1
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Lenz M, Eichler A, Kruse P, Galanis C, Kleidonas D, Andrieux G, Boerries M, Jedlicka P, Müller U, Deller T, Vlachos A. The Amyloid Precursor Protein Regulates Synaptic Transmission at Medial Perforant Path Synapses. J Neurosci 2023; 43:5290-5304. [PMID: 37369586 PMCID: PMC10359033 DOI: 10.1523/jneurosci.1824-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Mo L, Meng L, Huang Z, Yi L, Yang N, Li G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res 2022; 10:19. [PMID: 35395937 PMCID: PMC8994388 DOI: 10.1186/s40364-022-00366-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins C (HnRNP C) is part of the hnRNP family of RNA-binding proteins. The relationship between hnRNP C and cancers has been extensively studied, and dysregulation of hnRNP C has been found in many cancers. According to existing public data, hnRNP C could promote the maturation of new heterogeneous nuclear RNAs (hnRNA s, also referred to as pre-mRNAs) into mRNAs and could stabilize mRNAs, controlling their translation. This paper reviews the regulation and dysregulation of hnRNP C in cancers. It interacts with some cancer genes and other biological molecules, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and double-stranded RNAs (dsRNAs). Even directly binds to them. The effects of hnRNP C on biological processes such as alternative cleavage and polyadenylation (APA) and N6-methyladenosine (m6A) modification differ among cancers. Its main function is regulating stability and level of translation of cancer genes, and the hnRNP C is regarded as a candidate biomarker and might be valuable for prognosis evaluation.
Collapse
Affiliation(s)
- Liyi Mo
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lijuan Meng
- Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhicheng Huang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Gabriele RMC, Abel E, Fox NC, Wray S, Arber C. Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. Front Neurosci 2022; 16:835645. [PMID: 35360155 PMCID: PMC8964081 DOI: 10.3389/fnins.2022.835645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Amyloid precursor protein (APP) and its cleavage fragment Amyloid-β (Aβ) have fundamental roles in Alzheimer's disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aβ species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aβ species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset.
Collapse
Affiliation(s)
- Rebecca M. C. Gabriele
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily Abel
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Nick C. Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Selina Wray
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,*Correspondence: Charles Arber,
| |
Collapse
|
5
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
6
|
Sex-dependent effects of amyloid precursor-like protein 2 in the SOD1-G37R transgenic mouse model of MND. Cell Mol Life Sci 2021; 78:6605-6630. [PMID: 34476545 PMCID: PMC8558206 DOI: 10.1007/s00018-021-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 11/01/2022]
Abstract
Motor neurone disease (MND) is a neurodegenerative disorder characterised by progressive destruction of motor neurons, muscle paralysis and death. The amyloid precursor protein (APP) is highly expressed in the central nervous system and has been shown to modulate disease outcomes in MND. APP is part of a gene family that includes the amyloid precursor-like protein 1 (APLP1) and 2 (APLP2) genes. In the present study, we investigated the role of APLP2 in MND through the examination of human spinal cord tissue and by crossing APLP2 knockout mice with the superoxide dismutase 1 (SOD1-G37R) transgenic mouse model of MND. We found the expression of APLP2 is elevated in the spinal cord from human cases of MND and that this feature of the human disease is reproduced in SOD1-G37R mice at the End-stage of their MND-like phenotype progression. APLP2 deletion in SOD1-G37R mice significantly delayed disease progression and increased the survival of female SOD1-G37R mice. Molecular and biochemical analysis showed female SOD1-G37R:APLP2-/- mice displayed improved innervation of the neuromuscular junction, ameliorated atrophy of muscle fibres with increased APP protein expression levels in the gastrocnemius muscle. These results indicate a sex-dependent role for APLP2 in mutant SOD1-mediated MND and further support the APP family as a potential target for further investigation into the cause and regulation of MND.
