1
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
2
|
Seifert C, Storch S, Bähring R. Modulation of Kv4.2/KChIP3 interaction by the ceroid lipofuscinosis neuronal 3 protein CLN3. J Biol Chem 2020; 295:12099-12110. [PMID: 32641494 PMCID: PMC7443505 DOI: 10.1074/jbc.ra120.013828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (Kv) channels of the Kv4 subfamily associate with Kv channel-interacting proteins (KChIPs), which leads to enhanced surface expression and shapes the inactivation gating of these channels. KChIP3 has been reported to also interact with the late endosomal/lysosomal membrane glycoprotein CLN3 (ceroid lipofuscinosis neuronal 3), which is modified because of gene mutation in juvenile neuronal ceroid lipofuscinosis (JNCL). The present study was undertaken to find out whether and how CLN3, by its interaction with KChIP3, may indirectly modulate Kv4.2 channel expression and function. To this end, we expressed KChIP3 and CLN3, either individually or simultaneously, together with Kv4.2 in HEK 293 cells. We performed co-immunoprecipitation experiments and found a lower amount of KChIP3 bound to Kv4.2 in the presence of CLN3. In whole-cell patch-clamp experiments, we examined the effects of CLN3 co-expression on the KChIP3-mediated modulation of Kv4.2 channels. Simultaneous co-expression of CLN3 and KChIP3 with Kv4.2 resulted in a suppression of the typical KChIP3-mediated modulation; i.e. we observed less increase in current density, less slowing of macroscopic current decay, less acceleration of recovery from inactivation, and a less positively shifted voltage dependence of steady-state inactivation. The suppression of the KChIP3-mediated modulation of Kv4.2 channels was weaker for the JNCL-related missense mutant CLN3R334C and for a JNCL-related C-terminal deletion mutant (CLN3ΔC). Our data support the notion that CLN3 is involved in Kv4.2/KChIP3 somatodendritic A-type channel formation, trafficking, and function, a feature that may be lost in JNCL.
Collapse
Affiliation(s)
- Carolin Seifert
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Pädiatrische Forschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Liang Y, Tong F, Zhang L, Zhu L, Li W, Huang W, Zhao S, He G, Zhou Y. iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats. Brain Res Bull 2019; 153:289-304. [PMID: 31539556 DOI: 10.1016/j.brainresbull.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Diffuse axonal injury (DAI) is one of the most common and severe pathological consequences of traumatic brain injury (TBI). The molecular mechanism of DAI is highly complicated and still elusive, yet a clear understanding is crucial for the diagnosis, treatment, and prognosis of DAI. In our study, we used rats to establish a DAI model and applied isobaric tags for relative and absolute quantitation (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in the corpus callosum. As a result, a total of 514 proteins showed differential expression between the injury groups and the control. Among these DEPs, 14 common DEPs were present at all seven time points postinjury (1, 3, 6, 12, 24, 48, and 72 h). Next, bioinformatic analysis was performed to elucidate the pathogenesis of DAI, which was found to possibly involve calcium ion-regulatory proteins (e.g., calsenilin and ryanodine receptor 2), cytoskeleton organization (e.g., peripherin, NFL, NFM, and NFH), apoptotic processes (e.g., calsenilin and protein kinase C delta type), and inflammatory response proteins (e.g., complement C3 and C-reactive protein). Moreover, peripherin and calsenilin were successfully confirmed by western blotting to be significantly upregulated during DAI, and immunohistochemical (IHC) analysis revealed that their expression increased and could be observed in axons after injury, thus indicating their potential as DAI biomarkers. Our experiments not only provide insight into the molecular mechanisms of axonal injury in rats during DAI but also give clinicians and pathologists important reference data for the diagnosis of DAI. Our findings may expand the list of DAI biomarkers and improve the postmortem diagnostic rate of DAI.
Collapse
Affiliation(s)
- Yue Liang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Fang Tong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Lin Zhang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Longlong Zhu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Wenhe Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Weisheng Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Shuquan Zhao
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Guanglong He
- Institute of Forensic Science, Ministry of Public Security People's Republic of China, No. 17 Nanli Mulidi, Beijing, 100038, PR China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| |
Collapse
|
4
|
Abstract
Kv channel-interacting proteins (KChIPs) belong to the neuronal calcium sensor (NCS) family of Ca2+-binding EF-hand proteins. KChIPs constitute a group of specific auxiliary β-subunits for Kv4 channels, the molecular substrate of transient potassium currents in both neuronal and non-neuronal tissues. Moreover, KChIPs can interact with presenilins to control ER calcium signaling and apoptosis, and with DNA to control gene transcription. Ca2+ binding via their EF-hands, with the consequence of conformational changes, is well documented for KChIPs. Moreover, the Ca2+ dependence of the presenilin/KChIP complex may be related to Alzheimer’s disease and the Ca2+ dependence of the DNA/KChIP complex to pain sensing. However, only in few cases could the Ca2+ binding to KChIPs be directly linked to the control of excitability in nerve and muscle cells known to express Kv4/KChIP channel complexes. This review summarizes current knowledge about the Ca2+ binding properties of KChIPs and the Ca2+ dependencies of macromolecular complexes containing KChIPs, including those with presenilins, DNA and especially Kv4 channels. The respective physiological or pathophysiolgical roles of Ca2+ binding to KChIPs are discussed.
