1
|
Hasanpour-Segherlou Z, Masheghati F, Shakeri-Darzehkanani M, Hosseini-Siyanaki MR, Lucke-Wold B. Neurodegenerative Disorders in the Context of Vascular Changes after Traumatic Brain Injury. JOURNAL OF VASCULAR DISEASES 2024; 3:319-332. [DOI: 10.3390/jvd3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
Abstract
Traumatic brain injury (TBI) results from external biomechanical forces that cause structural and physiological disturbances in the brain, leading to neuronal, axonal, and vascular damage. TBIs are predominantly mild (65%), with moderate (10%) and severe (25%) cases also prevalent. TBI significantly impacts health, increasing the risk of neurodegenerative diseases such as dementia, post injury. The initial phase of TBI involves acute disruption of the blood–brain barrier (BBB) due to vascular shear stress, leading to ischemic damage and amyloid-beta accumulation. Among the acute cerebrovascular changes after trauma are early progressive hemorrhage, micro bleeding, coagulopathy, neurovascular unit (NVU) uncoupling, changes in the BBB, changes in cerebral blood flow (CBF), and cerebral edema. The secondary phase is characterized by metabolic dysregulation and inflammation, mediated by oxidative stress and reactive oxygen species (ROS), which contribute to further neurodegeneration. The cerebrovascular changes and neuroinflammation include excitotoxicity from elevated extracellular glutamate levels, coagulopathy, NVU, immune responses, and chronic vascular changes after TBI result in neurodegeneration. Severe TBI often leads to dysfunction in organs outside the brain, which can significantly impact patient care and outcomes. The vascular component of systemic inflammation after TBI includes immune dysregulation, hemodynamic dysfunction, coagulopathy, respiratory failure, and acute kidney injury. There are differences in how men and women acquire traumatic brain injuries, how their brains respond to these injuries at the cellular and molecular levels, and in their brain repair and recovery processes. Also, the patterns of cerebrovascular dysfunction and stroke vulnerability after TBI are different in males and females based on animal studies.
Collapse
Affiliation(s)
| | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Liu T, Liu M, Nie M, Zhao Z, Liu X, Qian Y, Yu Y, Sha Z, Wu C, Yuan J, Jiang W, Lv C, Mi L, Tian Y, Zhang J, Jiang R. Effect of l-oxiracetam and oxiracetam on memory and cognitive impairment in mild-to-moderate traumatic brain injury patients: Study protocol for a randomized controlled trial. Aging Med (Milton) 2024; 7:341-349. [PMID: 38975302 PMCID: PMC11222749 DOI: 10.1002/agm2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives Patients with traumatic brain injury (TBI) often suffer memory and cognitive impairments, and oxiracetam-like drugs are considered to have a positive impact on these symptoms potentially. However, the efficacy and safety of l-oxiracetam and oxiracetam in TBI patients have not been sufficiently investigated. Methods The study adopts a multicenter, randomized, double-blind, parallel-group, phase 3 clinical trial design in 74 centers across 51 hospitals in China. A total of 590 TBI patients meeting criteria will be randomly allocated into three groups in a 2:2:1 ratio: l-oxiracetam group, oxiracetam group, and placebo group. The treatment period is 14 days, with a follow-up period of 90 days. The primary outcome measure is the change in the Loewenstein Occupational Therapy Cognitive Assessment score at 90 days after treatment. Secondary outcomes include changes in other cognitive assessments, neurological function, activities of daily living, and safety assessments. Discussion There is no robust evidence to suggest that l-oxiracetam and oxiracetam can enhance memory and cognitive function in patients with mild to moderate TBI. This study has the potential to answer this crucial clinical question. Trial registration chinadrugtrials.org.cn, identifier CTR20192539; ClinicalTrials.gov, identifier NCT04205565.