Collapse
|
7
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
8
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Wu Z, Bai L, Tu R, Zhang L, Ba Y, Zhang H, Li X, Cheng X, Li W, Huang H. Disruption of synaptic expression pattern and age-related DNA oxidation in a neuronal model of lead-induced toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103350. [PMID: 32058320 DOI: 10.1016/j.etap.2020.103350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is recognized as a potent inducer of synaptic toxicity generally associated with reduced synaptic transmission and increased neuronal fiber excitability, becoming an environmental risk for neurodegenerative processes. Despite numerous toxicological studies on Pb have been directed to the developing brain, attention concerning long-term consequences of pubertal chronic Pb exposure on neuronal activity is still lacking. Thus, we exposed 4-week-old male mice to 0.2 % lead acetate solution for one month, then, conducted behavioral tests or extracted brain homogenate from mice prefrontal cortex (PFC) and hippocampus at the age of 4, 13 and 16-month-old respectively. Our results showed that treated mice exhibited an evident increase in latency to reach platform following pubertal Pb exposure and aging. The increase of 8-OHdG revealed evident neural DNA oxidative damage across time upon pubertal Pb exposure. In the hippocampus of lead exposed mice at three age nodes, the expression of brain-derived neurotrophic factor precursor (proBDNF) increased, while that of mature BDNF (mBDNF), cAMP-response element binding protein (CREB) and phosphorylated CREB (pCREB) decreased compared with the control group. Furthermore, the expression of BACE1 protein and tau phosphorylation level in PFC and hippocampus increased, APP mRNAs in PFC and prolonged induction of BACE1 in hippocampus. Our results show that chronic Pb exposure from pubertal stage onward can either initiate divergent synaptic-related gene expression patterns in adulthood or trigger time-course of neurodegenerative profile within the PFC or hippocampus, which can contribute consistent deficits of cognition across subsequent age-nodes.
Collapse
Affiliation(s)
- Zuntao Wu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Lin Bai
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Runqi Tu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Lijie Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yue Ba
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xing Li
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wenjie Li
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
10
|
Conformation change of α-synuclein(61-95) at the air-water interface and quantitative measurement of the tilt angle of the axis of its α-helix by multiple angle incidence resolution spectroscopy. Colloids Surf B Biointerfaces 2019; 183:110401. [DOI: 10.1016/j.colsurfb.2019.110401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022]
|
11
|
Roisman LC, Han S, Chuei MJ, Connor AR, Cappai R. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family. FASEB J 2019; 33:5076-5081. [PMID: 30608876 DOI: 10.1096/fj.201802315r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The amyloid precursor-like protein 2 (APLP2) molecule is a type I transmembrane protein that is crucial for survival, cell-cell adhesion, neuronal development, myelination, cancer metastasis, modulation of metal, and glucose and insulin homeostasis. Moreover, the importance of the amyloid precursor protein (APP) family in biology and disease is very well known because of its central role in Alzheimer disease. In this study, we determined the crystal structure of the independently folded E2 domain of APLP2 and compared that with its paralogues APP and APLP2, demonstrating high overall structural similarities. The crystal structure of APLP2 E2 was solved as an antiparallel dimer, and analysis of the protein interfaces revealed a distinct mode of dimerization that differs from the previously reported dimerization of either APP or APLP1. Analysis of the APLP2 E2 metal binding sites suggested it binds zinc and copper in a similar manner to APP and APLP1. The structure of this key protein might suggest a relationship between the distinct mode of dimerization and its biologic functions.-Roisman, L. C., Han, S., Chuei, M. J., Connor, A. R., Cappai, R. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family.
Collapse
Affiliation(s)
- Laila C Roisman
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Sen Han
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Mun Joo Chuei
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Andrea R Connor
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Nyarko JNK, Quartey MO, Baker GB, Mousseau DD. Can Animal Models Inform on the Relationship between Depression and Alzheimer Disease? CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:18-29. [PMID: 29685068 PMCID: PMC6364140 DOI: 10.1177/0706743718772514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The focus on the β-amyloid (Aβ) peptide in clinical Alzheimer disease (AD) as well as in animal models of AD has perhaps biased our understanding of what contributes to the heterogeneity in disease onset and progression. Part of this heterogeneity could reflect the various neuropsychiatric risk factors that present with common symptomatology and can predispose the brain to AD-like changes. One such risk factor is depression. Animal models, particularly mouse models carrying variants of AD-related gene(s), many of which lead to an accumulation of Aβ, suggest that a fundamental shift in depression-related monoaminergic systems (including serotonin and noradrenaline) is a strong indicator of the altered cellular function associated with the earlier(est) stages of AD-related pathology. These changes in monoaminergic neurochemistry could provide for relevant targets for intervention in clinical AD and/or could support a polypharmacy strategy, which might include the targeting of Aβ, in vulnerable populations. Future studies must also include female mice as well as male mice in animal model studies on the relationship between depression and AD.
