1
|
Colmers PLW, Arshad MN, Mukherjee J, Lin S, Ng SFJ, Sarmiere P, Davies PA, Moss SJ. Sustained Inhibition of GABA-AT by OV329 Enhances Neuronal Inhibition and Prevents Development of Benzodiazepine Refractory Seizures. eNeuro 2024; 11:ENEURO.0137-24.2024. [PMID: 38937107 PMCID: PMC11236575 DOI: 10.1523/eneuro.0137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
γ-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain which mediates its rapid effects on neuronal excitability via ionotropic GABAA receptors. GABA levels in the brain are critically dependent upon GABA-aminotransferase (GABA-AT) which promotes its degradation. Vigabatrin, a low-affinity GABA-AT inhibitor, exhibits anticonvulsant efficacy, but its use is limited due to cumulative ocular toxicity. OV329 is a rationally designed, next-generation GABA-AT inhibitor with enhanced potency. We demonstrate that sustained exposure to OV329 in mice reduces GABA-AT activity and subsequently elevates GABA levels in the brain. Parallel increases in the efficacy of GABAergic inhibition were evident, together with elevations in electroencephalographic delta power. Consistent with this, OV329 exposure reduced the severity of status epilepticus and the development of benzodiazepine refractory seizures. Thus, OV329 may be of utility in treating seizure disorders and associated pathologies that result from neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Muhammad Nauman Arshad
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | - Shu Fun Josephine Ng
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, United Kingdom
| |
Collapse
|
2
|
Porwal MH, Razzak AN, Kumar V, Obeidat AZ, Sharma U. An analysis of suicidal and self-injurious behavior reports with antiseizure medications in the FDA adverse event database. Epilepsy Res 2024; 203:107382. [PMID: 38761467 DOI: 10.1016/j.eplepsyres.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Pharmacovigilance systems such as the FDA Adverse Event Reporting System (FAERS), are established models for adverse event surveillance that may have been missed during clinical trials. We aimed to analyze twenty-five anti-seizure medications (ASMs) in FAERS to assess for increased reporting of suicidal and self-injurious behavior. METHODS Twenty-five ASMs were analyzed: brivaracetam, cannabidiol, carbamazepine, clobazam, clonazepam, diazepam, eslicarbazepine, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, phenobarbital, phenytoin, pregabalin, primidone, rufinamide, stiripentol, tiagabine, topiramate, valproate, vigabatrin, zonisamide. Reports of "suicidal and self-injurious behavior" were collected from January 1, 2004, to December 31, 2020, using OpenVigil 2.1 tool with indication as "Epilepsy". Relative reporting ratio, proportional reporting ratio, and reporting odds ratio were calculated utilizing all other drug reports for epilepsy patients as a control. RESULTS Significant relative operating ratio, ROR (greater than 1, p<0.05) were observed for diazepam (2.909), pregabalin (2.739), brivaracetam (2.462), gabapentin (2.185), clonazepam (1.649), zonisamide (1.462), lacosamide (1.333), and levetiracetam (1.286). CONCLUSIONS Of the 25 ASMs that were analyzed in this study, 4 (16%) were identified to have been linked with a likely true adverse event. These drugs included diazepam, brivaracetam, gabapenetin, and pregabalin. Although several limitations are present with the FAERS database, it is imperative to closely monitor patient comorbidities for increased risk of suicidality with the use of several ASMs.