Collapse
Affiliation(s)
- Tao Liu
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Mingqi Liu
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
- Department of Rehabilitation MedicineZhejiang Provincial People's HospitalHangzhouChina
| | - Meng Nie
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Zhihao Zhao
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Xuanhui Liu
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Yu Qian
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Yunhu Yu
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
- Department of Clinical Research Center for Neurological DiseaseThe People's Hospital of HongHuaGang District of ZunYiZunyiChina
| | - Zhuang Sha
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Chenrui Wu
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Weiwei Jiang
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Chuanxiang Lv
- Department of NeurosurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Liang Mi
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Yu Tian
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Jianning Zhang
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryTianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General HospitalTianjinChina
- State Key Laboratory of Experimental HematologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
3
|
Möttönen J, Ponkilainen VT, Mattila VM, Kuitunen I. Impact of childhood traumatic brain injury on fitness for service class, length of service period, and cognitive performance during military service in Finland from 1998 to 2018: A retrospective register-based nationwide cohort study. PLoS One 2024; 19:e0303851. [PMID: 38768174 PMCID: PMC11104597 DOI: 10.1371/journal.pone.0303851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) can cause neuronal damage and cerebrovascular dysfunction, leading to acute brain dysfunction and considerable physical and mental impairment long after initial injury. Our goal was to assess the impact of pediatric TBI (pTBI) on military service, completed by 65-70% of men in Finland. METHODS We conducted a retrospective register-based nationwide cohort study. All patients aged 0 to 17 years at the time of TBI, between 1998 and 2018, were included. Operatively and conservatively treated patients with pTBI were analyzed separately. The reference group was comprised of individuals with upper and lower extremity fractures. Information on length of service time, service completion, fitness for service class, and cognitive performance in a basic cognitive test (b-test) was gathered from the Finnish Military Records for both groups. Linear and logistic regression with 95% CI were used in comparisons. RESULTS Our study group comprised 12 281 patients with pTBI and 20 338 reference group patients who participated in conscription. A total of 8 507 (66.5%) men in the pTBI group and 14 953 (71.2%) men in the reference group completed military service during the follow-up period. Men in the reference group were more likely to complete military service (OR 1.26, CI 1.18-1.34). A total of 31 (23.3%) men with operatively treated pTBI completed the military service. Men with conservatively treated pTBI had a much higher service rate (OR 7.20, CI 4.73-11.1). In the pTBI group, men (OR 1.26, CI 1.18-1.34) and women (OR 2.05, CI 1.27-3.36) were more likely to interrupt military service than the reference group. The PTBI group scored 0.15 points (CI 0.10-0.20) less than the reference group in cognitive b-test. CONCLUSIONS PTBI groups had slightly shorter military service periods and higher interruption rate than our reference-group. There were only minor differences between groups in cognitive b-test.
Collapse
Affiliation(s)
- Julius Möttönen
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | - Ville T. Ponkilainen
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Ville M. Mattila
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Ilari Kuitunen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
4
|
Fagan MM, Welch CB, Scheulin KM, Sneed SE, Jeon JH, Golan ME, Cheek SR, Barany DA, Oeltzschner G, Callaway TR, Zhao Q, Park HJ, Lourenco JM, Duberstein KJ, West FD. Fecal microbial transplantation limits neural injury severity and functional deficits in a pediatric piglet traumatic brain injury model. Front Neurosci 2023; 17:1249539. [PMID: 37841685 PMCID: PMC10568032 DOI: 10.3389/fnins.2023.1249539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.
Collapse
Affiliation(s)
- Madison M. Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Christina B. Welch
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M. Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Sydney E. Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Julie H. Jeon
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Morgane E. Golan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Savannah R. Cheek
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Todd R. Callaway
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Kylee J. Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
7
|
Psychiatric disorders in post-traumatic brain injury patients: A scoping review. Heliyon 2023; 9:e12905. [PMID: 36704272 PMCID: PMC9871203 DOI: 10.1016/j.heliyon.2023.e12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Background Traumatic Brain Injury (TBI) is an important antecedent in the evaluation of patients with psychiatric disorders. The association between TBI and the subsequent appearance of psychiatric disorders has been documented, however, the findings found in the literature are diverse and controversial. Objective To identify the most prevalent psychiatric disorders after head trauma. Design An exploratory review (SCOPING) was carried out using the PRISMA extension protocol. Articles published between the years 2010-2022 were used to identify and describe the most prevalent psychiatric disorders after a TBI. Psychiatric disorders were classified according to clinical characteristics in neurotic syndromes, psychotic syndromes, cognitive disorders, among others. Results A total of 32 articles were included. In the framework of neurotic syndromes, depression is the most prevalent psychiatric alteration after a TBI, becoming a sequel that shows a higher incidence in the first year after the traumatic event. The findings found in relation to post-traumatic stress disorder are controversial, showing great variability regarding the degree of severity of the injury. The prevalence of psychotic syndromes is relatively low because it is difficult to determine if the psychosis is a direct consequence of a TBI. In the cognitive sphere, it was found that people with TBI presented alterations in cognitive functions. Conclusions The findings found in the review respond to the hypothesis initially raised, which assumes that head trauma is an important etiological factor in the appearance of psychiatric disorders.
