1
|
Fu C, Wang X, Zhou W, Gao Q, Luo J, Li Y. Exploring the mechanism of chondroitin sulfate-selenium nanoparticles in improving Alzheimer's disease: Insights from intestinal flora evaluation. Heliyon 2024; 10:e38635. [PMID: 39421360 PMCID: PMC11483475 DOI: 10.1016/j.heliyon.2024.e38635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In this study we have investigated the effect of chondroitin sulfate-selenium nanoparticles (CS@Se) on Alzheimer's disease (AD) mice using 16S rDNA technique. We randomly divided 30 SPF grade male C57BL/6 J mice into 6 groups according to random number table method. The AD mouse model was established by subcutaneous injection of D-galactose (D-gal) combined with gavage of AlCl3 for 30 consecutive days, and then drug intervention was performed in the administration group for 40 consecutive days. The findings demonstrated several positive effects of CS@Se on AD mice. Firstly, CS@Se improved spatial learning and memory problems and reduces anxiety in AD mice. It also significantly reduced pyramidal cell arrangement disorder and rupture, leading to an improvement in synaptic structure damage between hippocampal neurons. Furthermore, CS@Se reduced mitochondrial swelling and vacuolation while increasing neuron survival in AD mice. Moreover, CS@Se significantly impacted the diversity and richness of intestinal flora in AD mice. It increased the relative abundance of Firmicutes and Actinobacteria while reducing the relative abundance of Bacteroidetes and Proteobacteria. In conclusion, CS@Se effectively reduced the breakdown of hippocampal pyramidal cells, improved the superfiber structure of hippocampal neurons, and restored intestinal flora balance, ultimately contributing to improving learning and memory abilities and alleviating anxiety in AD mice.
Collapse
Affiliation(s)
- Changfang Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Taishan vocational college of nursing, Taian 271000, China
| | - Xinyue Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Zhou
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Heze Health School in Shandong Province, Heze 274000, China
| | - Qi Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Key Laboratory of Clinical Pharmacology, Liao cheng People's Hospital, Liaocheng 252000, China
| | - Junjun Luo
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuqin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
2
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Xiang X, Xia S, Li S, Zeng Y, Wang L, Zhou Y. Study on the role and mechanism of Tan IIA in Alzheimer's disease based on CREB-BDNF-TrkB pathway. Neurosci Lett 2024; 830:137769. [PMID: 38616003 DOI: 10.1016/j.neulet.2024.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The occurrence and development of Alzheimer's disease (AD) is closely related to neuronal loss, inflammatory response, cholinergic imbalance, and Tau protein hyperphosphorylation. Previous studies have confirmed that Streptozotocin (STZ) can be used to establish a rat model of AD by injecting it into the rat brain via the lateral ventricle. Our previous research showed that Danshentone IIA (Tan IIA) can improve cognitive dysfunction in rats caused by CC chemokine ligand 2, and network pharmacology results show that Tan IIA is very likely to improve AD symptoms through the cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor protein (TrkB) pathway. The results of the water maze experiment showed that after Tan IIA treatment, the escape latency of AD rats was shortened and the number of platform crossings increased; in the new object recognition experiment, the discrimination index of AD rats significantly increased after treatment; Nissl staining and Tunel staining results showed that Tan IIA increased the number of surviving neurons in the hippocampus of cognitively impaired rats and reduced neuronal apoptosis; Bielschowsky silver staining results showed that Tan IIA reduced neurofibrillary tangles (NFTs) in the AD rats; Tan IIA can reduce the inflammatory response and oxidative stress reaction in the hippocampus of AD rats, and at the same time reduce the activity of acetylcholinesterase. Tan IIA can significantly increase the expression of CREB, BDNF, TrkB in the hippocampal tissue of STZ-injured rats (P < 0.05). These data suggest that Tan IIA may upregulate the expression of the CREB-BDNF-TrkB signaling pathway in the hippocampus of brain tissue, produce anti-neuroinflammatory, antioxidant stress, inhibit neuronal apoptosis effects, and improve cholinergic neurotransmitter disorder induced by STZ, reduce the neuronal damage and learning and memory impairment caused by STZ in rats, and improve the cognitive function of rats.