Collapse
Affiliation(s)
- Mokshal H Porwal
- Department of Neurosurgery, Allegheny General Hospital, 320 E North Ave, Pittsburgh, PA 15212, USA; Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Abrahim N Razzak
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Vinay Kumar
- Department of Neurology, Temple University, 1801 N Broad St., Philadelphia, PA 19122, USA
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Umesh Sharma
- Department of Neurology, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Wang SJ, Zhao MY, Zhao PC, Zhang W, Rao GW. Research Status, Synthesis and Clinical Application of Antiepileptic Drugs. Curr Med Chem 2024; 31:410-452. [PMID: 36650655 DOI: 10.2174/0929867330666230117160632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
Collapse
Affiliation(s)
- Si-Jie Wang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Min-Yan Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Tierradentro-García LO, Zandifar A, Stern J, Nel JH, Ub Kim JD, Andronikou S. Magnetic Resonance Imaging-Based Distribution and Reversibility of Lesions in Pediatric Vigabatrin-Related Brain Toxicity. Pediatr Neurol 2023; 148:86-93. [PMID: 37690269 DOI: 10.1016/j.pediatrneurol.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND We aimed to systematically characterize the magnetic resonance imaging (MRI) findings in vigabatrin-related neurotoxicity in children and determine the reversibility of lesions based on follow-up images. METHODS We evaluated children with a history of refractory seizures who had a brain MRI while on vigabatrin therapy. We included available brain MRI studies before vigabatrin therapy initiation, during vigabatrin treatment, and after vigabatrin was discontinued. A pediatric neuroradiologist systematically assessed images on T2/fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging /apparent diffusion coefficient sequences to identify hyperintense lesions and/or restricted diffusion. The frequency of abnormal signal at each location was determined, as well as the reversibility of these after vigabatrin discontinuation. RESULTS MRIs of 43 patients were reviewed: 13 before vigabatrin initiation, 18 during treatment, and 12 after vigabatrin discontinuation. In the MRIs acquired during vigabatrin treatment, most lesions on T2/FLAIR occurred in the globus pallidi, thalami, and midbrain. Correspondingly, the most common locations for restricted diffusion were the globus pallidi, thalami, and subthalamic nuclei. On MRI after vigabatrin discontinuation, complete resolution of lesions on T2/FLAIR in all patients was seen in the midbrain, dentate nuclei, subthalamic nuclei, and hypothalami. Complete resolution of restricted diffusion was observed in the globus pallidi, midbrain, dentate nuclei, hippocampi, anterior commissure, and hypothalami. CONCLUSION Globus pallidi and thalami are the most commonly affected structures in vigabatrin-related toxicity, and most vigabatrin-related neuroimaging findings are reversible.
Collapse
Affiliation(s)
- Luis Octavio Tierradentro-García
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alireza Zandifar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jean Henri Nel
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Du Ub Kim
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Savvas Andronikou
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Hung CY, Zhu C, Kittur FS, He M, Arning E, Zhang J, Johnson AJ, Jawa GS, Thomas MD, Ding TT, Xie J. A plant-based mutant huntingtin model-driven discovery of impaired expression of GTPCH and DHFR. Cell Mol Life Sci 2022; 79:553. [PMID: 36251090 PMCID: PMC9576654 DOI: 10.1007/s00018-022-04587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Chuanshu Zhu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Maotao He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,Department of Pathology, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Erland Arning
- Baylor Scott and White Research Institute, Institute of Metabolic Disease, Dallas, TX, 75204, USA
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Asia J Johnson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Gurpreet S Jawa
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,DePuy Synthes Companies of Johnson & Johnson, West Chester, PA, 19380, USA
| | - Michelle D Thomas
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Tomas T Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
6
|
Xu Y, Wan L, He W, Wang YY, Wang QH, Luo XM, Liu K, Yang XY, Wang J, Shi XY, Yang G, Han F, Gao J, Zou LP. Risk of vigabatrin-associated brain abnormalities on MRI: A retrospective and controlled study. Epilepsia 2021; 63:120-129. [PMID: 34786694 DOI: 10.1111/epi.17121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Vigabatrin (VGB) is the first-line treatment for infantile spasms (IS). Previous studies have shown that VGB exposure may cause vigabatrin-associated brain abnormalities on magnetic resonance imaging (MRI) (VABAM). Based on previous studies, this study aimed to go further to explore the possible risk factors and the incidence of VABAM. In addition, diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) were compared to explore whether DWI should be used as a routine examination sequence when MRI is performed in children receiving VGB. METHODS Children with IS receiving VGB were selected as the study subjects. Whether VABAM occurred or not was categorized as the VABAM group and the non-VABAM group, respectively. Their general clinical data and medication exposure were collected. The possible risk factors of VABAM and different MRI sequences were compared and statistically analyzed. RESULTS A total of 77 children with IS were enrolled in the study, of which 25 (32.5%) developed VABAM. Twenty-three of the 25 VABAM cases have a peak dosage of VGB between 50 and 150 mg/kg/day. The earliest observation time of VABAM was 30 days. Regression analysis of relevant risk factors showed that the peak dosage of VGB was the risk factor for VABAM. Comparison between different MRI sequences showed that DWI is more sensitive than T2WI to the evaluation of VABAM. SIGNIFICANCE In our study, the occurrence of VABAM was 32.5%, indicating a higher incidence than in most previous reports. In addition, we once again verified that the peak dosage of VGB was the risk factor of VABAM. Caution should be exercised that our data also suggest that VABAM may occur even using the conventional dosage of VGB (ie, 50-150 mg/kg/day). Therefore, even when using the conventional dosage of VGB, regular MRI examination should be required. Furthermore, DWI sequence should be used as a routine examination sequence when MRI is performed in children with IS who are receiving VGB.