Collapse
Affiliation(s)
- Robert Bähring
- a Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin , Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
5
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Azam S, Miksovska J. Pb 2+ Binds to Downstream Regulatory Element Antagonist Modulator (DREAM) and Modulates Its Interactions with Binding Partners: A Link between Neuronal Calcium Sensors and Pb 2+ Neurotoxicity. ACS Chem Neurosci 2019; 10:1263-1272. [PMID: 30399317 DOI: 10.1021/acschemneuro.8b00335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pb2+ exposure leads to diverse neurological disorders; however, the mechanism of Pb2+-induced neurotoxicity is not clearly understood. Here we demonstrate that Pb2+ binds to EF-hands in apo-DREAM (downstream regulatory element antagonist modulator) with a lower equilibrium dissociation constant ( Kd = 20 ± 2 nM) than Ca2+ ( Kd = 1 μM). Based on the Trp169 emission and CD spectra, we report that Pb2+ association triggers changes in the protein secondary and tertiary structures that are analogous to those previously observed for Ca2+-bound protein. The hydrophobic cavity in the C-terminal domain of DREAM is solvent exposed in the presence of Pb2+ as determined using a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS). Pb2+ association with DREAM also modulates interactions between DREAM and its intracellular partners as evident from the fact that Pb2+-bound DREAM associates with peptide-based model systems, presenilin-1 helix-9 "PS1HL9" KV4.3(70-90) "site-2" and KV4.3(2-22) "site 1". Namely, dissociation constants for Pb2+-bound DREAM interaction with PS1HL9 ( Kd = 2.4 ± 0.1 μM), site-2 ( Kd = 11.0 ± 0.5 μM) and site 1 ( Kd = 5.0 ± 0.6 μM) are nearly identical to those observed for Ca2+ bound DREAM. Isothermal titration calorimetry data reveal that Pb2+ binds to two high-affinity sites in Ca2+ bound DREAM with the overall apparent constant of 4.81 ± 0.06 μM and its binding to Ca2+ bound DREAM is entropy-driven. Taking into account the structural and sequence similarity between DREAM and other neuronal calcium sensor (NCS) proteins, these results strongly indicate that DREAM and possibly other NCS proteins bind Pb2+ with a higher affinity than that for Ca2+ and Pb2+ interactions with NCS proteins can contribute to Pb2+-induced neurotoxicity.
Collapse
Affiliation(s)
- Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
7
|
Azam S, Louis GS, Miksovska J. Cadmium association with DREAM promotes DREAM interactions with intracellular partners in a similar manner to its physiological ligand, calcium. Metallomics 2019; 11:1115-1127. [DOI: 10.1039/c9mt00059c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cd2+exposure has been associated with neurodegenerative diseases and other pathologies, but the underlying mechanism through which it exerts toxic effects remain unresolved.
Collapse
Affiliation(s)
- Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Gessica St Louis
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
- Biomolecular Sciences Institute, Florida International University
- Miami
| |
Collapse
|
8
|
Grillo MA, Grillo SL, Gerdes BC, Kraus JG, Koulen P. Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin. Mol Neurobiol 2018; 56:525-534. [PMID: 29730765 DOI: 10.1007/s12035-018-1080-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023]
Abstract
Calsenilin is a calcium ion (Ca2+)-binding protein involved in regulating the intracellular concentration of Ca2+, a second messenger that controls multiple cellular signaling pathways. The ryanodine receptor (RyR) amplifies Ca2+ signals entering the cytoplasm by releasing Ca2+ from endoplasmic reticulum (ER) stores, a process termed calcium-induced calcium release (CICR). Here, we describe a novel mechanism, in which calsenilin controls the activity of neuronal RyRs. We show calsenilin co-localized with RyR2 and 3 in the ER of mouse hippocampal and cortical neurons using immunocytochemistry. The underlying protein-protein interaction between calsenilin and the RyR was determined in mouse central nervous system (CNS) neurons using immunoprecipitation studies. The functional relevance of this interaction was assayed with single-channel electrophysiology. At low physiological Ca2+ concentrations, calsenilin binding to the cytoplasmic face of neuronal RyRs decreased the RyR's open probability, while calsenilin increased the open probability at high physiological Ca2+ concentrations. This novel molecular mechanism was studied further at the cellular level, where faster release kinetics of caffeine-induced Ca2+ release were measured in SH-SY5Y neuroblastoma cells overexpressing calsenilin. The interaction between calsenilin and neuronal RyRs reveals a new regulatory mechanism and possibly a novel pharmacological target for the control of Ca2+ release from intracellular stores.
