain after STS administration, hinting at a possible secondary defense mechanism. In conclusion, the STS mediated cardioprotection and its nootropic effects are primarily mediated via the improvement of mitochondrial function and reduction of oxidative stress.
Collapse
Affiliation(s)
- Sriram Ravindran
- School of Chemical and Biotechnology, Vascular Biology Lab, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Gino A Kurian
- School of Chemical and Biotechnology, Vascular Biology Lab, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
8
|
Mohan D, Balasubramanian ED, Ravindran S, Kurian GA. Renal mitochondria can withstand hypoxic/ischemic injury secondary to renal failure in uremic rats pretreated with sodium thiosulfate. Indian J Pharmacol 2018; 49:317-321. [PMID: 29326493 PMCID: PMC5754940 DOI: 10.4103/ijp.ijp_751_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Sodium thiosulfate (STS) is a potent drug used to treat calcific uremic arteriopathy in dialysis patients and its mode of action is envisaged by calcium chelation and antioxidant potential. STS's action on mitochondrial dysfunction, one of the major players in the pathology of vascular calcification is yet to be explored. METHODS: Adenine (0.75%, 28 days)-treated vascular calcified rat kidney was used to isolate mitochondria, where the animal was administered with or without STS for 28 days. Isolated mitochondria were subjected to physiological oxidative stress by nitrogen gas purging (hypoxia/ischemia-reperfusion injury) to assess mitochondrial recovery extent due to STS treatment in vascular calcified rat kidney. RESULTS: The results confirmed an elevated oxidative stress and deteriorated mitochondrial enzyme activities in all groups except the drug-treated group. CONCLUSION: The STS treatment, besides rendering renal protection against adenine-induced renal failure, also helped to maintain mitochondrial functional integrity in a later insult due to hypoxia/ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dhivya Mohan
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sriram Ravindran
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
9
|
Ravindran S, Boovarahan SR, Shanmugam K, Vedarathinam RC, Kurian GA. Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis. Cardiovasc Drugs Ther 2018; 31:511-524. [PMID: 28965151 DOI: 10.1007/s10557-017-6751-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Sodium thiosulfate (STS) has of late been proven efficacious in models of urolithiasis and vascular calcification. However, its cardiovascular effects on ischemia reperfusion injury (IR) have not been revealed. Being an antioxidant and calcium chelator, it is assumed to play a vital role in IR as ROS production and calcium overload are major perpetrators of IR injury. METHODS The cardioprotective effect of STS was evaluated in vitro using H9C2 cardiomyocytes and in vivo using both isolated rat heart and intact left anterior descending artery (LAD) occlusion models of ischemia reperfusion injury. Finally, in silico tools were utilized to establish its possible mode of action. Myocardial injury markers and expression of apoptotic proteins were studied along with myocardial histopathology. RESULTS STS of 1 mM recovered H9C2 cells from glucose oxidase/catalase-induced apoptosis. The isolated rat heart treated with STS prior to IR injury improved its hemodynamics and reduced the infarct size to 9%. This was supported by the absence of derangement of cardiac fibers from H&E stained section of LAD-occluded rats. Plasma troponin levels decreased by 15% compared to IR and the myocardium showed diminished apoptotic proteins. An in silico docking analysis revealed higher binding affinity of STS for caspase-3 with a binding energy of - 60.523 kcal/mol for the complex. CONCLUSION The effectiveness of STS as a cardioprotective agent is attributed to the reduction of apoptosis by binding to the active site of caspase-3 in silico, which was substantiated by the reduced expression of caspase-3 and poly ADP ribose polymerase levels.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Lab, SASTRA University, Thanjavur, Tamilnadu, 613401, India
| | | | - Karthi Shanmugam
- Vascular Biology Lab, SASTRA University, Thanjavur, Tamilnadu, 613401, India
| | | | - Gino A Kurian
- Vascular Biology Lab, SASTRA University, Thanjavur, Tamilnadu, 613401, India.