Collapse
Affiliation(s)
- Jennifer N K Nyarko
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maa O Quartey
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Glen B Baker
- 2 Department of Psychiatry, Neuroscience and Mental Health Institute, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Darrell D Mousseau
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Truong PH, Ciccotosto GD, Cappai R. Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and Sex. Neurochem Res 2018; 44:1356-1366. [PMID: 30362021 DOI: 10.1007/s11064-018-2669-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022]
Abstract
The amyloid precursor protein (APP) is a member of a conserved gene family that includes the amyloid precursor-like proteins 1 (APLP1) and 2 (APLP2). APP and APLP2 share a high degree of similarity, and have overlapping patterns of spatial and temporal expression in the central and peripheral tissues, in particular at the neuromuscular junction. APP-family knockout (KO) studies have helped elucidate aspects of function and functional redundancy amongst the APP-family members. In the present study, we investigated motor performance of APLP2-KO mice and the effect sex differences and age-related changes have on motor performance. APLP2-KO and WT (on C57Bl6 background) littermates control mice from 8 (young adulthood) to 48 weeks (middle age) were investigated. Analysis of motor neuron and muscle morphology showed APLP2-KO females but not males, had less age-related motor function impairments. We observed age and sex differences in both motor neuron number and muscle fiber size distribution for APLP2-KO mice compared to WT (C57Bl6). These alterations in the motor neuron number and muscle fiber distribution pattern may explain why female APLP2-KO mice have far better motor function behaviour during ageing.
Collapse
Affiliation(s)
- Phan H Truong
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
14
|
Furotani K, Kamimura K, Yajima T, Nakayama M, Enomoto R, Tamura T, Okazawa H, Sone M. Suppression of the synaptic localization of a subset of proteins including APP partially ameliorates phenotypes of the Drosophila Alzheimer's disease model. PLoS One 2018; 13:e0204048. [PMID: 30226901 PMCID: PMC6143267 DOI: 10.1371/journal.pone.0204048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 11/19/2022] Open
Abstract
APP (amyloid precursor protein), the causative molecule of Alzheimer's disease, is synthesized in neuronal cell bodies and subsequently transported to synapses. We previously showed that the yata gene is required for the synaptic transport of the APP orthologue in Drosophila melanogaster. In this study, we examined the effect of a reduction in yata expression in the Drosophila Alzheimer's disease model, in which expression of human mutant APP was induced. The synaptic localization of APP and other synaptic proteins was differentially inhibited by yata knockdown and null mutation. Expression of APP resulted in abnormal synaptic morphology and the premature death of animals. These phenotypes were partially but significantly rescued by yata knockdown, whereas yata knockdown itself caused no abnormality. Moreover, we observed that synaptic transmission accuracy was impaired in our model, and this phenotype was improved by yata knockdown. Thus, our data suggested that the phenotypes caused by APP can be partially prevented by inhibition of the synaptic localization of a subset of synaptic proteins including APP.