Collapse
|
8
|
Zhang LM, Xin Y, Wu ZY, Song RX, Miao HT, Zheng WC, Li Y, Zhang DX, Zhao XC. STING mediates neuroinflammatory response by activating NLRP3-related pyroptosis in severe traumatic brain injury. J Neurochem 2022; 162:444-462. [PMID: 35892155 DOI: 10.1111/jnc.15678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Long-term neurological deficits after severe traumatic brain injury (TBI), including cognitive dysfunction and emotional impairments, can significantly impair rehabilitation. Glial activation induced by inflammatory response is involved in the neurological deficits post-TBI. This study aimed to investigate the role of the stimulator of interferon genes (STING)-nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) signaling in a rodent model of severe TBI. Severe TBI models were established using weight-drop plus blood loss-reinfusion. Selective STING agonist ADU-S100 or antagonist C-176 was given as a single dose after modeling. Further, NLRP3 inhibitor MCC950 or activator nigericin, or caspase-1 inhibitor VX765, was given as an intracerebroventricular injection 30 min before modeling. After that, a novel object recognition test, open field test, force swimming test, western blot, and immunofluorescence assays were used to assess behavioral and pathological changes in severe TBI. Administration of C-176 alleviated TBI-induced cognitive dysfunction and emotional impairments, neuronal loss, and inflammatory activation of glia cells. However, the administration of STING agonist ADU-S100 exacerbated TBI-induced behavioral and pathological changes. In addition, STING activation exacerbated pyroptosis-associated neuroinflammation via promoting glial activation, as evidenced by increased cleaved caspase-1 and GSDMD N-terminal expression. In contrast, the administration of C-176 showed anti-pyroptotic effects. The neuroprotective effects of C-176 were partially reversed by the NLRP3 activator, nigericin. Collectively, glial STING is responsible for neuroinflammation post-TBI. However, pharmacologic inhibition of STING led to a remarkable improvement of neuroinflammation partly through suppressing NLRP3 signaling. The STING-NLRP3 signaling is a potential therapeutic target in TBI-induced neurological dysfunction.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.,Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23116086. [PMID: 35682768 PMCID: PMC9181489 DOI: 10.3390/ijms23116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.
Collapse
|
10
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
11
|
Traumatic Brain Injury Characteristics Predictive of Subsequent Sleep-Wake Disturbances in Pediatric Patients. BIOLOGY 2022; 11:biology11040600. [PMID: 35453799 PMCID: PMC9030185 DOI: 10.3390/biology11040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Traumatic brain injury is a leading cause of death and disabilities in children and adolescents. Poor sleep after brain injury can slow recovery and worsen outcomes. We investigated clinical sleep problems following pediatric brain injury. We examined characteristics of the injury and details about the patients that may be risk factors for developing sleep problems. The number of patients that developed problems with their sleep after a brain injury was similar between genders. The probability of insomnia increased with increasing patient age. The probability of ‘difficulty sleeping’ was highest in 7–9 year-old brain-injured patients. Older patients had a shorter time between brain injury and sleep problems compared to younger patients. Patients with severe brain injury had the shortest time between brain injury and development of sleep problems, whereas patients with mild or moderate brain injury had comparable times between brain injury and the onset of poor sleep. Multiple characteristics of brain injury and patient details were identified as risk factors for developing sleep problems following a brain injury in children. Untreated sleep problems after a brain injury can worsen symptoms, lengthen hospital stays, and delay return to school. Identifying risk factors could improve the diagnosis, management, and treatment