Collapse
Affiliation(s)
- Michael A Grillo
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Stephanie L Grillo
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Bryan C Gerdes
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jacob G Kraus
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
9
|
Pham K, Miksovska J. Molecular insight of DREAM and presenilin 1 C-terminal fragment interactions. FEBS Lett 2016; 590:1114-22. [PMID: 27009418 DOI: 10.1002/1873-3468.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Interactions between downstream regulatory element antagonist modulator (DREAM) and presenilin 1 (PS1) are related to numerous neuronal processes. We demonstrate that association of PS1 carboxyl peptide (residues 445-467, HL9) with DREAM is calcium dependent and stabilized by a cluster of three aromatic residues: F462 and F465 from PS1 and F252 from DREAM. Additional stabilization is provided by residues in a loop connecting α helices 7 and 8 in DREAM and residues of PS1, namely cation-π interactions between R200 in DREAM and F465 in PS1 and the salt bridges formed by R207 in DREAM and D450 and D458 in PS1.
Collapse
Affiliation(s)
- Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Pham K, Dhulipala G, Gonzalez WG, Gerstman BS, Regmi C, Chapagain PP, Miksovska J. Ca2+ and Mg2+ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator. Protein Sci 2015; 24:741-51. [PMID: 25627705 DOI: 10.1002/pro.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/25/2015] [Indexed: 11/09/2022]
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca(2+) concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca(2+) /Mg(2+) association to DREAM. Our data indicate a minor impact of Ca(2+) association on the overall structure of the N- and C-terminal domains, although Ca(2+) binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca(2+) bound forms of the protein. Time-resolved fluorescence data indicate that Ca(2+) binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca(2+) association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca(2+) and Mg(2+) suggesting that, under physiological conditions, Ca(2+) free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions.
Collapse
Affiliation(s)
- Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199
| | | | | | | | | | | | | |
Collapse
|
11
|
DREAM regulates insulin promoter activity through newly identified DRE element. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractDownstream regulatory element antagonist modulator (DREAM) protein is a 31 kDa Ca2+-regulated transcriptional repressor. It functions as a silencer of the gene transcription. In low intracellular free Ca2+ concentration DREAM tightly binds to the downstream regulatory element (DRE) of gene promoter and impedes the transcription. In higher Ca2+ concentrations DREAM binds Ca2+ and disconnects from DRE of the gene promoter enabling transcription. We report that DREAM is expressed in different human tissues including the pancreas, where it is located in the islets of Langerhans. Location of DREAM in RIN-F5 cells in cultures is restricted to the nucleus and membranes and changes after increased Ca2+-levels. The proteins dissociate from dimmers to monomers and translocate out of the nucleus. The expression of DREAM in β-cells in the islets of Langerhans regulates the promoter activity of the insulin gene by directly interacting with the sequence located between +52 bp and +81 bp downstream of the transcriptional start site of the promoter. Our results provide evidence for the existence of DRE sequence in the insulin gene promoter. It is suggested that DREAM is a repressor of insulin gene transcription, whose effect is mediated by direct binding to DRE sequence.
Collapse
|
12
|
Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, Li YI, Gwon AR, Woo HN, Jang J, Choi IY, Lee JY, Jung YK, Tang SC, Sobey CG, Arumugam TV, Jo DG. Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol 2012; 23:402-12. [PMID: 23211047 DOI: 10.1111/bpa.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 11/23/2012] [Indexed: 01/14/2023] Open
Abstract
Calsenilin is a calcium sensor protein that interacts with presenilin and increases calcium-triggered neuronal apoptosis, and γ-secretase activity. Notch is a cell surface receptor that regulates cell-fate decisions and synaptic plasticity in brain. The aim of the present study was to characterize the role of calsenilin as a regulator of the γ-secretase cleavage of Notch in ischemic stroke. Here, we determined the modulation of expression level and cellular distribution of calsenilin in neurons subjected to ischemic-like conditions. The levels of calsenilin and presenilin were increased in primary neurons after oxygen and glucose deprivation. Furthermore, calsenilin was found to enhance the γ-secretase cleavage of Notch and to contribute to cell death under ischemia-like conditions. The inhibition of γ-secretase activity and a presenilin deficiency were both found to protect against calsenilin-mediated ischemic neuronal death. The expression of calsenilin was found to be increased in brain following experimental ischemic stroke. These findings establish a specific molecular mechanism by which the induction of calsenilin enhances Notch activation in ischemic stroke, and identify calsenilin as an upstream of the γ-secretase cleavage of Notch.