| |
Collapse
|
10
|
Yolland COB, Phillipou A, Castle DJ, Neill E, Hughes ME, Galletly C, Smith ZM, Francis PS, Dean OM, Sarris J, Siskind D, Harris AWF, Rossell SL. Improvement of cognitive function in schizophrenia with N-acetylcysteine: A theoretical review. Nutr Neurosci 2018; 23:139-148. [DOI: 10.1080/1028415x.2018.1478766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Andrea Phillipou
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, Australia
- Psychiatry, Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - David J. Castle
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, Australia
- Psychiatry, Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Erica Neill
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, Australia
- Psychiatry, Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Matthew E. Hughes
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, University of Adelaide, Adelaide, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, Australia
| | - Zoe M. Smith
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Paul S. Francis
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Olivia M. Dean
- Psychiatry, Faculty of Medicine, University of Melbourne, Melbourne, Australia
- IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jerome Sarris
- NICM Health Research Institute, School of Science and Health, Western Sydney University, Campbelltown, Australia
- Department of Psychiatry, Professorial Unit, The Melbourne Clinic, University of Melbourne, Melbourne, Australia
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Anthony W. F. Harris
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, Australia
- Brain Dynamics Centre, The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Susan L. Rossell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, Australia
- Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| |
Collapse
|
11
|
Effect of Sodium Thiosulfate Postconditioning on Ischemia-Reperfusion Injury Induced Mitochondrial Dysfunction in Rat Heart. J Cardiovasc Transl Res 2018; 11:246-258. [PMID: 29721767 DOI: 10.1007/s12265-018-9808-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The recent research on the therapeutic applications of sodium thiosulfate (STS) has gained importance in the treatment of cardiovascular diseases. Progressively through the present work, we have demonstrated that postconditioning of isolated rat heart subjected to ischemia-reperfusion injury using STS had preserved the mitochondrial structure, function, and number. Heart comprising of two mitochondrial subpopulations interfibrillar (IFM-involved in contractile function) and subsarcolemmal (SSM-involved in metabolic function), STS postconditioning imparted a state of hypometabolism to SSM, thereby reducing the metabolic demand of the reperfused heart. The IFM, on the other hand, provided the energy required to maintain contraction. Moreover, the hypometabolic state induced in SSM can lower the free radical release in addition to STS innate ability to act as an antioxidant and radical scavenger, all of which collectively provided cardioprotection. Therefore, drugs targeting IFM specifically or those reducing the energy demand for SSM can be suitable targets for myocardial ischemia-reperfusion injury.
Collapse
|
12
|
Ravindran S, Ramachandran K, Kurian GA. Sodium thiosulfate mediated cardioprotection against myocardial ischemia-reperfusion injury is defunct in rat heart with co-morbidity of vascular calcification. Biochimie 2018; 147:80-88. [PMID: 29366934 DOI: 10.1016/j.biochi.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Sodium thiosulfate (STS) has shown promising effects in amelioration of myocardial ischemia-reperfusion injury (IR) in a rat model and is clinically useful in the treatment of chronic kidney disease (CKD) associated calciphylaxis. As the prevalence of cardiac complications is higher in CKD, we tested the effectiveness of STS in a rat model of adenine-induced vascular calcification and subjected the heart to IR. We observed an increased infarct size (29%) by TTC staining, lactate dehydrogenase (54%) and creatine kinase (32%) release in the coronary perfusate and altered hemodynamics compared to a normal rat treated with STS and subjected to IR. As functional mitochondria are essential for preserving heart from the detrimental effects of IR, we found that calcification induced mitochondrial dysfunction (reduced RCR->80%, P/O ratio->30%, ΔΨ->10% and swelling- 27%), could not be restored efficiently by STS treatment. Therefore we used nicorandil (mitochondrial potassium channel opener) along with STS as a combination therapy to treat the diseased heart and found an improvement in cardioprotection against IR injury, compared to STS alone. Upon evaluating these hearts, we found that both the cardiac mitochondria namely interfibrillar and subsarcolemmal were functionally well preserved.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Lab, SASTRA Deemed University, Thanjavur, 613401, India
| | | | - Gino A Kurian
- Vascular Biology Lab, SASTRA Deemed University, Thanjavur, 613401, India.