of sleep problems in survivors of pediatric brain injury. Abstract The objective of this study was to determine the prevalence of sleep-wake disturbances (SWD) following pediatric traumatic brain injury (TBI), and to examine characteristics of TBI and patient demographics that might be predictive of subsequent SWD development. This single-institution retrospective study included patients diagnosed with a TBI during 2008–2019 who also had a subsequent diagnosis of an SWD. Data were collected using ICD-9/10 codes for 207 patients and included the following: age at initial TBI, gender, TBI severity, number of TBIs diagnosed prior to SWD diagnosis, type of SWD, and time from initial TBI to SWD diagnosis. Multinomial logit and negative-binomial models were fit to investigate whether the multiple types of SWD and the time to onset of SWD following TBI could be predicted by patient variables. Distributions of SWD diagnosed after TBI were similar between genders. The probability of insomnia increased with increasing patient age. The probability of ‘difficulty sleeping’ was highest in 7–9 year-old TBI patients. Older TBI patients had shorter time to SWD onset than younger patients. Patients with severe TBI had the shortest time to SWD onset, whereas patients with mild or moderate TBI had comparable times to SWD onset. Multiple TBI characteristics and patient demographics were predictive of a subsequent SWD diagnosis in the pediatric population. This is an important step toward increasing education among providers, parents, and patients about the risk of developing SWD following TBI.
Collapse
|
12
|
Trivedi A, Tercovich KG, Casbon AJ, Raber J, Lowell C, Noble-Haeusslein LJ. Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiol Dis 2021; 157:105430. [PMID: 34153467 PMCID: PMC11302380 DOI: 10.1016/j.nbd.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
While traumatic brain injury (TBI) is the leading cause of death and disability in children, we have yet to identify those pathogenic events that determine the extent of recovery. Neutrophils are best known as "first responders" to sites of infection and trauma where they become fully activated, killing pathogens via proteases that are released during degranulation. However, this activational state may generate substantial toxicity in the young brain after TBI that is partially due to developmentally regulated inadequate antioxidant reserves. Neutrophil degranulation is triggered via a downstream signaling pathway that is dependent on spleen tyrosine kinase (Syk). To test the hypothesis that the activational state of neutrophils is a determinant of early pathogenesis and long-term recovery, we compared young, brain-injured conditional knockouts of Syk (sykf/fMRP8-cre+) to congenic littermates (sykf/f). Based upon flow cytometry, there was an extended recruitment of distinct leukocyte subsets, including Ly6G+/Ly6C- and Ly6G+/Ly6Cint, over the first several weeks post-injury which was similar between genotypes. Subsequent assessment of the acutely injured brain revealed a reduction in blood-brain barrier disruption to both high and low molecular weight dextrans and reactive oxygen species in sykf/fMRP8-cre+ mice compared to congenic littermates, and this was associated with greater preservation of claudin 5 and neuronal integrity, as determined by Western blot analyses. At adulthood, motor learning was less affected in brain-injured sykf/fMRP8-cre+ mice as compared to sykf/f mice. Performance in the Morris Water Maze revealed a robust improvement in hippocampal-dependent acquisition and short and long-term spatial memory retention in sykf/fMRP8-cre+ mice. Subsequent analyses of swim path lengths during hidden platform training and probe trials showed greater thigmotaxis in brain-injured sykf/f mice than sham sykf/f mice and injured sykf/fMRP8-cre+ mice. Our results establish the first mechanistic link between the activation state of neutrophils and long-term functional recovery after traumatic injury to the developing brain. These results also highlight Syk kinase as a novel therapeutic target that could be further developed for the brain-injured child.