Collapse
Affiliation(s)
- Jong-Sung Park
- The School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gwon AR, Park JS, Arumugam TV, Kwon YK, Chan SL, Kim SH, Baik SH, Yang S, Yun YK, Choi Y, Kim S, Tang SC, Hyun DH, Cheng A, Dann CE, Bernier M, Lee J, Markesbery WR, Mattson MP, Jo DG. Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease. Aging Cell 2012; 11:559-68. [PMID: 22404891 DOI: 10.1111/j.1474-9726.2012.00817.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cause of elevated level of amyloid β-peptide (Aβ42) in common late-onset sporadic [Alzheimer's disease (AD)] has not been established. Here, we show that the membrane lipid peroxidation product 4-hydroxynonenal (HNE) is associated with amyloid and neurodegenerative pathologies in AD and that it enhances γ-secretase activity and Aβ42 production in neurons. The γ-secretase substrate receptor, nicastrin, was found to be modified by HNE in cultured neurons and in brain specimens from patients with AD, in which HNE-nicastrin levels were found to be correlated with increased γ-secretase activity and Aβ plaque burden. Furthermore, HNE modification of nicastrin enhanced its binding to the γ-secretase substrate, amyloid precursor protein (APP) C99. In addition, the stimulation of γ-secretase activity and Aβ42 production by HNE were blocked by an HNE-scavenging histidine analog in a 3xTgAD mouse model of AD. These findings suggest a specific molecular mechanism by which oxidative stress increases Aβ42 production in AD and identify HNE as a novel therapeutic target upstream of the γ-secretase cleavage of APP.
Collapse
Affiliation(s)
- A-Ryeong Gwon
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kerrigan TL, Daniel J W, Regan PL, Cho K. The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction. Front Mol Neurosci 2012; 5:57. [PMID: 22586365 PMCID: PMC3343381 DOI: 10.3389/fnmol.2012.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/13/2022] Open
Abstract
Neuronal calcium sensors (NCS) readily bind calcium and undergo conformational changes enabling them to interact and regulate specific target molecules. These interactions lead to dynamic alterations in protein trafficking that significantly impact upon synaptic function. Emerging evidence suggests that NCS and alterations in Ca(2+) mobilization modulate glutamate receptor trafficking, subsequently determining the expression of different forms of synaptic plasticity. In this review, we aim to discuss the functional relevance of NCS in protein trafficking and their emerging role in synaptic plasticity. Their significance within the concept of "translational neuroscience" will also be highlighted, by assessing their potential as key molecules in neurodegeneration.
Collapse
Affiliation(s)
- Talitha L Kerrigan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
15
|
Afelik S, Qu X, Hasrouni E, Bukys MA, Deering T, Nieuwoudt S, Rogers W, Macdonald RJ, Jensen J. Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells. Development 2012; 139:1744-53. [PMID: 22461559 DOI: 10.1242/dev.075804] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of 'tip' and 'trunk' domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.