Collapse
Affiliation(s)
- Xiyong Xiang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Siyu Xia
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Shan Li
- College of Nursing, Guangxi Medical University, Nanning 530021, China
| | - Yirong Zeng
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Lixuan Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yan Zhou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
Wu J, Xu R, Xu X, Ye S, Huang A. Preparation and evaluation of transdermal permeation of Huperzine A ethosomes gel in vitro. BMC Pharmacol Toxicol 2024; 25:21. [PMID: 38409046 PMCID: PMC10898098 DOI: 10.1186/s40360-024-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
This study aimed to design and evaluate the transdermal permeation of Huperzine A ethosomes gel in vitro. Huperzine A ethosomes were prepared using the injection method, and their physical and chemical properties were characterized. A comparison was made between Huperzine A ethosomes gel, ordinary gel, and cream. The Franz diffusion cell test on mouse abdominal skin was conducted, and Huperzine A concentration was determined using LC-MS/MS. Transdermal volume, skin retention, and transdermal rate were used to assess the percutaneous permeability of the three preparations. Results demonstrated that Huperzine A ethosomes gel exhibited significantly higher accumulative permeation, transdermal rate, and skin retention compared to ordinary gel and cream. The findings suggest that Huperzine A ethosomes gel, with its controllable quality and favorable transdermal absorption properties, holds potential as a safe option for clinical administration.
Collapse
Affiliation(s)
- Jiyu Wu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| | - Renai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiaowei Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Shiyuan Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Aifang Huang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
5
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
6
|
Lin J, Yin X, Zeng Y, Hong X, Zhang S, Cui B, Zhu Q, Liang Z, Xue Z, Yang D. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnol Adv 2023; 69:108266. [PMID: 37778531 DOI: 10.1016/j.biotechadv.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Plant-derived natural products are a specific class of active substances with numerous applications in the medical, energy, and industrial fields. Many of these substances are in high demand and have become the fundamental materials for various purposes. Recently, the use of synthetic biology to produce plant-derived natural products has become a significant trend. Plant chassis, in particular, offer unique advantages over microbial chassis in terms of cell structure, product affinity, safety, and storage. The development of the plant hairy root tissue culture system has accelerated the commercialization and industrialization of synthetic biology in the production of plant-derived natural products. This paper will present recent progress in the synthesis of various plant natural products using plant chassis, organized by the types of different structures. Additionally, we will summarize the four primary types of plant chassis used for synthesizing natural products from plant sources and review the enabling technologies that have contributed to the development of synthetic biology in recent years. Finally, we will present the role of isolated and combined use of different optimization strategies in breaking the upper limit of natural product production in plant chassis. This review aims to provide practical references for synthetic biologists and highlight the great commercial potential of plant chassis biosynthesis, such as hairy roots.
Collapse
Affiliation(s)
- Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China
| | - Youran Zeng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Hong
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Qinlong Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China..
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China.
| |
Collapse
|
7
|
Kong Y, Chen Z, Feng X, Zuo Y, Zhang J. Gut microbiota and metabolome in sporadic Creutzfeldt-Jakob disease. J Neurol 2023; 270:6021-6032. [PMID: 37642736 DOI: 10.1007/s00415-023-11961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Gut dysbiosis and the resulting changes in the metabolites have been associated with neurological diseases. However, the relationship between the gut microbiota and sporadic Creutzfeldt-Jakob disease (sCJD) need to be clarified. The aim of this study was to evaluate the changes in the composition of gut microbiota and metabolome accompanying sCJD, and determine their correlation with disease severity. METHODS Fecal samples were collected from 25 sCJD patients and 23 healthy controls. The composition of the fecal microbiota and metabolites was respectively analyzed by 16S ribosomal RNA sequencing and untargeted metabolomics. The correlation of gut microbiota and metabolites with MMSE, MoCA and MRC scores was analyzed. RESULTS The sCJD patients showed significant differences in the composition of gut microbiota and metabolites relative to the healthy controls. Several bacteria taxa in sCJD patients were increased at genus level, such as Turicibacter, norank_f_Christensenellaceae, Eisenbergiella, Bilophila and Holdemania. A total of 547 differential metabolites were identified between these two groups (VIP > 1, FDR p < 0.05). As per KEGG analysis, the metabolites related to the biosynthesis of phenylpropanoids, especially biochanin A, showed the most obvious decrease in the sCJD group. In addition, most metabolites involved in the pathways related to linoleic acid metabolism and steroid hormone biosynthesis were associated with MRC scale. CONCLUSION Our findings provide new insights into the relationship between gut microbiota and metabolites and sCJD. Some compounds, especially those related to the biosynthesis of phenylpropanoids were significantly altered in patients with sCJD, and those related to linoleic acid metabolism and steroid hormone biosynthesis might be biomarkers of evaluating disease severity.