| |
Collapse
|
13
|
Ramani R, Ramachandran A, Ravindran S, Kurian GA. Erythrocyte Membrane Bound ATPase and Antioxidant Enzyme Changes Associated with Vascular Calcification is Reduced by Sodium Thiosulfate. Indian J Clin Biochem 2017; 32:487-492. [PMID: 29062183 DOI: 10.1007/s12291-016-0625-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023]
Abstract
Sodium thiosulfate (STS), a cyanide antidote has been reported to possess antioxidant and calcium chelation effects, useful for the treatment of renal failure due to vascular calcification and urolithiasis. The present study investigated the in vivo modulatory effects of STS on erythrocyte calcium, phosphorous levels, lipid peroxidation, antioxidant enzyme and membrane ATPase activities (Ca2+, Na+K+, Mg2+ and 5'' nucleotidase) in an adenine induced model of vascular calcification in rats. Adenine (0.75%) was supplemented through the diet for 28 days, which resulted in significantly (P < 0.05) increased circulating calcium and phosphorous product and oxidative stress within the RBCs, as measured from lipid peroxidation and reduced antioxidant enzymes. The membrane ATPase activities were altered (increased Ca2+, Na+K+ ATPase and decreased Mg+ ATPase, 5' nucleotidase) compared to the rats fed on normal diet. STS (400 mg/kg) given orally was effective in establishing a normalcy in the RBC alterations. This effect was more pronounced, when STS was given from day 28 to day 49 after induction of calcification, instead of day 0 to day 28. These findings may benefit to evaluate the effectiveness of STS therapy in patients with chronic renal failure associated with increased circulating calcium and phosphorous product that leads to stiffening of vascular smooth muscles of aorta, due to calcium deposition.
Collapse
Affiliation(s)
- Ramya Ramani
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | | | - Sriram Ravindran
- Vascular Biology Lab, SASTRA University, Thanjavur, 613401 India
| | - Gino A Kurian
- Vascular Biology Lab, SASTRA University, Thanjavur, 613401 India
| |
Collapse
|
14
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
15
|
Ravindran S, Jahir Hussain S, Boovarahan SR, Kurian GA. Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chem Biol Interact 2017; 274:24-34. [PMID: 28688941 DOI: 10.1016/j.cbi.2017.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023]
Abstract
Pharmacological agents given at the time of reperfusion can protect the heart from ischemia reperfusion injury (IR). Being a calcium chelator, antioxidant and mitochondrial potassium channel modulator, sodium thiosulfate (STS) was chosen to treat myocardial IR injury. Isolated rat heart model was used to induce IR injury and the hemodynamic changes were monitored using PowerLab (AD Instruments, Australia). STS at a dose of 1 mM given at the early stage of reperfusion significantly reduced the infarct size and recovered the failing heart from reperfusion injury. Its action was based on reduction of apoptosis as evidenced from decreased activity of caspase-3 in the myocardium, lowered expression of casp-3 and PARP, which was supported by absence of significant DNA fragmentation and histological derangement of fibers compared to the injury control. An evaluation of the inter-dependency of H2S and STS biosynthesis in the STS treated groups showed no significant changes in the level of STS, H2S and rhodanese, except the cystathionine gamma lyase activity that improved upon treatment. The mechanism underlying the antiapoptotic, mitochondrial preservation and antioxidant effects of STS were related to the biosynthesis of H2S. The fact that inhibition of cystathionine gamma lyase limited the STS mediated cardio protection supports this observation.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Lab, SASTRA University, Thanjavur, Tamilnadu 613401, India
| | | | | | - Gino A Kurian
- Vascular Biology Lab, SASTRA University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
16
|
Goossens J, Courbebaisse M, Caudron E, Bahans C, Vacquerie V, Melchior J, Salle PV, Moesch C, Daudon M, Frocht V, Richette P, Ea HK, Guigonis V. Efficacy of intralesional sodium thiosulfate injections for disabling tumoral calcinosis: Two cases. Semin Arthritis Rheum 2017; 47:451-455. [PMID: 28779847 DOI: 10.1016/j.semarthrit.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Tumoral calcinosis (TC) is a difficult-to-treat complication that can occur during several diseases such as dermatomyositis or genetic hyperphosphatemia. It is a painful and disabling condition that can lead to local complications including joint mobility reduction, cutaneous ulceration and superinfection. For the largest lesions, the treatment relies essentially on surgery. Intravenous sodium thiosulfate (STS) is efficient to treat calciphylaxis in patients undergoing hemodialysis. Local injections of STS seem efficient in superficial calcifications. OBJECTIVE To report the efficacy and safety of intra-lesional injections of STS in tumoral calcinosis. RESULTS We report two cases of successful intra-lesional injections of STS. A 44-year-old woman, with a history of dermatomyositis, presenting large subcutaneous calcifications in the right elbow, and a 42-year-old man, with a history of familial tumoral calcinosis, presenting large intramuscular calcifications in the right buttock, received weekly intra-lesional of 1-3g STS injections for 12 and 21 months, respectively. In both cases, the treatment relieved pain and greatly reduced the tumoral calcinosis with a very significant functional improvement without specific adverse effects. In case 1, TC size decreased from 28.7*56.0mm at baseline to 21.5*30.6mm at M12 treatment (59% reduction). In case 2, TC reduced from 167.5*204.3mm at baseline to 86.2*85.2mm at M21 treatment (79% reduction). CONCLUSION Local injection of STS could be a promising therapeutic strategy for large and deep TC lesions and could therefore be an alternative to surgery.