Collapse
Affiliation(s)
- Koto Furotani
- Faculty of Science, Toho University, Funabashi, Japan
| | | | | | | | - Rena Enomoto
- Faculty of Science, Toho University, Funabashi, Japan
| | - Takuya Tamura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Okazawa
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi, Japan
- * E-mail:
| |
Collapse
|
15
|
Welle TM, Alanis K, Colombo ML, Sweedler JV, Shen M. A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem Sci 2018; 9:4937-4941. [PMID: 29938020 PMCID: PMC5994989 DOI: 10.1039/c8sc01131a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Extra-synaptic exocytosis is an essential component of cellular communication. A knowledge gap exists in the exocytosis of the non-redox active transmitter acetylcholine. Using the nano-interface between two immiscible electrolyte solutions and scanning electrochemical microscopy (SECM), a high resolution spatiotemporal study of acetylcholine exocytosis is shown from an individual neuronal soma. The nanoelectrode was positioned ∼140 nm away from the release sites on the soma using an SECM. The quantitative study enables the obtaining of key information related to cellular communication, including extracellular concentration of the neurotransmitter, cellular permeability, Ca2+ dependence on somatic release, vesicle density, number of molecules released and the release dynamics. Measurements were achieved with a high signal to noise ratio of 6-19. The released neurotransmitter with a concentration of 2.7 (±1.0) μM was detected at the nanoelectrodes with radii of 750 nm to 860 nm.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Kristen Alanis
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Michelle L Colombo
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Mei Shen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| |
Collapse
|
16
|
Nyarko JN, Quartey MO, Pennington PR, Heistad RM, Dea D, Poirier J, Baker GB, Mousseau DD. Profiles of β-Amyloid Peptides and Key Secretases in Brain Autopsy Samples Differ with Sex and APOE ε4 Status: Impact for Risk and Progression of Alzheimer Disease. Neuroscience 2018; 373:20-36. [DOI: 10.1016/j.neuroscience.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
|
17
|
Dugger BN, Perl DP, Carlson GA. Neurodegenerative Disease Transmission and Transgenesis in Mice. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023549. [PMID: 28193724 DOI: 10.1101/cshperspect.a023549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the discovery of the prion protein (PrP) resulted from its co-purification with scrapie infectivity in Syrian hamsters, work with genetically defined and genetically modified mice proved crucial for understanding the fundamental processes involved not only in prion diseases caused by PrP misfolding, aggregation, and spread but also in other, much more common, neurodegenerative brain diseases. In this review, we focus on methodological and conceptual approaches used to study scrapie and related PrP misfolding diseases in mice and how these approaches have advanced our understanding of related disorders including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Brittany N Dugger
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Daniel P Perl
- F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,McLaughlin Research Institute of Biomedical Sciences, Great Falls, Montana 59405
| |
Collapse
|
18
|
Han K, Müller UC, Hülsmann S. Amyloid-precursor Like Proteins APLP1 and APLP2 Are Dispensable for Normal Development of the Neonatal Respiratory Network. Front Mol Neurosci 2017; 10:189. [PMID: 28690498 PMCID: PMC5479907 DOI: 10.3389/fnmol.2017.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies using animal models indicated that the members of the amyloid precursor protein (APP) gene family are important for the formation, maintenance, and plasticity of synapses. Despite this, the specific role of the APP homologs APLP1 and APLP2 within the CNS and PNS is still poorly understood. In contrast to the subtle phenotypes of single mutants, double knockout mice (DKO) lacking APP/APLP2 or APLP1/APLP2 die within the first day after birth. Whereas APP/APLP2-DKO mice show severe deficits of neuromuscular morphology and transmission, the underlying cause of lethality of APLP1/APLP2-DKO mice remains unclear. Since expression of both proteins was confirmed by in situ hybridization, we aimed to test the role of APLP1/APLP2 in the formation and maintenance of synapses in the brainstem, and assessed a potential dysfunction of the most vital central neuronal network in APLP1/APLP2-DKO mice by analyzing the respiratory network of the medulla. We performed in vivo unrestrained whole body plethysmography in newborn APLP1/APLP2-DKO mice at postnatal day zero. Additionally, we directly tested the activity of the respiratory network in an acute slice preparation that includes the pre-Bötzinger complex. In both sets of experiments, no significant differences were detected regarding respiratory rate and cycle variability, strongly arguing against central respiratory problems as the primary cause of death of APLP1/APLP2-DKO mice. Thus, we conclude that APLP1 and APLP2 are dispensable for the development of the network and the generation of a normal breathing rhythm.