Collapse
Affiliation(s)
- Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xuedan Feng
- Department of Neurology, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Ya Zuo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
9
|
Yan H, Yan Y, Gao Y, Zhang N, Kumar G, Fang Q, Li Z, Li J, Zhang Y, Song L, Wang J, Sun J, Zhang HT, Ma CG. Transcriptome analysis of fasudil treatment in the APPswe/PSEN1dE9 transgenic (APP/PS1) mice model of Alzheimer's disease. Sci Rep 2022; 12:6625. [PMID: 35459923 PMCID: PMC9033779 DOI: 10.1038/s41598-022-10554-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of progressive dementia. In the present study, we showed hippocampal tissue transcriptome analysis in APPswe/PSEN1dE9 (APP/PS1, AD model) mice treated with fasudil (ADF) and compared with AD mice treated with saline (ADNS) and wild type mice (WT). The competing endogenous RNA (ceRNA) network was constructed and validated the differential expression of mRNA, lncRNA, miRNA, and circRNA. Our study showed differentially expressed mRNAs (DEMs) between WT and ADNS, while enriched in cell growth and death and nervous system pathways. DEMs between ADNS-ADF were enriched in the nervous system, glycosaminoglycan biosynthesis-keratan sulfate (KS) and Quorum sensing pathways. We validated four genes with RT-PCR, whereas enrichment of Acyl-CoA Synthetase Long Chain Family Member 4 (Acsl4, ENSMUST00000112903) in Quorum sensing pathways, and BTG anti-proliferation factor 1 (Btg1, ENSMUST00000038377) in RNA degradation pathways were conducted. Expression of these two genes were higher in ADNS, but were significantly reduced in ADF. Histone H4 transcription factor (Hinfp, ENSMUST00000216508) orchestrate G1/S transition of mitotic cell cycle and co-expressed with mmu-miR-26a-2-3p-mediated ceRNA and mmu-miR-3065-5p-mediated ceRNA; Wnt family member 4 (Wnt4, ENSMUST00000045747) was enriched in mTOR, Hippo and Wnt signaling pathway. Expression of these two genes were significantly lower in ADNS, and fasudil treatment reverse it. The present studies demonstrated four genes: Acsl4, Btg1, Hinfp, Wnt4 could be potential biomarkers of AD and the targets of fasudil treatment. These results will pave a novel direction for future clinic studies for AD and fasudil treatment.
Collapse
Affiliation(s)
- Hailong Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Ziqing Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jiehui Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Yuna Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiawei Wang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Jingxian Sun
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266073, China.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China. .,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
10
|
Meier‐Stephenson FS, Meier‐Stephenson VC, Carter MD, Meek AR, Wang Y, Pan L, Chen Q, Jacobo S, Wu F, Lu E, Simms GA, Fisher L, McGrath AJ, Fermo V, Barden CJ, Clair HD, Galloway TN, Yadav A, Campágna‐Slater V, Hadden M, Reed M, Taylor M, Kelly B, Diez‐Cecilia E, Kolaj I, Santos C, Liyanage I, Sweeting B, Stafford P, Boudreau R, Reid GA, Noyce RS, Stevens L, Staniszewski A, Zhang H, Murty MRVS, Lemaire P, Chardonnet S, Richardson CD, Gabelica V, DePauw E, Brown R, Darvesh S, Arancio O, Weaver DF. Alzheimer's disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12283. [PMID: 35415204 PMCID: PMC8985489 DOI: 10.1002/trc2.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022]
Abstract
Introduction Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aβ) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses. Methods We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aβ-mediated neurotoxicities in AD. Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD. Results In response to various stimuli (e.g., infection, trauma, ischemia, air pollution, depression), Aβ is released as an early responder immunopeptide triggering an innate immunity cascade in which Aβ exhibits both immunomodulatory and antimicrobial properties (whether bacteria are present, or not), resulting in a misdirected attack upon "self" neurons, arising from analogous electronegative surface topologies between neurons and bacteria, and rendering them similarly susceptible to membrane-penetrating attack by antimicrobial peptides (AMPs) such as Aβ. After this self-attack, the resulting necrotic (but not apoptotic) neuronal breakdown products diffuse to adjacent neurons eliciting further release of Aβ, leading to a chronic self-perpetuating autoimmune cycle. AD thus emerges as a brain-centric autoimmune disorder of innate immunity. Based upon the hypothesis that autoimmune processes are susceptible to endogenous regulatory processes, a subsequent comprehensive screening program of 1137 small molecules normally present in human brain identified tryptophan metabolism as a regulator of brain innate immunity and a source of potential endogenous anti-AD molecules capable of chemical modification into multi-site therapeutic modulators targeting AD's complex immunopathic-proteopathic pathogenesis. Discussion Conceptualizing AD as an autoimmune disease, identifying endogenous regulators of this autoimmunity, and designing small molecule drug-like analogues of these endogenous regulators represents a novel therapeutic approach for AD.