Collapse
Affiliation(s)
- Solomon Afelik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burgoyne RD, Haynes LP. Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 2012; 5:2. [PMID: 22269068 PMCID: PMC3271974 DOI: 10.1186/1756-6606-5-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/23/2012] [Indexed: 01/22/2023] Open
Abstract
Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca2+ concentration are detected by Ca2+-binding proteins that can interact with and regulate target proteins to modify their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in the nervous system. Here we review recent advances in the understanding of the physiological roles of the NCS proteins and the molecular basis for their specificity.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
17
|
Jang C, Choi J, Na Y, Jang B, Wasco W, Buxbaum JD, Kim Y, Choi E. Calsenilin regulates presenilin 1/γ‐secretase‐mediated N‐cadherin ∊‐cleavage and β‐catenin signaling. FASEB J 2011; 25:4174-83. [DOI: 10.1096/fj.11-185926] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changhwan Jang
- Ilsong Institute of Life ScienceHallym University Anyang Korea
- Department of MicrobiologyCollege of Medicine, Hallym University Chuncheon Korea
| | - Jin‐Kyu Choi
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Yeo‐Jung Na
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Byungki Jang
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Wilma Wasco
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of NeurologyMassachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Joseph D. Buxbaum
- Laboratory of Molecular Neuropsychiatry, Department of Psychiatry and NeurobiologyMount Sinai School of Medicine New York New York USA
| | - Yong‐Sun Kim
- Ilsong Institute of Life ScienceHallym University Anyang Korea
- Department of MicrobiologyCollege of Medicine, Hallym University Chuncheon Korea
| | - Eun‐Kyoung Choi
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| |
Collapse
|
18
|
Jang C, Choi JK, Kim E, Park ES, Wasco W, Buxbaum JD, Kim YS, Choi EK. Calsenilin is degraded by the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2011; 405:180-5. [PMID: 21216226 DOI: 10.1016/j.bbrc.2010.12.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 12/31/2010] [Indexed: 01/12/2023]
Abstract
Calsenilin, a neuronal calcium binding protein that has been shown to have multiple functions in the cell, interacts with presenilin 1 (PS1) and presenilin 2 (PS2), represses gene transcription and binds to A-type voltage-gated potassium channels. In addition, increased levels of calsenilin are observed in the brains of Alzheimer's disease and epilepsy patients. The present study was designed to investigate the molecular mechanism of calsenilin degradation pathways in cultured cells. Here, we demonstrate that inhibition of the ubiquitin-proteasomal pathway (UPP) but not lysosomal pathway markedly increased the expression levels of calsenilin. Immunofluorescence analysis revealed that following proteasomal inhibition calsenilin accumulated in the endoplasmic reticulum (ER) and Golgi, while lysosomal inhibition had no effect on calsenilin localization. In addition, we found the change of subcellular localization of PS1 from diffuse pattern to punctuate staining pattern in the ER and perinuclear region in the presence of calsenilin. These findings suggest that calsenilin degradation is primarily mediated by the UPP and that impairment in the UPP may contribute to the involvement of calsenilin in disease-associated neurodegeneration.
Collapse
Affiliation(s)
- Changhwan Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Woo HN, Baik SH, Park JS, Gwon AR, Yang S, Yun YK, Jo DG. Secretases as therapeutic targets for Alzheimer's disease. Biochem Biophys Res Commun 2010; 404:10-5. [PMID: 21130746 DOI: 10.1016/j.bbrc.2010.11.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 12/24/2022]
Abstract
Accumulation of amyloid-β (Aβ) is widely accepted as the key instigator of Alzheimer's disease (AD). The proposed mechanism is that accumulation of Aβ results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aβ in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-β precursor protein), which flanks the Aβ sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aβ conversion as a possible therapeutic target. Therapies aimed at modifying Aβ-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aβ levels are merely a result of earlier events that were already causing the disease.
Collapse
Affiliation(s)
- Ha-Na Woo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-467, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
McCue HV, Haynes LP, Burgoyne RD. The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2010; 2:a004085. [PMID: 20668007 DOI: 10.1101/cshperspect.a004085] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
21
|
Choi YH, Gwon AR, Jeong HY, Park JS, Baik SH, Arumugam TV, Jo DG. Contribution of gamma-secretase to calcium-mediated cell death. Neurosci Lett 2009; 469:425-8. [PMID: 20035833 DOI: 10.1016/j.neulet.2009.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/15/2009] [Accepted: 12/15/2009] [Indexed: 01/03/2023]
Abstract
Presenilins are the catalytic subunit of the large gamma-secretase complex, that promotes intramembranous proteolysis of the beta-amyloid precursor protein (APP), resulting in the production of beta-amyloid (A beta). Mutant presenilin causes early-onset familial Alzheimer's disease (FAD), is related to abnormal Ca(2+) signaling, and render cells vulnerable to cell death. In the present study, we demonstrated that Ca(2+)-mediated cell death is functionally associated with gamma-secretase activity. We found that gamma-secretase activity was elevated during Ca(2+)-mediated cell death. Using selective gamma-secretase inhibitors, we examined the role of gamma-secretase in cell death triggered by increased intracellular Ca(2+). Indeed, treatment with the selective gamma-secretase inhibitors, compound E, DAPT, or L-685.458 significantly decreased Ca(2+)-triggered cell death with that of the controls, but did not affect staurosporin or tunicamycin-mediated cell death. These results implicate the role of gamma-secretase activity in Ca(2+)-mediated cell death.