Collapse
Affiliation(s)
- Kang Han
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Ulrike C Müller
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Swen Hülsmann
- Klinik für Anästhesiologie, Universitätsmedizin GöttingenGöttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany
| |
Collapse
|
19
|
Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats. PLoS One 2017; 12:e0175654. [PMID: 28403230 PMCID: PMC5389819 DOI: 10.1371/journal.pone.0175654] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
Isoflurane anesthesia has been shown to be responsible for cognitive impairment in Alzheimer’s disease (AD) and development of AD in the older age groups. However, the pathogenesis of AD-related cognitive impairments induced by isoflurane anesthesia remains elusive. Thus, this study was designed to investigate the mechanism by which isoflurane anesthesia caused AD-related cognitive impairments. Aged Wistar rats were randomly divided into 6 groups (n = 12), 1 control group (CONT) and 5 isoflurane treated (ISO) groups (ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D). The CONT group inhaled 30% O2 for 2 h without any anesthesia. ISO groups were placed under anesthesia with 3% isoflurane and then exposed to 1.5% isoflurane delivered in 30% O2 for 2 h. Rats in each ISO group were then analyzed immediately (ISO 0) or at various time points (0.5, 1, 3 or 7 day) after this exposure. Cognitive function was assessed using the Morris water maze test. Protein levels of amyloid precursor protein (APP), β-site APP cleavage enzyme-1 (BACE-1) and Aβ42 peptide were analyzed in hippocampal samples by Western blot. β-Amyloid (Abeta) plaques were detected in hippocampal sections by Congo red staining. Compared with controls, all ISO groups showed increased escape latency and impaired spatial memory. Isoflurane increased APP mRNA expression and APP protein depletion, promoting Aβ42 overproduction, oligomerization and accumulation. However, isoflurane did not affect BACE-1 expression. Abeta plaques were observed only in those ISO groups sacrificed at 3 or 7 d. Our data indicate that aged rats exposed to isoflurane had increased APP mRNA expression and APP protein depletion, with Aβ42 peptide overproduction and oligomerization, resulting in formation of Abeta plaques in the hippocampus. Such effects might have contributed to cognitive impairments, including in spatial memory, observed in these rats after isoflurane anesthesia.
Collapse
|
20
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|
21
|
Shinoda Y, Ishii C, Fukazawa Y, Sadakata T, Ishii Y, Sano Y, Iwasato T, Itohara S, Furuichi T. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3-CA1 synapses in adult hippocampus. Sci Rep 2016; 6:31540. [PMID: 27545744 PMCID: PMC4992871 DOI: 10.1038/srep31540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yugo Fukazawa
- Department of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
22
|
Del Prete D, Rice RC, Rajadhyaksha AM, D'Adamio L. Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration. J Biol Chem 2016; 291:17209-27. [PMID: 27325702 DOI: 10.1074/jbc.m116.733626] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/23/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause Alzheimer disease, plays an important in vivo role and facilitates transmitter release. Because the APP cytosolic region (ACR) is essential for these functions, we have characterized its brain interactome. We found that the ACR interacts with proteins that regulate the ubiquitin-proteasome system, predominantly with the E3 ubiquitin-protein ligases Stub1, which binds the NH2 terminus of the ACR, and CRL4(CRBN), which is formed by Cul4a/b, Ddb1, and Crbn, and interacts with the COOH terminus of the ACR via Crbn. APP shares essential functions with APP-like protein-2 (APLP2) but not APP-like protein-1 (APLP1). Noteworthy, APLP2, but not APLP1, interacts with Stub1 and CRL4(CRBN), pointing to a functional pathway shared only by APP and APLP2. In vitro ubiquitination/ubiquitome analysis indicates that these E3 ligases are enzymatically active and ubiquitinate the ACR residues Lys(649/650/651/676/688) Deletion of Crbn reduces ubiquitination of Lys(676) suggesting that Lys(676) is physiologically ubiquitinated by CRL4(CRBN) The ACR facilitated in vitro ubiquitination of presynaptic proteins that regulate exocytosis, suggesting a mechanism by which APP tunes transmitter release. Other dementia-related proteins, namely Tau and apoE, interact with and are ubiquitinated via the ACR in vitro This, and the evidence that CRBN and CUL4B are linked to intellectual disability, prompts us to hypothesize a pathogenic mechanism, in which APP acts as a modulator of E3 ubiquitin-protein ligase(s), shared by distinct neuronal disorders. The well described accumulation of ubiquitinated protein inclusions in neurodegenerative diseases and the link between the ubiquitin-proteasome system and neurodegeneration make this concept plausible.