Collapse
Affiliation(s)
- Alpa Trivedi
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen G Tercovich
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Amy Jo Casbon
- Departments of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Clifford Lowell
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Psychology, The Dell Medical School and the College of Liberal Arts, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Attilio PJ, Snapper DM, Rusnak M, Isaac A, Soltis AR, Wilkerson MD, Dalgard CL, Symes AJ. Transcriptomic Analysis of Mouse Brain After Traumatic Brain Injury Reveals That the Angiotensin Receptor Blocker Candesartan Acts Through Novel Pathways. Front Neurosci 2021; 15:636259. [PMID: 33828448 PMCID: PMC8019829 DOI: 10.3389/fnins.2021.636259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) results in complex pathological reactions, where the initial lesion is followed by secondary inflammation and edema. Our laboratory and others have reported that angiotensin receptor blockers (ARBs) have efficacy in improving recovery from traumatic brain injury in mice. Treatment of mice with a subhypotensive dose of the ARB candesartan results in improved functional recovery, and reduced pathology (lesion volume, inflammation and gliosis). In order to gain a better understanding of the molecular mechanisms through which candesartan improves recovery after controlled cortical impact injury (CCI), we performed transcriptomic profiling on brain regions after injury and drug treatment. We examined RNA expression in the ipsilateral hippocampus, thalamus and hypothalamus at 3 or 29 days post injury (dpi) treated with either candesartan (0.1 mg/kg) or vehicle. RNA was isolated and analyzed by bulk mRNA-seq. Gene expression in injured and/or candesartan treated brain region was compared to that in sham vehicle treated mice in the same brain region to identify genes that were differentially expressed (DEGs) between groups. The most DEGs were expressed in the hippocampus at 3 dpi, and the number of DEGs reduced with distance and time from the lesion. Among pathways that were differentially expressed at 3 dpi after CCI, candesartan treatment altered genes involved in angiogenesis, interferon signaling, extracellular matrix regulation including integrins and chromosome maintenance and DNA replication. At 29 dpi, candesartan treatment reduced the expression of genes involved in the inflammatory response. Some changes in gene expression were confirmed in a separate cohort of animals by qPCR. Fewer DEGs were found in the thalamus, and only one in the hypothalamus at 3 dpi. Additionally, in the hippocampi of sham injured mice, 3 days of candesartan treatment led to the differential expression of 384 genes showing that candesartan in the absence of injury had a powerful impact on gene expression specifically in the hippocampus. Our results suggest that candesartan has broad actions in the brain after injury and affects different processes at acute and chronic times after injury. These data should assist in elucidating the beneficial effect of candesartan on recovery from TBI.
Collapse
Affiliation(s)
- Peter J. Attilio
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dustin M. Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Akira Isaac
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Anthony R. Soltis
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aviva J. Symes
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
14
|
Extracellular Vesicles miRNA Cargo for Microglia Polarization in Traumatic Brain Injury. Biomolecules 2020; 10:biom10060901. [PMID: 32545705 PMCID: PMC7356143 DOI: 10.3390/biom10060901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide, and despite its high dissemination, effective pharmacotherapies are lacking. TBI can be divided into two phases: the instantaneous primary mechanical injury, which occurs at the moment of insult, and the delayed secondary injury, which involves a cascade of biological processes that lead to neuroinflammation. Neuroinflammation is a hallmark of both acute and chronic TBI, and it is considered to be one of the major determinants of the outcome and progression of disease. In TBI one of the emerging mechanisms for cell–cell communication involved in the immune response regulation is represented by Extracellular Vesicles (EVs). These latter are produced by all cell types and are considered a fingerprint of their generating cells. Exosomes are the most studied nanosized vesicles and can carry a variety of molecular constituents of their cell of origin, including microRNAs (miRNAs). Several miRNAs have been shown to target key neuropathophysiological pathways involved in TBI. The focus of this review is to analyze exosomes and their miRNA cargo to modulate TBI neuroinflammation providing new strategies for prevent long-term progression of disease.