Collapse
Affiliation(s)
- Yong Xu
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lin Wan
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wen He
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qiu-Hong Wang
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Mei Luo
- Center for Brain Disorders Research, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Kun Liu
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Yang
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiu-Yu Shi
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guang Yang
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fang Han
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing Gao
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Department of Pediatrics, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Walters DC, Jansen EEW, Salomons GS, Arning E, Ashcraft P, Bottiglieri T, Roullet JB, Gibson KM. Preferential accumulation of the active S-(+) isomer in murine retina highlights novel mechanisms of vigabatrin-associated retinal toxicity. Epilepsy Res 2020; 170:106536. [PMID: 33385945 DOI: 10.1016/j.eplepsyres.2020.106536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
((S)-(+)/(R)-(-)) vigabatrin (SabrilR; γ-vinyl GABA), an antiepileptic irreversibly inactivating GABA-transaminase, was administered to male C57Bl6 J mice via continuous infusion (0, 40, 80 mg/kg/d) for 12 days. Our study design pooled retina, eye (minus retina), whole brain and plasma from n = 24 animals for each dose to provide n = 8 triplicates per treatment group. Hypothesizing that (S)-(+) VGB (active isomer) would preferentially accumulate in retina, we determined VGB isomers, comprehensive amino acids, and pharmacokinetic parameters. In brain, eye and plasma, the ((S)-(+)/(R)-(-)) ratio varied from 0.73 to 1.29 and 13.3 in retina, accompanied by a partition coefficient (tissue/plasma, ((S)-(+);(R)-(-))) of 5.8;0.34, 0.63;0.49, and 0.51;0.34 in retina, eye and brain, respectively. Racemic VGB (nmol/g; plasma, nmol/mL, range of means for dose) content was: retina, 25-36; eye (minus retina), 4.8-8.0; brain, 3.1-6.8 and plasma, 8.7-14.9. GABA tissue content (nmol/g) was 1246-3335, 18-64 and 2615-3200 as a function of VGB dose for retina, eye (minus retina) and brain, respectively. The retinal glial cell toxin 2-aminoadipic acid also increased with VGB dose (76-96 nmol/g). Partitioning of active (S)-(+) VGB to retina suggests the involvement of a stereospecific transporter, the identification of which could reveal new therapeutic paradigms that might mitigate VGB's well-known retinal toxicity and expand its clinical utility.
Collapse
Affiliation(s)
- Dana C Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Erwin E W Jansen
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center & Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center & Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erland Arning
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Paula Ashcraft
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
8
|
Shen S, Doubleday PF, Weerawarna PM, Zhu W, Kelleher NL, Silverman RB. Mechanism-Based Design of 3-Amino-4-Halocyclopentenecarboxylic Acids as Inactivators of GABA Aminotransferase. ACS Med Chem Lett 2020; 11:1949-1955. [PMID: 33062178 DOI: 10.1021/acsmedchemlett.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between an amino acid and an α-keto acid, playing a critical role in cellular nitrogen metabolism. It is evident that γ-aminobutyric acid aminotransferase (GABA-AT), which balances the levels of inhibitory and excitatory neurotransmitters, has emerged as a promising therapeutic target for epilepsy and cocaine addiction based on mechanism-based inactivators (MBIs). In this work, we established an integrated approach using computational simulation, organic synthesis, biochemical evaluation, and mass spectrometry to facilitate our design and mechanistic studies of MBIs, which led to the identification of a new cyclopentene-based analogue (6a), 25-times more efficient as an inactivator of GABA-AT compared to the parent compound (1R,3S,4S)-3-amino-4-fluorocyclopentane carboxylic acid (FCP, 4).