Collapse
|
11
|
Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S. Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer's disease. Biometals 2022; 35:1-25. [PMID: 35048237 DOI: 10.1007/s10534-021-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD. According to toxicology reports, Pb promotes mitochondrial oxidative stress by lowering complex III activity in the electron transport chain, boosting reactive oxygen species formation, and reducing the cell's antioxidant defence system. Here, we review recent advances in the role of mitochondria in Pb-induced AD pathology, as well as the mechanisms associated with the mitochondrial dysfunction, such as the depolarisation of the mitochondrial membrane potential, mitochondrial permeability transition pore opening; mitochondrial biogenesis, bioenergetics and mitochondrial dynamics alterations; and mitophagy and apoptosis. We also discuss possible therapeutic options for mitochondrial-targeted neurodegenerative disease (AD).
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Neelima Ayyalasomayajula
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
12
|
Dong T, Sha Y, Liu H, Sun L. Altitudinal Variation of Metabolites, Mineral Elements and Antioxidant Activities of Rhodiola crenulata (Hook.f. & Thomson) H.Ohba. Molecules 2021; 26:7383. [PMID: 34885966 PMCID: PMC8658832 DOI: 10.3390/molecules26237383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.
Collapse
Affiliation(s)
| | | | | | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.D.); (Y.S.); (H.L.)
| |
Collapse
|
13
|
Rea Martinez J, Šelo G, Fernández-Arche MÁ, Bermudez B, García-Giménez MD. Dual Role of Phenyl Amides from Hempseed on BACE 1, PPARγ, and PGC-1α in N2a-APP Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:2447-2453. [PMID: 34460260 PMCID: PMC8610369 DOI: 10.1021/acs.jnatprod.1c00435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 06/13/2023]
Abstract
In Alzheimer's disease (AD) the accumulation of amyloid β (Aβ) plaques in the brain leads to neuroinflammation, neuronal cell dysfunction, and progressive memory loss. Therefore, blocking the formation of Aβ plaques has emerged as one of the most promising strategies to develop AD treatments. Hempseed is widely used as a food, and recently its compounds have shown beneficial effects on neuroinflammation. The objective of this study was to investigate whether a fraction rich in phenyl amide compounds, N-trans-caffeoyltyramine (CAFT) and N-trans-coumaroyltyramine (CUMT), can affect gene expression: β-site amyloid-precursor-protein-cleaving enzyme 1 (BACE 1), peroxisome proliferator-activated receptor gamma (PPAR γ), and PPARγ-coactivator-1α (PGC-1α) in N2a-APP cells. The mRNA levels were measured using RT-qPCR. The ethyl acetate fraction and CAFT were found to reduce BACE1 gene expression and are promissory PPARγ and PGC-1α natural agonists. The results show that hempseed compounds can inhibit the expression of BACE 1, which is involved in the accumulation of Aβ plaques and positively affect transcription factors involved in complex and diverse biological functions.
