1
|
Yu CQ, Chen JP, Zhong YM, Zhong XL, Tang CP, Yang Y, Lin HQ. Metabolomic profiling of rat urine after oral administration of the prescription antipyretic Hao Jia Xu Re Qing Granules by UPLC/Q-TOF-MS. Biomed Chromatogr 2018; 32:e4332. [PMID: 29981286 DOI: 10.1002/bmc.4332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Hao Jia Xu Re Qing Granules (HJ), is an effective clinically used antipyretic based on traditional Chinese medicine. Although its antipyretic therapeutic effectiveness is obvious, its therapeutic mechanism has not been comprehensively explored yet. In this research, we first identified potential biomarkers which may be relevant for the antipyretic effect of HJ based on urine metabolomics using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A rat model of fever was established using the yeast-induced febrile response. Total-ion-current metabolic profiles of different groups were acquired and the data were processed by multivariate statistical analysis-partial least-squares discriminant analysis. As envisioned, the results revealed changes of urine metabolites related to the antipyretic effect. Fourteen potential biomarkers were selected from the urine samples based on the results of Student's t-test, "shrinkage t", variable importance in projection and partial least-squares discriminant analysis. N-Acetylleucine, kynurenic acid, indole-3-ethanol, nicotinuric acid, pantothenic acid and tryptophan were the most significant biomarkers found in the urine samples, and may be crucially related to the antipyretic effect of HJ. Consequently, we propose the hypothesis that the significant antipyretic effect the HJ may be related to the inhibition of tryptophan metabolism. This research thus provides strong theoretical support and further direction to explain the antipyretic mechanism of HJ, laying the foundation for future studies.
Collapse
Affiliation(s)
- Chu-Qin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Ping Chen
- The First Hospital Affiliated to Sun Yat-sen University, Guangzhou, P.R. China
| | - Yan-Mei Zhong
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xun-Long Zhong
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Chun-Ping Tang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua-Qing Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, Burnet PW. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immun 2016; 52:120-131. [PMID: 26476141 PMCID: PMC4927692 DOI: 10.1016/j.bbi.2015.10.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features.
Collapse
Affiliation(s)
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Oxford OX1, UK
| | - Michael Stratford
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, UK
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1, UK
| | | | | | - Philip W.J. Burnet
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK,Corresponding author at: Neurosciences Building, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.Neurosciences BuildingDepartment of PsychiatryUniversity of OxfordWarneford HospitalOxfordOX3 7JXUK
| |
Collapse
|
3
|
Characterization of rational biomarkers accompanying fever in yeast-induced pyrexia rats using urine metabolic footprint analysis. J Pharm Biomed Anal 2014; 95:68-75. [PMID: 24631712 DOI: 10.1016/j.jpba.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/21/2022]
Abstract
Fever is a prominent feature of diseases and is an ongoing process that is always accompanied by metabolic changes in the body system. Despite the success of temperature regulation theory, the underlying biological process remains unclear. To truly understand the nature of the febrile response, it is crucial to confirm the biomarkers during the entire biological process. In the current study, a 73-h metabolic footprint analysis of the urine from yeast-induced pyrexia rats was performed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Potential biomarkers were selected using orthogonal partial least squares-discriminate analysis (OPLS-DA), the rational biomarkers were verified by Pearson correlation analysis, and the predictive power was evaluated using receiver operator characteristic (ROC) curves. A metabolic network constructed using traditional Chinese medicine (TCM) grammar systems was used to validate the rationality of the verified biomarkers. Finally, five biomarkers, including indoleacrylic acid, 3-methyluridine, tryptophan, nicotinuric acid and PI (37:3), were confirmed as rational biomarkers because their correlation coefficients were all greater than 0.87 and because all of the correlation coefficients between any pair of these biomarkers were higher than 0.75. The areas under the ROC curves were all greater than 0.84, and their combined predictive power was considered reliable because the greatest area under the ROC curve was 0.968. A metabolic network also demonstrated the rationality of these five biomarkers. Therefore, these five metabolites can be adopted as rational biomarkers to reflect the process of the febrile response in inflammation-induced pyrexia.