Collapse
Affiliation(s)
| | | | | | | | | | - Richard B. Silverman
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Novel biomarkers and age-related metabolite correlations in plasma and dried blood spots from patients with succinic semialdehyde dehydrogenase deficiency. Orphanet J Rare Dis 2020; 15:261. [PMID: 32967698 PMCID: PMC7510106 DOI: 10.1186/s13023-020-01522-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous work has identified age-related negative correlations for γ-hydroxybutyric acid (GHB) and γ-aminobutyric acid (GABA) in plasma of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD). Using plasma and dried blood spots (DBS) collected in an ongoing natural history study, we tested the hypothesis that other biomarkers would follow a similar age-related negative correlation as seen for GHB/GABA. Samples (mixed sex) included: patients (n = 21 unique samples, 1-39.5 yrs) and parallel controls (n = 9 unique samples, 8.4-34.8 yrs). Archival control data (DBS only; n = 171, 0.5-39.9 yrs) was also included. RESULTS Metabolites assessed included amino acids (plasma, DBS) and acylcarnitines, creatine, creatinine, and guanidinoacetate (DBS only). Age-related negative correlations for glycine (plasma, DBS) and sarcosine (N-methylglycine, plasma) were detected, accompanied by elevated proline and decreased levels of succinylacetone, argininosuccinate, formaminoglutamate, and creatinine. Significantly low acylcarnitines were detected in patients across all chain lengths (short-, medium- and long-chain). Significant age-dependent positive correlations for selected acylcarnitines (C6-, C12DC(dicarboxylic)-, C16-, C16:1-, C18:1-, C18:2OH-carnitines) were detected in patients and absent in controls. Receiver operating characteristic (ROC) curves for all binary comparisons revealed argininosuccinate and succinylacetone to be the most discriminating biomarkers (area > 0.92). CONCLUSIONS Age-dependent acylcarnitine correlations may represent metabolic compensation responsive to age-related changes in GHB and GABA. Our study highlights novel biomarkers in SSADHD and expands the metabolic pathophysiology of this rare disorder of GABA metabolism.
Collapse
|
10
|
Stautemas J, Jarzebska N, Shan ZX, Blancquaert L, Everaert I, de Jager S, De Baere S, Hautekiet A, Volkaert A, Lefevere FBD, Martens-Lobenhoffer J, Bode-Böger SM, Kim CK, Leiper J, Weiss N, Croubels S, Rodionov RN, Derave W. The role of alanine glyoxylate transaminase-2 (agxt2) in β-alanine and carnosine metabolism of healthy mice and humans. Eur J Appl Physiol 2020; 120:2749-2759. [PMID: 32948897 DOI: 10.1007/s00421-020-04501-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Chronic β-alanine supplementation leads to increased levels of muscle histidine-containing dipeptides. However, the majority of ingested β-alanine is, most likely, degraded by two transaminases: GABA-T and AGXT2. In contrast to GABA-T, the in vivo role of AGXT2 with respect to β-alanine metabolism is unknown. The purpose of the present work is to investigate if AGXT2 is functionally involved in β-alanine homeostasis. METHODS Muscle histidine-containing dipeptides levels were determined in AGXT2 overexpressing or knock-out mice and in human subjects with different rs37369 genotypes which is known to affect AGXT2 activity. Further, plasma β-alanine kinetic was measured and urine was obtained from subjects with different rs37369 genotypes following ingestion of 1400 mg β-alanine. RESULT Overexpression of AGXT2 decreased circulating and muscle histidine-containing dipeptides (> 70% decrease; p < 0.05), while AGXT2 KO did not result in altered histidine-containing dipeptides levels. In both models, β-alanine remained unaffected in the circulation and in muscle (p > 0.05). In humans, the results support the evidence that decreased AGXT2 activity is not associated with altered histidine-containing dipeptides levels (p > 0.05). Additionally, following an acute dose of β-alanine, no differences in pharmacokinetic response were measured between subjects with different rs37369 genotypes (p > 0.05). Interestingly, urinary β-alanine excretion was 103% higher in subjects associated with lower AGXT2 activity, compared to subjects associated with normal AGXT2 activity (p < 0.05). CONCLUSION The data suggest that in vivo, β-alanine is a substrate of AGXT2; however, its importance in the metabolism of β-alanine and histidine-containing dipeptides seems small.