Collapse
Affiliation(s)
- Dolores Del Prete
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Richard C Rice
- the Division of Pediatric Neurology, Department of Pediatrics, and
| | - Anjali M Rajadhyaksha
- the Division of Pediatric Neurology, Department of Pediatrics, and Feil Family Brain and Mind Research Institute, Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
| | - Luciano D'Adamio
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
23
|
Dinet V, Ciccotosto GD, Delaunay K, Borras C, Ranchon-Cole I, Kostic C, Savoldelli M, El Sanharawi M, Jonet L, Pirou C, An N, Abitbol M, Arsenijevic Y, Behar-Cohen F, Cappai R, Mascarelli F. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Mol Brain 2016; 9:64. [PMID: 27267879 PMCID: PMC4897877 DOI: 10.1186/s13041-016-0245-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Results Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. Conclusions These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0245-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Céline Borras
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Isabelle Ranchon-Cole
- Laboratoire de Biophysique Sensorielle, Université Clermont 1, Clermont-Ferrand, France
| | - Corinne Kostic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Caroline Pirou
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Marc Abitbol
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
24
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
25
|
Tkatchenko AV, Tkatchenko TV, Guggenheim JA, Verhoeven VJM, Hysi PG, Wojciechowski R, Singh PK, Kumar A, Thinakaran G, Consortium for Refractive Error and Myopia (CREAM), Williams C. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet 2015; 11:e1005432. [PMID: 26313004 PMCID: PMC4551475 DOI: 10.1371/journal.pgen.1005432] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development. Gene variants identified by GWAS studies to date explain only a small fraction of myopia cases because myopia represents a complex disorder thought to be controlled by dozens or even hundreds of genes. The majority of genetic variants underlying myopia seems to be of small effect and/or low frequency, which makes them difficult to identify using classical genetic approaches, such as GWAS, alone. Here, we combined gene expression profiling in a monkey model of myopia, human GWAS, and a gene-targeted mouse model of myopia to identify one of the “missing” myopia genes, APLP2. We found that a low-frequency risk allele of APLP2 confers susceptibility to myopia only in children exposed to large amounts of daily reading, thus, providing an experimental example of the long-hypothesized gene-environment interaction between nearwork and genes underlying myopia. Functional analysis of APLP2 using an APLP2 knockout mouse model confirmed functional significance of APLP2 in refractive development and implicated a potential role of synaptic transmission at the level of glycinergic amacrine cells of the retina for the development of myopia. Furthermore, mouse studies revealed that lack of Aplp2 has a dose-dependent suppressive effect on susceptibility to form-deprivation myopia, providing a potential gene-specific target for therapeutic intervention to treat myopia.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London, United Kingdom
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Statistical Genetics Section, Inherited Disease Research Branch, National Human Genome Research Institute (NIH), Baltimore, Maryland, United States of America
| | - Pawan Kumar Singh
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Li S, Combs JD, Alharbi OE, Kong J, Wang C, Leblanc RM. The (13)C amide I band is still sensitive to conformation change when the regular amide I band cannot be distinguished at the typical position in H2O. Chem Commun (Camb) 2015; 51:12537-9. [PMID: 26153570 DOI: 10.1039/c5cc02263k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The attenuated total reflection technique was utilized to obtain FTIR spectra of (13)C-labeled peptides with a sequence of (AAAAK)4AAAAY in H2O. The regular amide I band was not at the typical position as reported in globular proteins, whereas the (13)C amide I band was still sensitive to conformation change.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Gautam V, D'Avanzo C, Berezovska O, Tanzi RE, Kovacs DM. Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener 2015. [PMID: 26202512 PMCID: PMC4511450 DOI: 10.1186/s13024-015-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Accumulation of the β-amyloid peptide (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). Recent studies have shown that synaptic Aβ toxicity may directly impair synaptic function. However, proteins regulating Aβ generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aβ generation. Results Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, −2 and −9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aβ levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50 % reduction in secreted Aβ generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aβ40 and Aβ42 generation. As secreted sAPPβ levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aβ generation by modulating BACE1-mediated cleavage of APP. Conclusion Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aβ generation and thus may play an important role in the pathogenesis of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0028-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Gautam