Collapse
Affiliation(s)
- Julio Rea Martinez
- Department
of Pharmacology, Faculty of Pharmacy, University
of Seville, 41012 Sevilla, Spain
| | - Gordana Šelo
- Department
of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Beatriz Bermudez
- Department
of Cellular Biology, Faculty of Biology, University of Seville, 41012 Sevilla, Spain
| | | |
Collapse
|
14
|
Sharma C, Kim SR. Linking Oxidative Stress and Proteinopathy in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10081231. [PMID: 34439479 PMCID: PMC8388980 DOI: 10.3390/antiox10081231] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Proteinopathy and excessive production of reactive oxygen species (ROS), which are the principal features observed in the Alzheimer’s disease (AD) brain, contribute to neuronal toxicity. β-amyloid and tau are the primary proteins responsible for the proteinopathy (amyloidopathy and tauopathy, respectively) in AD, which depends on ROS production; these aggregates can also generate ROS. These mechanisms work in concert and reinforce each other to drive the pathology observed in the aging brain, which primarily involves oxidative stress (OS). This, in turn, triggers neurodegeneration due to the subsequent loss of synapses and neurons. Understanding these interactions may thus aid in the identification of potential neuroprotective therapies that could be clinically useful. Here, we review the role of β-amyloid and tau in the activation of ROS production. We then further discuss how free radicals can influence structural changes in key toxic intermediates and describe the putative mechanisms by which OS and oligomers cause neuronal death.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
15
|
Kolaj I, Wang Y, Ye K, Meek A, Liyanage SI, Santos C, Weaver DF. Ferulic acid amide derivatives with varying inhibition of amyloid-β oligomerization and fibrillization. Bioorg Med Chem 2021; 43:116247. [PMID: 34157569 DOI: 10.1016/j.bmc.2021.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized, in part, by the misfolding, oligomerization and fibrillization of amyloid-β (Aβ). Evidence suggests that the mechanisms underpinning Aβ oligomerization and subsequent fibrillization are distinct, and may therefore require equally distinct therapeutic approaches. Prior studies have suggested that amide derivatives of ferulic acid, a natural polyphenol, may combat multiple AD pathologies, though its impact on Aβ aggregation is controversial. We designed and synthesized a systematic library of amide derivatives of ferulic acid and evaluated their anti-oligomeric and anti-fibrillary capacities independently. Azetidine tethered, triphenyl derivatives were the most potent anti-oligomeric agents (compound 2i: IC50 = 1.8 µM ± 0.73 µM); notably these were only modest anti-fibrillary agents (20.57% inhibition of fibrillization), and exemplify the poor correlation between anti-oligomeric/fibrillary activities. These data were subsequently codified in an in silico QSAR model, which yielded a strong predictive model of anti-Aβ oligomeric activity (κ = 0.919 for test set; κ = 0.737 for validation set).
Collapse
Affiliation(s)
- Igri Kolaj
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Yanfei Wang
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Kailin Ye
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - S Imindu Liyanage
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Clarissa Santos
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Donald F Weaver
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
16
|
Son SH, Do JM, Yoo JN, Lee HW, Kim NK, Yoo HS, Gee MS, Kim JH, Seong JH, Inn KS, Seo MD, Lee JK, Kim NJ. Identification of ortho catechol-containing isoflavone as a privileged scaffold that directly prevents the aggregation of both amyloid β plaques and tau-mediated neurofibrillary tangles and its in vivo evaluation. Bioorg Chem 2021; 113:105022. [PMID: 34098397 DOI: 10.1016/j.bioorg.2021.105022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, polyhydroxyisoflavones that directly prevent the aggregation of both amyloid β (Aβ) and tau were expediently synthesized via divergent Pd(0)-catalyzed Suzuki-Miyaura coupling and then biologically evaluated. By preliminary structure-activity relationship studies using thioflavin T (ThT) assays, an ortho-catechol containing isoflavone scaffold was proven to be crucial for preventing both Aβ aggregation and tau-mediated neurofibrillary tangle formation. Additional TEM experiment confirmed that ortho-catechol containing isoflavone 4d significantly prevented the aggregation of both Aβ and tau. To investigate the mode of action (MOA) of 4d, which possesses an ortho-catechol moiety, 1H-15N HSQC NMR analysis was thoroughly performed and the result indicated that 4d could directly inhibit both the formation of Aβ42 fibrils and the formation of tau-derived neurofibrils, probably through the catechol-mediated nucleation of tau. Finally, 4d was demonstrated to alleviate cognitive impairment and pathologies related to Alzheimer's disease in a 5XFAD transgenic mouse model.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Min Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Na Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun Woo Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nam Kwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Sung Gee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Ho Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Soo Inn