Collapse
Affiliation(s)
- Yun-Hyung Choi
- College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
23
|
Characterization of subcellular localization and Ca2+ modulation of calsenilin/DREAM/KChIP3. Neuroreport 2008; 19:1193-7. [DOI: 10.1097/wnr.0b013e3283089209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Reisch N, Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H. DREAM is reduced in synovial fibroblasts of patients with chronic arthritic pain: is it a suitable target for peripheral pain management? Arthritis Res Ther 2008; 10:R60. [PMID: 18507845 PMCID: PMC2483451 DOI: 10.1186/ar2431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/23/2008] [Accepted: 05/28/2008] [Indexed: 12/30/2022] Open
Abstract
Introduction The endogenous pain-relieving system depends in part on the regulation of nociceptive signals through binding of opioids to the corresponding opioid receptor. Interfering with the trans-repression effect of downstream regulatory element antagonist modulator (DREAM) on the transcription of the opioid dynorphin-encoding prodynorphin (pdyn) gene might enhance pain relief in the periphery. Methods Expression levels were measured in osteoarthritis (OA) synovial fibroblast-like cells (SFLCs) (n = 8) and in peripheral blood mononuclear cells (PBMCs) from OA patients (n = 53) and healthy controls (n = 26) by real-time polymerase chain reaction. Lysed OA SFLCs were analyzed by immunoprecipitation. Translation of DREAM mRNA was inhibited by small interfering RNAs (siRNAs). Expressions of DREAM, pdyn, and c-fos mRNAs were measured at 24, 48, and 72 hours after transfection. Results The expression of DREAM mRNA was shown in both healthy and OA SFLCs as well as PBMCs. Inhibiting transcription using siRNAs led to a marked reduction in DREAM expression after 24, 48, and 72 hours. However, no significant changes in c-fos and pdyn expression occurred. In addition, DREAM mRNA expression was significantly reduced in OA patients with chronic pain (pain intensity as measured by a visual analog scale scale of greater than 40), but no pdyn expression was detectable. Conclusion To our knowledge, this is the first report showing the expression of DREAM in SFLCs and PBMCs on the mRNA level. However, DREAM protein was not detectable. Since repression of pdyn transcription persists after inhibiting DREAM translation, DREAM appears to play no functional role in the kappa opioid receptor system in OA SFLCs. Therefore, our data suggest that DREAM appears not to qualify as a target in peripheral pain management.
Collapse
Affiliation(s)
- Natasa Reisch
- Center of Experimental Rheumatology, Department of Rheumatology and Institute of Physical Medicine, University Hospital, CH-8091 Zurich, Gloriastrasse 25, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44:507-18. [PMID: 18440065 DOI: 10.1016/j.ceca.2008.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/17/2023]
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) form the catalytic core in gamma-secretase complexes and mutations in these proteins result in aberrant cleavage of amyloid precursor protein leading to accumulation of the beta-amyloid in the brain of familial Alzheimer Disease patients. PS2 possesses a hydrophilic cytoplasmic N-terminal domain (PS2 NTF1-87) dispensable for gamma-secretase activity with physiological functions yet to be determined. The effects of this soluble 87 amino acid fragment of mouse PS2 on single channel activity of mouse brain ryanodine receptors (RyR) were determined. PS2 NTF1-87 application to the cytoplasmic side of the RyR significantly increased single channel activity by favoring higher sublevel openings. The Ca(2+) activation and desensitization ranges for RyRs were unchanged. We demonstrate facilitation of RyR gating by PS2 NTF1-87, which might represent a general mechanism of RyR regulation by presenilins potentially prone to be affected by mutations or external stimuli contributing to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Volodya Hayrapetyan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
26
|
Haverkamp S, Specht D, Majumdar S, Zaidi NF, Brandstätter JH, Wasco W, Wässle H, Tom Dieck S. Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. J Comp Neurol 2008; 507:1087-101. [PMID: 18095322 DOI: 10.1002/cne.21612] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunocytochemical discrimination of distinct bipolar cell types in the mouse retina is a prerequisite for analyzing retinal circuitry in wild-type and transgenic mice. Here we demonstrate that among the more than 10 anatomically defined mouse bipolar cell types, type 4 bipolar cells are specifically recognized by anti-calsenilin antibodies. Axon terminals in the inner plexiform layer are not readily identifiable because calsenilin is also expressed in a subset of amacrine and ganglion cells. In contrast, in the outer plexiform layer calsenilin immunoreactivity allows the analysis of photoreceptor to type 4 bipolar cell contacts. A dense plexus of calsenilin-positive dendrites makes several basal contacts at cone pedicles. An individual calsenilin-positive bipolar cell contacts five to seven cones. In addition, some calsenilin-positive dendrites contact rod photoreceptors. On average we counted 10 rod spherule contacts per type 4 bipolar cell, and approximately 10% of rods contacted type 4 bipolar cells. We suggest that type 4 bipolar cells, together with the recently described type 3a and b cells, provide an alternative and direct route from rods to OFF cone bipolar cells. In the Bassoon DeltaEx4/5 mouse, a mouse mutant that shows extensive remodeling of the rod system including sprouting of horizontal and rod bipolar cells into the outer nuclear layer due to impaired synaptic transmission, we found that in addition mixed-input (type 3 and 4) OFF bipolar cells sprout to ectopic sites. In contrast, true cone-selective type 1 and 2 OFF cone bipolar cells did not show sprouting in the Bassoon mouse mutant.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Neuroanatomy, Max Planck Institute for Brain Research, 60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.