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
28
|
Laßek M, Weingarten J, Volknandt W. The synaptic proteome. Cell Tissue Res 2014; 359:255-65. [PMID: 25038742 DOI: 10.1007/s00441-014-1943-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Synapses are focal hot spots for signal transduction and plasticity in the brain. A synapse comprises an axon terminus, the presynapse, the synaptic cleft containing extracellular matrix proteins as well as adhesion molecules, and the postsynaptic density as target structure for chemical signaling. The proteomes of the presynaptic and postsynaptic active zones control neurotransmitter release and perception. These tasks demand short- and long-term structural and functional dynamics of the synapse mediated by its proteinaceous inventory. This review addresses subcellular fractionation protocols and the related proteomic approaches to the various synaptic subcompartments with an emphasis on the presynaptic active zone (PAZ). Furthermore, it discusses major constituents of the PAZ including the amyloid precursor protein family members. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the pre- and postsynapse. The identification of protein candidates of the synapse provides the basis for further analyzing the interaction of synaptic proteins with their targets, and the effect of their deletion opens novel insights into the functional role of these proteins in neuronal communication. The knowledge of the molecular interactome is also a prerequisite for understanding numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Melanie Laßek
- Molecular and Cellular Neurobiology, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
29
|
Klevanski M, Saar M, Baumkötter F, Weyer SW, Kins S, Müller UC. Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol Cell Neurosci 2014; 61:201-10. [PMID: 24998676 DOI: 10.1016/j.mcn.2014.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022] Open
Abstract
The analysis of mouse models indicated that APP and the related APLPs are important for synapse formation and function. The synaptic role of APP is, however, complex due to partially overlapping functions within the gene family. APP/APLPs are proteolytically cleaved and have both adhesive and signaling properties. Mice lacking individual APP family members are viable, whereas APP/APLP2 and APLP1/APLP2 double knockout (DKO) mice die shortly after birth. Here, we analyzed the morphology of the neuromuscular junction (NMJ) of lethal APLP1/APLP2-DKO mice in comparison to lethal APP/APLP2-DKO mutants and viable single KO mice. We report that, surprisingly, the NMJ phenotype of APLP1/APLP2-DKO mice shows striking differences as compared to APP/APLP2-DKO mice. Unexpectedly, APLP1/APLP2-DKO mice exhibit normal endplate patterning and lack presynaptic nerve terminal sprouting. However, at the level of individual synapses we show that APLP1/APLP2-DKO mice exhibit reduced size of pre- and postsynaptic compartments and reduced colocalization. As APP/APLP2-DKO and APLP1/APLP2-DKO mice show similar penetrance of early postnatal lethality, this suggests that deficits at the level of individual synapses due to impaired synaptic apposition and/or deficits in transmitter release may cause lethality. Using an in vitro cell-adhesion assay, we observed that APP trans-dimerization is considerably less efficient than APLP2 trans-interaction. Thus, differences between APP/APLP2 and APP/APLP1 NMJ formation may be in part explained by differences in APP/APLP2 trans-dimerization properties. Collectively, our study further highlights the distinct and essential role of APLP2 at NMJ synapses that cannot be compensated by APP.
Collapse
Affiliation(s)
- Maja Klevanski
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Martina Saar
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Frederik Baumkötter
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130:4-28. [PMID: 24646365 PMCID: PMC4086641 DOI: 10.1111/jnc.12715] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell and Molecular Biology, Feinberg University School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Adolf-Butenandt Institute, Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Matthew E. Kennedy
- Neurosciences, Merck Research Labs, Boston, Massachusetts, USA
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Graduate programs of the Zurich Center for Integrative Human Physiology and Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Philip C. Wong
- Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
31
|
Park SJ, Schertel A, Lee KE, Han SS. Ultra-structural analysis of the brain in aDrosophilamodel of Alzheimer's disease using FIB/SEM microscopy. Microscopy (Oxf) 2013; 63:3-13. [DOI: 10.1093/jmicro/dft039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Abstract
Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As such, the biological functions of APP and its processing products have been the subject of intense investigation, and the past 20+ years of research have met with both excitement and challenges. This article will review the current understanding of the physiological functions of APP in the context of APP family members.