Collapse
Affiliation(s)
- J Goossens
- Service de rhumatologie, hôpital Lariboisière, centre Viggo Petersen, Paris, France
| | - M Courbebaisse
- AP-HP, Georges Pompidou European Hospital, Physiology Department, Paris Descartes University, and INSERM, Unit 1151, Paris, France
| | - E Caudron
- AP-HP, Hôpital Européen Georges Pompidou, Department of Pharmacy, Paris, France; Lip(Sys), Chimie analytique pharmaceutique EA 4041, Univ. Paris Sud, Université Paris-Saclay, Chatenay Malabry, France
| | - C Bahans
- Service de pédiatrie, Hopital de la Mère et de l'Enfant, Limoges, France
| | - V Vacquerie
- Service de chirurgie pédiatrique, Hopital de la Mère et de l'Enfant, Limoges, France
| | - J Melchior
- Service de Rhumatologie, Hopitaux de Brabois, Vandoeuvre les Nancy, France
| | - P Vergne Salle
- Service de Rhumatologie, Hôpital Dupuytren, Limoges, France
| | - C Moesch
- Service de Pharmacologie-toxicologie, Hôpital Dupuytren, Limoges, France
| | - M Daudon
- Service des explorations fonctionnelles, Hôpital Tenon, Paris, France
| | - V Frocht
- Service des explorations fonctionnelles, Hôpital Tenon, Paris, France
| | - P Richette
- Service de rhumatologie, hôpital Lariboisière, centre Viggo Petersen, Paris, France
| | - Hang-Korng Ea
- Service de rhumatologie, hôpital Lariboisière, centre Viggo Petersen, Paris, France.
| | - V Guigonis
- Service de pédiatrie, Hopital de la Mère et de l'Enfant, Limoges, France.
| |
Collapse
|
17
|
Acero G, Nava Catorce M, González-Mendoza R, Meraz-Rodríguez MA, Hernández-Zimbron LF, González-Salinas R, Gevorkian G. Sodium thiosulphate attenuates brain inflammation induced by systemic lipopolysaccharide administration in C57BL/6J mice. Inflammopharmacology 2017; 25:10.1007/s10787-017-0355-y. [PMID: 28526927 DOI: 10.1007/s10787-017-0355-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/26/2017] [Indexed: 02/03/2023]
Abstract
It has been demonstrated that peripheral infections accompanied by neuroinflammation may modify brain development or affect normal brain aging and represent major risk factors for the development of neurological disorders. A wide range of synthetic and natural compounds with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration as an adjuvant therapeutic strategy. In the present study we have demonstrated for the first time that sodium thiosulphate (STS), a known antidote approved for treatment of certain medical conditions, is capable of reducing brain inflammation caused by systemic LPS administration. STS reduced brain levels of pro-inflammatory cytokine interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), ionized calcium binding adaptor molecule 1 (Iba-1) and 18 kDa translocator protein (TSPO) in an animal model of systemic LPS-induced neuroinflammation. In addition, we demonstrated for the first time elevated TSPO expression in retinal ganglion cells layer after peripheral LPS challenge and inhibition of ocular TSPO expression after treatment with STS. We think that STS may be used as an adjuvant anti-inflammatory therapy for many pathological conditions associated with inflammation in the brain.