Collapse
|
4
|
Palotai M, Kiss E, Bagosi Z, Jászberényi M, Tóth G, Váradi G, Telegdy G. Interleukin-1β (187-207)-induced hyperthermia is inhibited by interleukin-1β (193-195) in rats. Neurochem Res 2013; 39:254-8. [PMID: 24338284 DOI: 10.1007/s11064-013-1215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/28/2022]
Abstract
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine, which plays an important role in the immune response and signal transduction both in the periphery and the central nervous system (CNS). Various diseases of the CNS, including neurodegenerative disorders, vascular lesions, meningo-encephalitis or status epilepticus are accompanied by elevated levels of IL-1β. Different domains within the IL-lβ protein are responsible for distinct functions. The IL-lβ domain in position 208-240 has pyrogenic properties, while the domain in position 193-195 exerts anti-inflammatory effects. Previous studies provide little evidence about the effect of the domain in position 187-207 on the body temperature. Therefore, the aim of the present study was to investigate the action of IL-1β (187-207) and its interaction with IL-1β (193-195) on the body temperature. IL fragments were administered intracerebroventricularly and the body temperature was measured rectally in male Wistar rats. IL-1β (187-207) induced hyperthermia, while IL-1β (193-195) did not influence the core temperature considerably. In co-administration, IL-1β (193-195) completely abolished the IL-1β (187-207)-induced hyperthermia. The non-steroid anti-inflammatory drug metamizole also reversed completely the action of IL-1β (187-207). Our results provide evidence that the IL-lβ domain in position 187-207 has hyperthermic effect. This effect is mediated through prostaglandin E2 stimulation and other mechanisms may also be involved in the action of IL-1β (187-207). It also suggests that IL-lβ domain in position 187-207 and IL-1β (193-195) fragment may serve as novel target for treatment of disorders accompanied with hyperthermia.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, 6725, Semmelweis Str. 1, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang G, Tao R. Enhanced responsivity of 5-HT(2A) receptors at warm ambient temperatures is responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia. Neurosci Lett 2010; 490:68-71. [PMID: 21172407 DOI: 10.1016/j.neulet.2010.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT(2A) receptors in the central nervous system and thereafter cause an augmented response to 5-HT(₂A) receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT(2A) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT(₂A) receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT(₂A) receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions.
Collapse
Affiliation(s)
- Gongliang Zhang
- Department of Basic Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-3091, USA.
| | | |
Collapse
|
6
|
Ding Z, Cowan A, Rawls SM. 5-HT reuptake and 5-HT2 receptors modulate capsaicin-evoked hypothermia in rats. Neurosci Lett 2008; 430:191-6. [DOI: 10.1016/j.neulet.2007.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
|
7
|
Madden CJ, Morrison SF. Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5-hydroxytryptamine (5-HT)1A/5-HT7 receptors in the rat spinal cord. Neuropharmacology 2007; 54:487-96. [PMID: 18082230 DOI: 10.1016/j.neuropharm.2007.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 09/13/2007] [Accepted: 10/24/2007] [Indexed: 12/01/2022]
Abstract
In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min(-1)) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA.
Collapse
Affiliation(s)
- C J Madden
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
8
|
Dong J, Xie XH, Lu DX, Fu YM. Effects of electrical stimulation of ventral septal area on firing rates of pyrogen-treated thermosensitive neurons in preoptic anterior hypothalamus from rabbits. Life Sci 2007; 80:408-13. [PMID: 17054999 DOI: 10.1016/j.lfs.2006.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 09/13/2006] [Accepted: 09/22/2006] [Indexed: 10/24/2022]
Abstract
Although there is considerable evidence supporting that fever evolved as a host defense response, it is important that the rise in body temperature would not be too high. Many endogenous cryogens or antipyretics that limit the rise in body temperature have been identified. Endogenous antipyretics attenuate fever by influencing the thermoregulatory neurons in the preoptic anterior hypothalamus (POAH) and in adjacent septal areas including ventral septal area (VSA). Our previous study showed that intracerebroventricular (I.C.V.) injection of interleukin-1beta (IL-1beta) affected electrophysiological activities of thermosensitive neurons in VSA regions, and electrical stimulation of POAH reversed the effect of IL-1beta. To further investigate the functional electrophysiological connection between POAH and VSA and its mechanisms in thermoregulation, the firing rates of thermosensitive neurons in POAH of forty-seven unit discharge were recorded by using extracellular microelectrode technique in New Zealand white rabbits. Our results show that the firing rates of the warm-sensitive neurons decreased significantly and those of the cold-sensitive neurons increased in POAH when the pyrogen (IL-1beta) was injected I.C.V. The effects of IL-1beta on firing rates in thermosensitive neurons of POAH were reversed by electrical stimulation of VSA. An arginine vasopressin (AVP) V1 antagonist abolished the regulatory effects of VSA on the firing rates in thermosensitive neurons of POAH evoked by IL-1beta. However, an AVP V2 antagonist had no effects. These data indicated that VSA regulates the activities of the thermosensitive neurons of POAH through AVP V1 but not AVP V2 receptor.