Collapse
|
15
|
Ichkova A, Rodriguez-Grande B, Zub E, Saudi A, Fournier ML, Aussudre J, Sicard P, Obenaus A, Marchi N, Badaut J. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol Dis 2020; 141:104952. [PMID: 32442681 DOI: 10.1016/j.nbd.2020.104952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical evidence suggests that a mild traumatic brain injury occurring at a juvenile age (jmTBI) may be sufficient to elicit pathophysiological modifications. However, clinical reports are not adequately integrated with experimental studies examining brain changes occurring post-jmTBI. We monitored the cerebrovascular modifications and assessed the long-term behavioral and electrographic changes resulting from experimental jmTBI. In vivo photoacoustic imaging demonstrated a decrease of cerebrovascular oxygen saturation levels in the impacted area hours post-jmTBI. Three days post-jmTBI oxygenation returned to pre-jmTBI levels, stabilizing at 7 and 30 days after the injury. At the functional level, cortical arterioles displayed no NMDA vasodilation response, while vasoconstriction induced by thromboxane receptor agonist was enhanced at 1 day post-jmTBI. Arterioles showed abnormal NMDA vasodilation at 3 days post-jmTBI, returning to normality at 7 days post injury. Histology showed changes in vessel diameters from 1 to 30 days post-jmTBI. Neurological evaluation indicated signs of anxiety-like behavior up to 30 days post-jmTBI. EEG recordings performed at the cortical site of impact 30 days post-jmTBI did not indicate seizures activity, although it revealed a reduction of gamma waves as compared to age matched sham. Histology showed decrease of neuronal filament staining. In conclusion, experimental jmTBI triggers an early cerebrovascular hypo‑oxygenation in vivo and faulty vascular reactivity. The exact topographical coherence and the direct casualty between early cerebrovascular changes and the observed long-term neurological modifications remain to be investigated. A potential translational value for cerebro-vascular oxygen monitoring in jmTBI is discussed.
Collapse
Affiliation(s)
| | | | - Emma Zub
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Amel Saudi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | | | | | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PhyMedExp, IPAM, Montpellier, France
| | - André Obenaus
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France.
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
17
|
Jiménez-Aguilar DP, Montoya-Jaramillo LM, Benjumea-Bedoya D, Castro-Álvarez JF. Traumatismo craneoencefálico en niños. Hospital General de Medellín y Clínica Somer de Rionegro, 2010-2017. IATREIA 2019. [DOI: 10.17533/udea.iatreia.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objetivo: describir las características sociodemográficas, aspectos clínicos y complicaciones de los niños de 0 a 10 años de edad que sufrieron traumatismo craneoencefálico, atendidos en el Hospital General de Medellín y en la Clínica Somer de Rionegro entre los años 2010 y 2017.Métodos: estudio descriptivo retrospectivo, toma como fuente de información las historias clínicas de los niños con diagnósticos relacionados con el traumatismo craneoencefálico entre 2010-2017. Se calcularon las proporciones de las variables sociodemográficas, circunstanciales, espacio-temporales y clínicas.Resultados: se encontraron 224 pacientes con traumatismo craneoencefálico, el 64,7 % de los casos fueron de sexo masculino, la edad promedio fue de 4,5 años. El trauma ocurrió con mayor frecuencia en el domicilio del paciente entre los días de la semana en las horas de la tarde. La causa principal del trauma fue caída (75 %), seguido por accidentes de tránsito (13,3 %). La gravedad del traumatismo se midió con la escala de coma de Glasgow, el 78 % fue leve, hubo un caso fatal y 7 (3 %) tuvieron complicaciones motoras durante la hospitalización.Conclusión: los hallazgos de este estudio coinciden con las principales características del traumatismo craneoencefálico de la población pediátrica en el mundo, amplía la información regional y local para el desarrollo de estrategias de prevención, diagnóstico y seguimiento a largo plazo de los pacientes.
Collapse
|
18
|
Cannella LA, Andrews AM, Razmpour R, McGary H, Corbett CB, Kahn J, Ramirez SH. Reward and immune responses in adolescent females following experimental traumatic brain injury. Behav Brain Res 2019; 379:112333. [PMID: 31682867 DOI: 10.1016/j.bbr.2019.112333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
The pathology of traumatic brain injury (TBI) adversely affects many brain regions, often resulting in the development of comorbid psychiatric disorders including substance use disorders (SUD). Although traditionally thought to be an epidemic that predominantly affects males, recent clinical studies report females have higher rates of concussions and longer recovery times than males. Yet, how neurotrauma, particularly deep within the brain, between the sexes is differentially manifested remains largely unknown. The risk of TBI peaks during adolescence when neuronal networks that regulate reward behaviors are not fully developed. Previously, using the conditioned place preference (CPP) assay, we found that adolescent TBI increased susceptibility to the rewarding effects of cocaine in male mice. Further, we observed augmented inflammatory profiles, increased microglial phagocytosis of neuronal proteins, and decreased neuronal spine density in the NAc. Notably, the extent of sex differences in SUD susceptibility following TBI has not be investigated. Thus, here we ask the central question of whether the adolescent TBI-induced neuroinflammatory profile at reward centers is divergent in a sex-dependent manner. Using the CPP assay, we found that female mice with high levels of female sex hormones at the time of adolescent TBI demonstrated neuroprotection against increased sensitivity to the rewarding effects of cocaine. These studies also provide evidence of significantly reduced microglial activation and phagocytosis of neuronal proteins within the NAc of females. Overall, our results offer crucial insight into how adolescent TBI impacts the reward pathway in a sex depending manner that could explain a vulnerability to addiction-like behavior.