Collapse
Affiliation(s)
- Gonzalo Acero
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Ricardo González-Mendoza
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Marco Antonio Meraz-Rodríguez
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | | | | | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico.
| |
Collapse
|
18
|
Zhang P, Li Y, Du Y, Li G, Wang L, Zhou F. Resveratrol Ameliorated Vascular Calcification by Regulating Sirt-1 and Nrf2. Transplant Proc 2017; 48:3378-3386. [PMID: 27931585 DOI: 10.1016/j.transproceed.2016.10.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023]
Abstract
Pathologic vascular calcification is a significant reason for mortality and morbidity in patients who suffer from end-stage renal disease (ESRD). Resveratrol, a scavenger for many free radicals, is a crucial compound for biomedicine. However, the role and mechanism of resveratrol in vascular calcification is still unknown. In this study, to mimic vascular calcification in ESRD, we used β-glyceophosphate to stimulate the rat vascular smooth muscle cells (RASMCs). We investigate the therapeutic role of resveratrol pretreatment in vascular calcification. In the current in vitro study, we observe the effects of resveratrol on improving intracellular calcium deposition and protecting against mitochondria dysfunction in calcific RASMCs. Resveratrol decreased the mRNA level of fibroblast growth factor-23, then increased the mRNA level of klotho and the nuclear transcription factor NF-E2-related factor 2 (nuclear factor-erythroid 2-related factor 2 [Nrf2]) in RASMCs after calcification. Further, resveratrol activated the expression of sirtuin-1 and Nrf2, and inhibited the expression of osteopontin, runt-related transcription factor 2, and heme oxygenase-1. Our study shows that resveratrol could ameliorate oxidative injury of RASMCs by preventing vascular calcification-induced calcium deposition and mitochondria dysfunction through involving sirtuin-1 and Nrf2. These results might indicate a novel role for resveratrol in resistance to oxidative stress for ESRD patients suffering from vascular calcification.
Collapse
Affiliation(s)
- P Zhang
- Chongqing Medical University, The First College of Clinical Medicine, Clinical Medicine of Grade 2012, Chongqing, China; Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Y Li
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Y Du
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - G Li
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - L Wang
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, Chengdu, China.
| | - F Zhou
- Chongqing Medical University, The First College of Clinical Medicine, Clinical Medicine of Grade 2012, Chongqing, China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Mageau A, Guigonis V, Ratzimbasafy V, Bardin T, Richette P, Urena P, Ea HK. Intravenous sodium thiosulfate for treating tumoral calcinosis associated with systemic disorders: Report of four cases. Joint Bone Spine 2016; 84:341-344. [PMID: 27955821 DOI: 10.1016/j.jbspin.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Intravenous sodium thiosulfate (ivSTS) is a promising new therapeutic option for calciphylaxis related to end-stage renal disease. However, its effect on tumoral calcinosis (TC) complicating autoimmune connective-tissue diseases has been scarcely described. We report here 4 cases (3 adults and 1 child) of TC treated with ivSTS. TC was secondary to CREST syndrome, dermatomyositis (1 adult and 1 child) and systemic erythematous lupus and involved multiple sites in all cases. In all 4 patients, TC was responsible for joint pain, reduced mobility, inflammatory flares and skin fistulations. One patient experienced difficulty sitting due to the pain induced by calcified lesions on the buttock; another patient had major disability, moved only with wheelchair and was under opioid treatment for pain. For all patients, treatment with several medications before STS was unsuccessful. The 3 adults received at least 6 cycles of ivSTS (20g/d, 5 days/month) and the child received a daily infusion of 17g STS during 1 month then a 9-g/d infusion during 3 months. Two adults and the child showed clinical improvement with STS treatment and the third adult felt disappointed and stopped STS treatment after 6 months. The child also stopped STS after 6 months due to vomiting. In one patient, an intensive regimen of ivSTS (20g every 2 days) controlled recurrent flares and fistulations. Unfortunately, TC remained unchanged. Further studies are needed to decipher how STS modulates ectopic calcification, the optimal regimen and posology.