Collapse
Affiliation(s)
- Jun Dong
- Department of Pathophysiology, Medical College of Jinan University, Guangzhou, Guangdong, China 510632 PR China.
| | | | | | | |
Collapse
|
9
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
10
|
De Castro E Silva E, Luz PA, Magrani J, Andrade L, Miranda N, Pereira V, Fregoneze JB. Role of the central opioid system in the inhibition of water and salt intake induced by central administration of IL-1β in rats. Pharmacol Biochem Behav 2006; 83:285-95. [PMID: 16554088 DOI: 10.1016/j.pbb.2006.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/30/2006] [Accepted: 02/10/2006] [Indexed: 11/21/2022]
Abstract
In the present study we investigated, the effect of third ventricle injections of IL-1beta on water and salt intake in fluid-deprived and sodium-depleted rats. Central administration of IL-1beta significantly reduced water and salt intake in fluid-deprived animals and decreased salt intake in sodium-depleted rats. The antidipsogenic and antinatriorexic effects elicited by the central administration of IL-1beta were suppressed by pretreatment with central injections of the non-selective opioid antagonist naloxone (10 mug) in the two different experimental protocols used here (water deprivation and sodium depletion). In addition, central administration of IL-1beta failed to modify the intake of a 0.1% saccharin solution when the animals were submitted to a "dessert test" or to induce any significant locomotor deficit in the open-field test. The present results suggest that the activation of the central interleukinergic component by IL-1beta impairs the increase in water and salt intake induced by water deprivation and the enhancement in sodium appetite that follows sodium depletion. The data also support the conclusion that the antidipsogenic and antinatriorexic effects resulting from the activation of the central interleukinergic component rely on an opioid-dependent, naloxone-blockable system.
Collapse
Affiliation(s)
- E De Castro E Silva
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Chang CP, Chen SH, Lin MT. IPSAPIRONE AND KETANSERIN PROTECTS AGAINST CIRCULATORY SHOCK, INTRACRANIAL HYPERTENSION, AND CEREBRAL ISCHEMIA DURING HEATSTROKE. Shock 2005; 24:336-40. [PMID: 16205318 DOI: 10.1097/01.shk.0000175894.18168.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We assess the effects of ipsapirone (a 5-HT1A receptor agonist), ketanserin (a 5-HT2A receptor antagonist), (-)-pindolol (a 5-HT1A receptor antagonist), and DOI (a 5-HT2A receptor agonist) on heatstroke in a rat model. Animals, under urethane anesthesia, were exposed to high ambient temperature of 42 degrees C until mean arterial pressure and local cerebral blood flow in the striatum began to decrease, which was arbitrarily defined as the onset of heatstroke. Normothermic controls were exposed to room temperature of 24 degrees C. In rats treated with normal saline immediately before the initiation of heat stress, the values for survival time were found to be 21 to 25 min. Systemic administration of ipsapirone (10 mg/kg) or ketanserin (2 mg/kg) immediately before the initiation of heat stress significantly increased the survival time to new values of 92 to 104 min. Combined treatment with ipsapirone and ketanserin had additive effects (survival time of 156-194 min). In contrast, systemic administration of (-)-pindolol (2 mg/kg) or DOI (2 mg/kg) significantly decreased the survival time to new values of 2 to 3 min. In vehicle-treated heatstroke rats, the values for core temperature, intracranial pressure, and the extracellular levels of cellular ischemia (e.g., glutamate and lactate/pyruvate ratio) or damage (e.g., glycerol) markers and neuronal damage scores in striatum were significantly higher than those of normothermic controls. On the other hand, the values for mean arterial pressure, cerebral perfusion pressure, cerebral blood flow, and brain partial pressure of O2 were significantly lower than those of normothermic controls. The heatstroke-induced hyperthermia, arterial hypotension, intracranial hypertension, cerebral hypoperfusion and hypoxia, and increased levels of cellular ischemia and damage markers in striatum were all significantly attenuated by prior administration of ipsapirone or ketanserin. The present results strongly suggest that previous activation of 5-HT1A receptors or antagonism of 5-HT2A receptors protects against heatstroke by reducing circulatory shock and cerebral ischemia, whereas prior antagonism of 5-HT1A receptors or activation of 5-HT2A receptors exacerbates heatstroke.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Technology, Tainan, Taiwan 710
| | | | | |
Collapse
|