Collapse
Affiliation(s)
- Lee Anne Cannella
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hannah McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Cali B Corbett
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jana Kahn
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Shriners Hospital for Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Faustino J, Chip S, Derugin N, Jullienne A, Hamer M, Haddad E, Butovsky O, Obenaus A, Vexler ZS. CX3CR1-CCR2-dependent monocyte-microglial signaling modulates neurovascular leakage and acute injury in a mouse model of childhood stroke. J Cereb Blood Flow Metab 2019; 39:1919-1935. [PMID: 30628839 PMCID: PMC6775594 DOI: 10.1177/0271678x18817663] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is among the top 10 causes of death in children. The developmental stage of the brain is central to stroke pathophysiology. The incidence of childhood arterial ischemic stroke (CAIS) is lower than of perinatal arterial ischemic stroke but the rate of recurrence is strikingly high. Vascular inflammation is seen as major contributor to CAIS but the mechanisms that govern structural-functional basis of vascular abnormalities remain poorly understood. To identify the contribution of immune-neurovascular interactions to CAIS, we established stroke model in postnatal day 21 (P21) mice. We demonstrate acute functional deficits and histological injury and chronic MRI-identifiable injury, brain atrophy and marked derangements in the vascular network. In contrast to negligible albumin leakage and neutrophil infiltration following acute perinatal stroke, CAIS leads to significantly increased albumin leakage and neutrophil infiltration in injured regions of wild type mice and mice with functional CX3CR1-CCR2 receptors. In mice with dysfunctional CX3CR1-CCR2 signaling, extravascular albumin leakage is significantly attenuated, infiltration of injurious Ccr2+-monocytes essentially aborted, accumulation of Ly6G+ neutrophils reduced and acute injury attenuated. Unique identifiers of microglia and monocytes revealed phenotypic changes in each cell subtype of the monocyte lineage after CAIS. Taken together, CX3CR1-CCR2-dependent microglia-monocyte signaling contributes to cerebrovascular leakage, inflammation and CAIS injury.
Collapse
Affiliation(s)
- Joel Faustino
- Department of Neurology, University California San Francisco, CA, USA
| | - Sophorn Chip
- Department of Neurology, University California San Francisco, CA, USA
| | - Nikita Derugin
- Department of Neurology, University California San Francisco, CA, USA
| | | | - Mary Hamer
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Haddad
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, USA.,Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, CA, USA
| |
Collapse
|
20
|
Cannella LA, McGary H, Ramirez SH. Brain interrupted: Early life traumatic brain injury and addiction vulnerability. Exp Neurol 2019; 317:191-201. [PMID: 30862466 PMCID: PMC6544498 DOI: 10.1016/j.expneurol.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Recent reports provide evidence for increased risk of substance use disorders (SUD) among patients with a history of early-life traumatic brain injury (TBI). Preclinical research utilizing animal models of TBI have identified injury-induced inflammation, blood-brain barrier permeability, and changes to synapses and neuronal networks within regions of the brain associated with the perception of reward. Importantly, these reward pathway networks are underdeveloped during childhood and adolescence, and early-life TBI pathology may interrupt ongoing maturation. As such, maladaptive changes induced by juvenile brain injury may underlie increased susceptibility to SUD. In this review, we describe the available clinical and preclinical evidence that identifies SUD as a persistent psychiatric consequence of pediatric neurotrauma by discussing (1) the incidence of early-life TBI, (2) how preclinical studies model TBI and SUD, (3) TBI-induced neuropathology and neuroinflammation in the corticostriatal regions of the brain, and (4) the link between childhood or adolescent TBI and addiction in adulthood. In summary, preclinical research utilizes an innovative combination of models of early-life TBI and SUD to recapitulate clinical features and to determine how TBI promotes a risk for the development of SUD. However, causal processes that link TBI and SUD remain unclear. Additional research to identify and therapeutically target underlying mechanisms of aberrant reward pathway development will provide a launching point for TBI and SUD treatment strategies.