Collapse
Affiliation(s)
- Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium.
| | - Natalia Jarzebska
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Zhou Xiang Shan
- Anhui Institute of Sport Science and Technology, Anhui University of Science and Technology Anhui, Anhui, China
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| | - Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Arne Hautekiet
- Department of Physical Medicine and Rehabilitation, Ghent University Hospital, Ghent, Belgium
| | - Anneke Volkaert
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| | - Filip B D Lefevere
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| | | | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Chang Keun Kim
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua, China
| | - James Leiper
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - Norbert Weiss
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Roman N Rodionov
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Gent, Belgium
| |
Collapse
|
11
|
Świąder MJ, Świąder K, Zakrocka I, Krzyżanowski M, Wróbel A, Łuszczki JJ, Czuczwar SJ. Long-term vigabatrin treatment modifies pentylenetetrazole-induced seizures in mice: focused on GABA brain concentration. Pharmacol Rep 2020; 72:322-330. [PMID: 32048251 DOI: 10.1007/s43440-019-00037-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The goal of our study was to examine the long-term effect of vigabatrin (VGB), a γ-aminobutyric acid aminotransferase (GABA-AT) inhibitor on clonazepam (CLO), ethosuximide (ETX) and valproate (VPA) anticonvulsive activity against pentylenetetrazole (PTZ)-induced seizures in mice. METHODS VGB was administered for 3 and 7 days. Convulsions were evoked by PTZ at its CD97 (99 mg/kg). The influence of CLO, ETX and VPA alone or in combination with VGB on motor performance and long-term memory was analyzed. γ-aminobutyric acid (GABA) concentration in mice brain and plasma as well as glutamate decarboxylase (GAD) activity was measured. RESULTS After 3 days of treatment, VGB in doses up to 500 mg/kg increased PTZ-induced seizure threshold, whereas after 7 days VGB (at the dose of 125 mg/kg) inhibited clonic seizures in experimental mice. 7 days of VGB administration did not change the protective effect of CLO, ETX and VPA against PTZ-induced seizures. 7 days of VGB treatment at a subthreshold dose of 75 mg/kg decreased TD50 of ETX and CLO in the chimney test, but did not affect TD50 value for VPA. 7 days of VGB administration in combination with AEDs did not affect long-term memory in mice. VGB after 3 days or 7 days of administration increased brain GABA concentration. GAD activity was decreased after 3 and 7 days of VGB administration. CONCLUSIONS The presented results confirm anticonvulsive activity of VGB through GABA metabolism alteration and suggest care when combining VGB with ETX or CLO in the therapy.