Collapse
Affiliation(s)
- Michael E Boulton
- Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
28
|
Marks N, Berg MJ. Neurosecretases provide strategies to treat sporadic and familial Alzheimer disorders. Neurochem Int 2008; 52:184-215. [PMID: 17719698 DOI: 10.1016/j.neuint.2007.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/05/2007] [Indexed: 12/30/2022]
Abstract
Recent discoveries on neurosecretases and their trafficking to release fibril-forming neuropeptides or other products, are of interest to pathology, cell signaling and drug discovery. Nomenclature arose from the use of amyloid precursor protein (APP) as a prototypic type-1 substrate leading to the isolation of beta-secretase (BACE), multimeric complexes (gamma-secretase, gamma-SC) for intramembranal cleavage, and attributing a new function to well-characterized metalloproteases of the ADAM family (alpha-secretase) for normal APP turnover. While purified alpha/beta-secretases facilitate drug discovery, gamma-SC presents greater challenges for characterization and mechanisms of catalysis. The review comments on links between mutation or polymorphisms in relation to enzyme mechanisms and disease. The association between lipoprotein receptor LRP11 variants and sporadic Alzheimer's disease (SAD) offers scope to integrate components of pre- and post-Golgi membranes, or brain clathrin-coated vesicles within pathways for trafficking as targets for intervention. The presence of APP and metabolites in brain clathrin-coated vesicles as significant cargo with lipoproteins and adaptors focuses attention as targets for therapeutic intervention. This overview emphasizes the importance to develop new therapies targeting neurosecretases to treat a major neurological disorder that has vast economic and social implications.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
29
|
Lee KH, Jeong S, Yang EG, Park YK, Yu J. An RNA aptamer that recognizes a specific conformation of the protein calsenilin. Bioorg Med Chem 2007; 15:7545-52. [PMID: 17904852 DOI: 10.1016/j.bmc.2007.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/07/2007] [Accepted: 09/09/2007] [Indexed: 01/16/2023]
Abstract
The generation of molecules that selectively recognize specific conformations of a protein is an important component of the elucidation protein function. We have used SELEX (Systematic Evolution of Ligands by EXponential enrichment) technology to produce aptamers that bind in a conformationally selective manner to calsenilin, which involved in Ca(2+)-mediated apoptotic signaling. Since the conformations of calsenilin are quite different in the presence and absence of Ca(2+), aptamers were selected against the dimeric protein both under calcium-bound and calcium-free conditions. We have found that aptamer-12 selectively binds to the dimeric form of the protein in the presence of calcium ion, while the binding of aptamer-2 does not discriminate between the Ca(2+) bound and unbound protein. Data obtained from biochemical and biophysical experiments suggest that a dominant conformation of calcium-bound calsenilin exists in one dominant conformation and that one aptamer can be generated to recognize this conformation. In addition, observation made in this effort that aptamers selected against the two different conformations of calsenilin have different characteristics suggest that aptamers can serve as a plausible tool for recognizing various conformations of proteins, even those caused by interactions with small molecules or ions such as Ca(2+).
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Department of Chemistry and Education, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
31
|
Verdile G, Gandy SE, Martins RN. The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid. Neurochem Res 2007; 32:609-23. [PMID: 16944319 PMCID: PMC1832151 DOI: 10.1007/s11064-006-9131-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2006] [Indexed: 01/07/2023]
Abstract
The biogenesis and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer's disease. The presenilins and its interacting proteins play a pivotal role in the generation of Abeta from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (gamma-secretase) that cleaves APP to generate Abeta. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the gamma-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of gamma-secretase play important roles in modulating Abeta production. This review will discuss the components of the gamma-secretase complex and the role of presenilin interacting proteins on gamma-secretase activity.