Collapse
Affiliation(s)
- Lee Anne Cannella
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hannah McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
21
|
Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019; 14:413-424. [PMID: 30539807 PMCID: PMC6334610 DOI: 10.4103/1673-5374.245334] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models-the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Tang Z, Huang Q, Zhang J, Yang R, Wei W, Liu H. Fourteen-Day Mortality in Pediatric Patients with Traumatic Brain Injury After Early Decompressive Craniectomy: A Single-Center Retrospective Study. World Neurosurg 2018; 119:e389-e394. [PMID: 30071325 DOI: 10.1016/j.wneu.2018.07.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this study was to analyze the risk factors for 14-day mortality in pediatric patients undergoing early decompressive craniectomy (DC) after traumatic brain injury (TBI). METHODS This retrospective analysis included all pediatric patients (≤16 years of age) undergoing DC within 12 hours of TBI between August 2011 and July 2017 at the authors' institute. Demographic information, clinical characteristics, surgical information, and laboratory parameters were retrieved from medical records. Risk factors for 14-day mortality were analyzed using multivariate logistic regression models. First, potentially relevant variables were compared between those who died within 14 days versus those who did not. Variables with P < 0.10 were entered into the final multivariate regression analysis. RESULTS A total of 36 patients (23 boys and 13 girls; median age, 7 years) were included in the analysis. Fall (n = 19, 52.8%) was the leading cause of injury. The 14-day mortality was 38.9% (14/36). At the time of admission, the median Glasgow Score Scale (GCS) was 6 (IQR 4-8), and the mean Injury Severity Score (ISS) (± standard deviation) was 29.03 ± 8.54. Preoperative hypoxia, defined as oxyhemoglobin arterial saturation <90% or apnea >20 seconds, was observed in 6 patients (16.7%). Coagulopathy was present in 14 patients (38.9%). Multivariate logistic regression analysis suggested an association between 14-day mortality and younger age (odds ratio [OR] = 0.708, 95% confidence interval [CI]: 0.513-0.978; P = 0.036) and higher ISS (OR = 1.399; 95% CI: 1.023-1.914; P = 0.035). CONCLUSIONS In children undergoing early DC after TBI, risk factors for 14-day mortality include younger age and higher ISS.
Collapse
Affiliation(s)
- Zhiji Tang
- Department of Neurosurgery, the Affiliated Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China; Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Jinshi Zhang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Wenjin Wei
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Hongyi Liu
- Department of Neurosurgery, the Affiliated Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
23
|
Wendel KM, Lee JB, Affeldt BM, Hamer M, Harahap-Carrillo IS, Pardo AC, Obenaus A. Corpus Callosum Vasculature Predicts White Matter Microstructure Abnormalities after Pediatric Mild Traumatic Brain Injury. J Neurotrauma 2018; 36:152-164. [PMID: 29739276 DOI: 10.1089/neu.2018.5670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor magnetic resonance imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry (IHC). We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced in mice a closed-head injury (CHI) mTBI at post-natal day (P) 14; then at 4, 14, and 60 days post-injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vascular features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.
Collapse
Affiliation(s)
- Kara M Wendel
- 1 Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine , Irvine, California
| | - Jeong Bin Lee
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Bethann M Affeldt
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Mary Hamer
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | | | - Andrea C Pardo
- 3 Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Andre Obenaus
- 1 Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine , Irvine, California
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
- 4 Department of Pediatrics, University of California, Irvine School of Medicine , Irvine, California
| |
Collapse
|
24
|
Cellular and molecular mechanisms of neuroprotection and plasticity after traumatic brain injury. Neurochem Int 2017; 111:1-2. [PMID: 28964776 DOI: 10.1016/j.neuint.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|