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jong Kil Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Siafaka PI, Bülbül EÖ, Mutlu G, Okur ME, Karantas ID, Okur NÜ. Transdermal Drug Delivery Systems and their Potential in Alzheimer’s Disease Management. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:360-373. [DOI: 10.2174/1871527319666200618150046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is a neuropathological disease with symptoms such as language problems,
confusion as to place or time, loss of interest in activities, which were previously enjoyed, behavioral
changes, and memory loss. Alzheimer's disease and other types of dementia affect almost
46.8 million people globally and are estimated to strike about 131.5 million people in 2050. It has been
reported that Alzheimer's is the sixth main cause of mortality. The most used drugs, which are currently
approved by the Food, and Drug Administration for Alzheimer’s disease are donepezil, rivastigmine,
galantamine, memantine, and the combination of donepezil and memantine. However, most of
the drugs present various adverse effects. Recently, the transdermal drug delivery route has gained increasing
attention as an emerging tool for Alzheimer's disease management. Besides, transdermal drug
delivery systems seem to provide hope for the management of various diseases, due to the advantages
that they offer in comparison with oral dosage forms. Herein, the current advancements in transdermal
studies with potent features to achieve better Alzheimer's disease management are presented. Many
researchers have shown that the transdermal systems provide higher efficiency since the first-pass hepatic
metabolism effect can be avoided and a prolonged drug release rate can be achieved. In summary,
the transdermal administration of Alzheimer's drugs is an interesting and promising topic, which
should be further elaborated and studied.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ece Ö. Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gökce Mutlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Mehmet E. Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki, Greece
| | - Neslihan Ü. Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
18
|
Luo Z, Yu G, Chen X, Liu Y, Zhou Y, Wang G, Shi Y. Integrated phytochemical analysis based on UHPLC-LTQ-Orbitrap and network pharmacology approaches to explore the potential mechanism of Lycium ruthenicum Murr. for ameliorating Alzheimer's disease. Food Funct 2020; 11:1362-1372. [PMID: 31967149 DOI: 10.1039/c9fo02840d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on compelling experimental and clinical evidence, the fruit of Lycium ruthenicum Murr. (LRM), a unique traditional Tibetan medicine, exerts beneficial effects on ameliorating learning and memory deficits of Alzheimer's disease (AD) and other neurodegenerative disorders. However, the potential active constituents and biological mechanism of LRM are still unknown. In this study, the major chemical constituents of LRM were first analyzed by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). A total of 35 constituents were confirmed or tentatively identified. Furthermore, the network-based pharmacological strategy was applied to clarify the molecular mechanism of LRM on AD based on the identified components. Totally, 143 major targets were screened and supposed to be effective players in alleviating AD. Then, the LRM chemicals-major LRM putative targets-major pathways network was constructed, implying potential biological function of LRM on AD. More importantly, 12 core genes which can be modulated by LRM were identified, and they may play a pivotal role in alleviating some major symptoms of AD. This study provided a scientific basis for further investigation and application of LRM, which demonstrated that the network pharmacology approach could be a powerful way for the mechanistic studies of folk medicines.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China. and School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinjing Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yating Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
19
|