Collapse
Affiliation(s)
- Giuseppe Verdile
- Centre of Excellence for Alzheimer’s disease Research and Care, and the Sir James McCusker Alzheimer’s Disease Research Unit, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, 6027 WA Australia
- Hollywood Private Hospital, Nedlands, WA Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia
| | - Samuel E Gandy
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA USA
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s disease Research and Care, and the Sir James McCusker Alzheimer’s Disease Research Unit, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, 6027 WA Australia
- Hollywood Private Hospital, Nedlands, WA Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia
| |
Collapse
|
32
|
Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8:182-93. [PMID: 17311005 PMCID: PMC1887812 DOI: 10.1038/nrn2093] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In neurons, intracellular calcium signals have crucial roles in activating neurotransmitter release and in triggering alterations in neuronal function. Calmodulin has been widely studied as a Ca(2+) sensor that has several defined roles in neuronal Ca(2+) signalling, but members of the neuronal calcium sensor protein family have also begun to emerge as key components in a number of regulatory pathways and have increased the diversity of neuronal Ca(2+) signalling pathways. The differing properties of these proteins allow them to have discrete, non-redundant functions.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, UK.
| |
Collapse
|
33
|
Parks AL, Curtis D. Presenilin diversifies its portfolio. Trends Genet 2007; 23:140-50. [PMID: 17280736 DOI: 10.1016/j.tig.2007.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/14/2006] [Accepted: 01/23/2007] [Indexed: 12/13/2022]
Abstract
Presenilin, the catalytic member of the gamma-secretase proteolytic complex, was discovered through its roles in generating Alzheimer's-disease-associated amyloid-beta peptides from the amyloid-beta precursor protein and in releasing the transcriptionally active domain of the receptor Notch. Recent work has revealed many additional cleavage substrates and interacting proteins, suggesting a diversity of roles for presenilin during development and adult life, some of which might contribute to Alzheimer's disease progression. Although many of these functions depend on the proteolytic activity of gamma-secretase, others are independent of its role as a protease. Here, we review recent data on candidate functions for presenilin and its interactors and on their potential significance in disease.
Collapse
Affiliation(s)
- Annette L Parks
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
34
|
Stetsyuk V, Peers B, Mavropoulos A, Verbruggen V, Thisse B, Thisse C, Motte P, Duvillié B, Scharfmann R. Calsenilin is required for endocrine pancreas development in zebrafish. Dev Dyn 2007; 236:1517-25. [PMID: 17450605 DOI: 10.1002/dvdy.21149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsenilin/DREAM/Kchip3 is a neuronal calcium-binding protein. It is a multifunctional protein, mainly expressed in neural tissues and implicated in regulation of presenilin processing, repression of transcription, and modulation of A-type potassium channels. Here, we performed a search for new genes expressed during pancreatic development and have studied the spatiotemporal expression pattern and possible role of calsenilin in pancreatic development in zebrafish. We detected calsenilin transcripts in the pancreas from 21 somites to 39 hours postfertilization stages. Using double in situ hybridization, we found that the calsenilin gene was expressed in pancreatic endocrine cells. Loss-of-function experiments with anti-calsenilin morpholinos demonstrated that injected morphants have a significant decrease in the number of pancreatic endocrine cells. Furthermore, the knockdown of calsenilin leads to perturbation in islet morphogenesis, suggesting that calsenilin is required for early islet cell migration. Taken together, our results show that zebrafish calsenilin is involved in endocrine cell differentiation and morphogenesis within the pancreas.
Collapse
Affiliation(s)
- V Stetsyuk
- University Paris-Descartes, Faculty of Medicine; INSERM, Necker Hospital, U845/EMI 363, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zaidi NF, Kuplast KG, Washicosky KJ, Kajiwara Y, Buxbaum JD, Wasco W. Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). J Neurochem 2006; 98:1290-301. [PMID: 16787403 DOI: 10.1111/j.1471-4159.2006.03972.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calsenilin/potassium channel-interacting protein (KChIP)3/ downstream regulatory element sequence antagonist modulator (DREAM) is a neuronal calcium-binding protein that has been shown to have multiple functions in the cell, including the regulation of presenilin processing, repression of transcription and modulation of A-type potassium channels. To gain a better understanding of the precise role of calsenilin in specific cellular compartments, an interactor hunt for proteins that bind to the N-terminal domain of calsenilin was carried out. Using a yeast two-hybrid system and co-immunoprecipitation studies, we have identified the transcriptional co-repressor C-terminal binding protein (CtBP)2 as an interactor for calsenilin and have shown that the two proteins can interact in vivo. In co-immunoprecipitation studies, calsenilin also interacted with CtBP1, a CtBP2 homolog. Our data also showed a calsenilin-dependent increase in c-fos protein levels in CtBP knockout fibroblasts, suggesting that CtBP may modulate the transcriptional repression of c-fos by calsenilin. Furthermore, the finding that histone deacetylase protein and activity were associated with the calsenilin-CtBP immunocomplex suggests a mechanism by which calsenilin-CtBP may act to repress transcription. Finally, we demonstrated that calsenilin and CtBP are present in synaptic vesicles and can interact in vivo.
Collapse
Affiliation(s)
- Nikhat F Zaidi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|