Collapse
Affiliation(s)
- Arthur Mageau
- Pôle locomoteur, service de rhumatologie, centre Viggo Petersen, hôpital Lariboisière, AP-HP, 2, rue Ambroise-Paré, 75010 Paris, France
| | - Vincent Guigonis
- Service de pédiatrie, hôpital de la Mère et de l'Enfant, 8, avenue Dominique-Larrey, 87000 Limoges, France
| | - Voa Ratzimbasafy
- Service de pharmacie, hôpital de la Mère et de l'Enfant, 8, avenue Dominique-Larrey, 87000 Limoges, France
| | - Thomas Bardin
- Pôle locomoteur, service de rhumatologie, centre Viggo Petersen, hôpital Lariboisière, AP-HP, 2, rue Ambroise-Paré, 75010 Paris, France; UFR de médecine, université Paris 7 Denis Diderot, Paris Cité Sorbonne, 16, rue Henri-Huchard, 75018 Paris, France
| | - Pascal Richette
- Pôle locomoteur, service de rhumatologie, centre Viggo Petersen, hôpital Lariboisière, AP-HP, 2, rue Ambroise-Paré, 75010 Paris, France; UFR de médecine, université Paris 7 Denis Diderot, Paris Cité Sorbonne, 16, rue Henri-Huchard, 75018 Paris, France
| | - Pablo Urena
- Service de néphrologie et dialyse, Ramsay-Générale de Santé, clinique du Landy, 23, rue de Landy, 93400 Saint-Ouen, France
| | - Hang-Korng Ea
- Pôle locomoteur, service de rhumatologie, centre Viggo Petersen, hôpital Lariboisière, AP-HP, 2, rue Ambroise-Paré, 75010 Paris, France; UFR de médecine, université Paris 7 Denis Diderot, Paris Cité Sorbonne, 16, rue Henri-Huchard, 75018 Paris, France.
| |
Collapse
|
20
|
Krishnaraj P, Ravindran S, Kurian GA. The renal mitochondrial dysfunction in patients with vascular calcification is prevented by sodium thiosulfate. Int Urol Nephrol 2016; 48:1927-1935. [PMID: 27465796 DOI: 10.1007/s11255-016-1375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Vascular calcification (VC) is an impact of calcium accumulation in end-stage renal diseases, normally initiated in the mitochondria. Sodium thiosulfate (STS) is effective in rescuing mitochondrial function in the neurovascular complications associated with VC, but has limitation in protecting the cardiac mitochondria. However, the STS efficacy in restoring the renal mitochondrial function has not been studied, which is the primary focus of this study. METHODS Wistar rats (n = 6/group) were administered 0.75 % adenine in the diet for 28 days to induce renal failure. STS (400 mg/kg) was given in two regimens STS_Pre (preventive: along with adenine for 28 days) and STS_Cur (curative: 29th to 49th day). Renal failure was assessed by plasma and urinary markers. The effectiveness of treatment was assessed from oxidative stress, DNA damage, mitochondrial physiology and enzymology in the renal tissue. RESULTS 0.75 % adenine diet caused renal medullary swelling, tubular interstitial nephropathy and impaired renal function (creatinine, urea, uric acid and ALP), which were recovered after STS treatment. The renal failure was due to oxidative stress as measured by elevated malondialdehyde (29 %) and lowered reduced glutathione (27 %) levels. STS reduced the lipid peroxidation and significantly (p < 0.05) elevated the antioxidant enzymes. Further, it improved renal mitochondrial respiratory capacity by maintaining the hyperpolarized membrane potential and restored the complex enzyme activities. Absence of renal DNA fragmentation supports the above findings. CONCLUSION STS protects the kidney by preserving renal mitochondria, in experimental adenine-induced vascular calcified rats. The efficacy was prominent when given after induction, i.e., in STS_Cur group.
Collapse
Affiliation(s)
| | - Sriram Ravindran
- Vascular Biology Lab, Sastra University, Thanjavur, 613401, India
| | - Gino A Kurian
- Vascular Biology Lab, Sastra University, Thanjavur, 613401, India.
| |
Collapse
|
21
|
Fennell VS, Kalani MYS, Atwal G, Martirosyan NL, Spetzler RF. Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Front Surg 2016; 3:43. [PMID: 27504449 PMCID: PMC4958945 DOI: 10.3389/fsurg.2016.00043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding the biology of intracranial aneurysms is a clinical quandary. How these aneurysms form, progress, and rupture is poorly understood. Evidence indicates that well-established risk factors play a critical role, along with immunologic factors, in their development and clinical outcomes. Much of the expanding knowledge of the inception, progression, and rupture of intracranial aneurysms implicates inflammation as a critical mediator of aneurysm pathogenesis. Thus, therapeutic targets exploiting this arm of aneurysm pathogenesis have been implemented, often with promising outcomes.
Collapse
Affiliation(s)
- Vernard S Fennell
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Gursant Atwal
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Robert F Spetzler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| |
Collapse
|
22
|
Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9095242. [PMID: 27022436 PMCID: PMC4789052 DOI: 10.1155/2016/9095242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/20/2023]
Abstract
In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC.
Collapse
|