Collapse
Affiliation(s)
- Mariusz J Świąder
- Department of Experimental and Clinical Pharmacology, Collegium Pathologicum, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Izabela Zakrocka
- Department of Nephrology, Medical University of Lublin, ul. Jaczewskiego 8, 20-090, Lublin, Poland
| | - Maciej Krzyżanowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Andrzej Wróbel
- 2nd Department of Gynecology, Medical University of Lublin, ul. Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
12
|
Chan K, Hoon M, Pattnaik BR, Ver Hoeve JN, Wahlgren B, Gloe S, Williams J, Wetherbee B, Kiland JA, Vogel KR, Jansen E, Salomons G, Walters D, Roullet JB, Gibson K M, McLellan GJ. Vigabatrin-Induced Retinal Functional Alterations and Second-Order Neuron Plasticity in C57BL/6J Mice. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32053727 PMCID: PMC7326505 DOI: 10.1167/iovs.61.2.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Vigabatrin (VGB) is an effective antiepileptic that increases concentrations of inhibitory γ-aminobutyric acid (GABA) by inhibiting GABA transaminase. Reports of VGB-associated visual field loss limit its clinical usefulness, and retinal toxicity studies in laboratory animals have yielded conflicting results. Methods We examined the functional and morphologic effects of VGB in C57BL/6J mice that received either VGB or saline IP from 10 to 18 weeks of age. Retinal structure and function were assessed in vivo by optical coherence tomography (OCT), ERG, and optomotor response. After euthanasia, retinas were processed for immunohistochemistry, and retinal GABA, and VGB quantified by mass spectrometry. Results No significant differences in visual acuity or total retinal thickness were identified between groups by optomotor response or optical coherence tomography, respectively. After 4 weeks of VGB treatment, ERG b-wave amplitude was enhanced, and amplitudes of oscillatory potentials were reduced. Dramatic rod and cone bipolar and horizontal cell remodeling, with extension of dendrites into the outer nuclear layer, was observed in retinas of VGB-treated mice. VGB treatment resulted in a mean 3.3-fold increase in retinal GABA concentration relative to controls and retinal VGB concentrations that were 20-fold greater than brain. Conclusions No evidence of significant retinal thinning or ERG a- or b-wave deficits were apparent, although we describe significant alterations in ERG b-wave and oscillatory potentials and in retinal cell morphology in VGB-treated C57BL/6J mice. The dramatic concentration of VGB in retina relative to the target tissue (brain), with a corresponding increase in retinal GABA, offers insight into the pathophysiology of VGB-associated visual field loss.
Collapse
Affiliation(s)
- Kore Chan
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Mrinalini Hoon
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, Madison, Wisconsin, United States
- Pediatrics Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - James N. Ver Hoeve
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Brad Wahlgren
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Shawna Gloe
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Jeremy Williams
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Brenna Wetherbee
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Julie A. Kiland
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kara R. Vogel
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Erwin Jansen
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Gajja Salomons
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dana Walters
- Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, United States
| | - Jean-Baptiste Roullet
- Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, United States
| | - K Michael Gibson
- Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, United States
| | - Gillian J. McLellan
- Department of Ophthalmology & Visual Science, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| |
Collapse
|
13
|
García-Ayuso D, Di Pierdomenico J, Valiente-Soriano FJ, Martínez-Vacas A, Agudo-Barriuso M, Vidal-Sanz M, Picaud S, Villegas-Pérez MP. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Exp Eye Res 2019; 188:107781. [PMID: 31473259 DOI: 10.1016/j.exer.2019.107781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
To study the effect of taurine depletion induced by β-alanine supplementation in the retinal nerve fiber layer (RNFL), and retinal ganglion cell (RGC) survival and axonal transport. Albino Sprague-Dawley rats were divided into two groups: one group received β-alanine supplementation (3%) in the drinking water during 2 months to induce taurine depletion, and the other group received regular water. After one month, half of the rats from each group were exposed to light. Retinas were analyzed in-vivo using Spectral-Domain Optical Coherence Tomography (SD-OCT). Prior to processing, RGCs were retrogradely traced with fluorogold (FG) applied to both superior colliculi, to assess the state of their retrograde axonal transport. Retinas were dissected as wholemounts, surviving RGCs were immunoidentified with Brn3a, and the RNFL with phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH) antibodies. β-alanine supplementation decreases significantly taurine plasma levels and causes a significant reduction of the RNFL thickness that is increased after light exposure. An abnormal pNFH immunoreactivity in some RGC bodies, their proximal dendrites and axons, and a further diminution of the mean number of FG-traced RGCs compared with Brn3a+RGCs, indicate that their retrograde axonal transport is affected. In conclusion, taurine depletion causes RGC loss and axonal transport impairment. Finally, our results suggest that care should be taken when ingesting β-alanine supplements due to the limited understanding of their potential adverse effects.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Serge Picaud
- INSERM U968, Institut de la Vision, Paris, France; Sorbonnes Universités, INSERM U968, CNRS UMR 7210, Institut de la Vision, 75012, Paris, France
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
14
|
Silvestro S, Mammana S, Cavalli E, Bramanti P, Mazzon E. Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials. Molecules 2019; 24:E1459. [PMID: 31013866 PMCID: PMC6514832 DOI: 10.3390/molecules24081459] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/20/2023] Open
Abstract
Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Eugenio Cavalli
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|