Alves Júnior EB, de Oliveira Formiga R, de Lima Serafim CA, Cristina Araruna ME, de Souza Pessoa ML, Vasconcelos RC, de Carvalho TG, de Jesus TG, Araújo AA, de Araujo Junior RF, Vieira GC, Sobral MV, Batista LM. Estragole prevents gastric ulcers via cytoprotective, antioxidant and immunoregulatory mechanisms in animal models. Biomed Pharmacother 2020; 130:110578. [PMID: 32750650 DOI: 10.1016/j.biopha.2020.110578] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Estragole is an aromatic organic compound belonging to the class of phenylpropanoids derived from cinnamic aldehydes and present in essential oils of plant species, such asRavensara anisata (madeira), Ocimum basilicum (manjericão/alfavaca) and Croton zehntneri (canelinha). Pharmacological studies report its anti-inflammatory, antioxidant and vasorelaxant activity. HYPOTHESIS/PURPOSE This study aimed to evaluate the acute non-clinical toxicity, gastroprotective activity and the related mechanisms of action. METHODS Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, piroxicam and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. RESULTS In the acute oral toxicity assay, doses of 300 or 2000 mg/kg of estragole administered orally in Swiss mice did not induce any behavioral changes. However, the dose of 2000 mg/kg showed a decrease in water and feed intake. Lethal dose 50 % (LD50) was set to be equal to or greater than 2500 mg/kg, according to OECD. In all evaluated protocols, estragole (31.25, 62.5, 125 and 250 mg/kg) significantly reduced the area of ulcerative lesion when compared to control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotectant, antioxidant and immunoregulatory effects were evaluated. Results showed that treatment with estragole (250 mg/kg) reduced (p < 0.05) the volume of the gastric juice. Besides, sulfhydryl groups, nitric oxide, mucus and prostaglandins seems to be involved in the gastroprotective property. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), interleukin-10 (IL-10) and positive cells marked for glutathione peroxidase (GPx) and cyclooxygenase 2 (COX-2). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) (p < 0.05) levels. CONCLUSION Thus, it is possible to infer that estragole presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Rodrigo de Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Michele Liz de Souza Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Thais Gomes de Carvalho
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Tamires Gonçalves de Jesus
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Aurigena Antunes Araújo
- Department of Biophysics and Pharmacology, Biosciences Center Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| |
Collapse
|
20
|
Rea J, García-Giménez MD, Santiago M, De la Puerta R, Fernández-Arche MA. Hydroxycinnamic acid derivatives isolated from hempseed and their effects on central nervous system enzymes. Int J Food Sci Nutr 2020; 72:184-194. [PMID: 32664762 DOI: 10.1080/09637486.2020.1793305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
New neuroprotective treatments of natural origin are being investigated. Both, plant extracts and isolated compounds have shown bioactive effects. Hempseed is known for its composition of fatty acids, proteins, fibre, vitamins, as well as a large number of phytochemical compounds. After a defatting process of the seeds, hydroxycinnamic acids and its amine derivatives are the majoritarian compounds in an ethyl acetate fraction (EAF). In the present study, we investigated in vitro effect on neuronal enzymes: MAO-A, MAO-B, tyrosinase and acetylcholinesterase. Besides, the effect of EAF on striatal biogenic amines in mice was evaluated. Both, EAF and isolated compounds (N-trans-caffeoyltyramine and N-trans-coumaroyltyramine), showed inhibitory action on MAO-A, MAO-B and tyrosinase. Furthermore, an increasing of biogenic amines was observed in the corpus striatum of the mice, after administration of EAF. These findings show that EAF and the hydroxycinnamic acid derivatives may represent a potential treatment in degenerative neuronal diseases.
Collapse
Affiliation(s)
- Julio Rea
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M D García-Giménez
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Marti Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rocío De la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M A Fernández-Arche
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
21
|
Abouelela ME, Orabi MA, Abdelhamid RA, Abdelkader MS, Darwish FM, Hotsumi M, Konno H. Anti-Alzheimer's flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 2020; 143:104541. [DOI: 10.1016/j.fitote.2020.104541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
|
22
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
23
|
Liu J, Zhang Q, Li RL, Wei SJ, Huang CY, Gao YX, Pu XF. The traditional uses, phytochemistry, pharmacology and toxicology of Cinnamomi ramulus: a review. ACTA ACUST UNITED AC 2019; 72:319-342. [PMID: 31750548 DOI: 10.1111/jphp.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Cinnamomi ramulus (called Guizhi in Chinese) is a traditional medicine used to treat gastrointestinal dysfunction, cancer, arthritis, osteoporosis, spleen deficiency, Alzheimer's disease and obesity. This review aimed to provide a systematic summary on the geographical distribution, botany, traditional application, phytochemistry, pharmacology, pharmacokinetics, toxicology and other aspects of Cinnamomi ramulus. KEY FINDING So far, more than 121 chemical compounds have been isolated from Cinnamomi ramulus, including volatile oil, organic acids, triterpenoid saponins, coumarins, tannins, flavonoids and flavonoid glycosides, steroids and polysaccharides. This paper reviews the pharmacological effects of Cinnamomi ramulus on antibacterial, anti-inflammatory, antiviral, antitumour, antipyretic and analgesic, antidiabetic and antiplatelet aggregation effects. Furthermore, the present review also indicates that Cinnamomi ramulus has the potential to develop into drugs for treating various diseases with high efficacy and low toxicity. SUMMARY The convictive evidence from modern pharmacology research supports the traditional application of Cinnamomi ramulus. However, further studies on the structure-activity relationship of some of the isolated compounds may improve their biological potency. More toxicological studies will also contribute to the progress of clinical trial studies.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Jun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Yan Huang
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Yong-Xiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu-Feng Pu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu Institute for Food and Drug Control, Chengdu, China
| |
Collapse
|
24
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
25
|
Zou C, Wang J, Huang X, Jian C, Zou D, Li X. Analysis of transcription factor- and ncRNA-mediated potential pathogenic gene modules in Alzheimer's disease. Aging (Albany NY) 2019; 11:6109-6119. [PMID: 31422384 PMCID: PMC6738443 DOI: 10.18632/aging.102169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that ranks as the fourth most common cause of death in developed countries. In our study, genes differentially expressed between AD and healthy individuals were identified and used to construct protein-protein interaction (PPI) networks. The AD-related PPI network was used to identify functional modules, and enrichment analysis showed that they were significantly involved in “Alzheimer’s disease”, “apoptosis”, and related pathways. We predicted non-coding RNAs and transcription factors that may regulate the functional modules. The expression of hub genes and transcription factors was validated in an independent data set. The results in this study provide several candidates for further research on mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Cuihua Zou
- Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| | - Jie Wang
- Department of Nephrology, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| | - Xiaohua Huang
- Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| | - Chongdong Jian
- Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 533022, People's Republic of China
| | - Xuebin Li
- Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China
| |
Collapse
|
26
|
An analog derived from phenylpropanoids ameliorates Alzheimer's disease–like pathology and protects mitochondrial function. Neurobiol Aging 2019; 80:187-195. [DOI: 10.1016/j.neurobiolaging.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/14/2023]
|
27
|
Mazumder MK, Choudhury S. Tea polyphenols as multi-target therapeutics for Alzheimer's disease: An in silico study. Med Hypotheses 2019; 125:94-99. [PMID: 30902161 DOI: 10.1016/j.mehy.2019.02.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease characterized by cognitive decline, dementia, and in later stages complete loss of feelings, sensation and death. The global prevalence of the disease is on the rise, and it affects 35-40% of the population above 80 years. The pathological hallmarks of the disease include extra-neuronal deposition of amyloid-β (Aβ) as plaques and intra-neuronal hyperphosphorylated tau protein as neurofibrillary tangles, which cause neurodegeneration and cerebral atrophy. Aβ deposition is catalyzed by β-secretase and γ-secretase, while tau hyperphosphorylation is catalyzed by glycogen synthase kinase - 3β (GSK-3β). With neurodegeneration, the level of the neurotransmitter acetylcholine (ACh), as well as acetylcholinesterase (AChE), decreases in the synaptic cleft, called cholinergic deficiency. This leads to the cardinal behavioural abnormalities of AD, which is referred to as cholinergic hypothesis of AD. The other enzyme which degrades ACh is the butyrylcholinesterase (BuChE). Thus, current treatment options of AD include symptomatic treatment to elevate the levels of ACh by inhibiting AChE. However, the currently used drugs cause several side effects, and the quest for novel drugs remains an interesting and essential venture. Since the disease has multiple pathophysiologies, there is an unrelenting need to develop novel drugs and lead molecules capable of inhibiting multiple pathways. The present study hypothesizes use of tea polyphenols against the key drug targets of AD, viz. β-Secretase, γ-Secretase, GSK-3β, AChE and BuChE. The hypothesis has been validated using molecular docking tools. The result indicates that the polyphenols may potentially inhibit these enzymes, similar to their known inhibitors. Thus, the findings are of immense significance in the therapeutic interventions of AD, using tea polyphenols as exciting multi-target drugs.
Collapse
Affiliation(s)
| | - Shuvasish Choudhury
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
28
|
A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:98-102. [DOI: 10.1016/j.jphotobiol.2018.11.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
|