Collapse
Affiliation(s)
- Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
33
|
Shariati SAM, De Strooper B. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett 2013; 587:2036-45. [PMID: 23707420 DOI: 10.1016/j.febslet.2013.05.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Gene duplication provides genetic material required for functional diversification. An interesting example is the amyloid precursor protein (APP) protein family. The APP gene family has experienced both expansion and contraction during evolution. The three mammalian members have been studied quite extensively in combined knock out models. The underlying assumption is that APP, amyloid precursor like protein 1 and 2 (APLP1, APLP2) are functionally redundant. This assumption is primarily supported by the similarities in biochemical processing of APP and APLPs and on the fact that the different APP genes appear to genetically interact at the level of the phenotype in combined knockout mice. However, unique features in each member of the APP family possibly contribute to specification of their function. In the current review, we discuss the evolution and the biology of the APP protein family with special attention to the distinct properties of each homologue. We propose that the functions of APP, APLP1 and APLP2 have diverged after duplication to contribute distinctly to different neuronal events. Our analysis reveals that APLP2 is significantly diverged from APP and APLP1.
Collapse
Affiliation(s)
- S Ali M Shariati
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
34
|
Furczyk K, Schutová B, Michel TM, Thome J, Büttner A. The neurobiology of suicide - A Review of post-mortem studies. J Mol Psychiatry 2013; 1:2. [PMID: 25408895 PMCID: PMC4223890 DOI: 10.1186/2049-9256-1-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
The neurobiology of suicidal behaviour, which constitutes one of the most serious problems both in psychiatry and general medical practice, still remains to a large degree unclear. As a result, scientists constantly look for new opportunities of explaining the causes underlying suicidality. In order to elucidate the biological changes occurring in the brains of the suicide victims, studies based on post-mortem brain tissue samples are increasingly being used. These studies employ different research methods to provide an insight into abnormalities in brain functioning on various levels, including gene and protein expression, neuroplasticity and neurotransmission, as well as many other areas. The aim of this paper to summarize the available data on the post-mortem studies, to provide an overview of main research directions and the most up-to-date findings, and to indicate the possibilities of further research in this field.
Collapse
Affiliation(s)
- Karolina Furczyk
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Barbora Schutová
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Tanja M Michel
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 PP UK
| | - Andreas Büttner
- Institute of Forensic Medicine, University of Rostock, St.-Georg-Strasse 108, 18055 Rostock, Germany
| |
Collapse
|
35
|
Dysregulation of hypoxia-inducible factor by presenilin/γ-secretase loss-of-function mutations. J Neurosci 2013; 33:1915-26. [PMID: 23365231 DOI: 10.1523/jneurosci.3402-12.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presenilin (PSEN) 1 and 2 are the catalytic components of the γ-secretase complex, which cleaves a variety of proteins, including the amyloid precursor protein (APP). Proteolysis of APP leads to the formation of the APP intracellular domain (AICD) and amyloid β that is crucially involved in the pathogenesis of Alzheimer's disease. Prolyl-4-hydroxylase-domain (PHD) proteins regulate the hypoxia-inducible factors (HIFs), the master regulators of the hypoxic response. We previously identified the FK506 binding protein 38 (FKBP38) as a negative regulator of PHD2. Genetic ablation of PSEN1/2 has been shown to increase FKBP38 protein levels. Therefore, we investigated the role of PSEN1/2 in the oxygen sensing pathway using a variety of genetically modified cell and mouse lines. Increased FKBP38 protein levels and decreased PHD2 protein levels were found in PSEN1/2-deficient mouse embryonic fibroblasts and in the cortex of forebrain-specific PSEN1/2 conditional double knock-out mice. Hypoxic HIF-1α protein accumulation and transcriptional activity were decreased, despite reduced PHD2 protein levels. Proteolytic γ-secretase function of PSEN1/2 was needed for proper HIF activation. Intriguingly, PSEN1/2 mutations identified in Alzheimer patients differentially affected the hypoxic response, involving the generation of AICD. Together, our results suggest a direct role for PSEN in the regulation of the oxygen sensing pathway via the APP/AICD cleavage cascade.
Collapse
|
36
|
Abstract
Compelling evidence from in vivo model systems within the past decade shows that the APP family of proteins is important for synaptic development and function in the central and peripheral nervous systems. The synaptic role promises to be complex and multifaceted for several reasons. The three family members have overlapping and redundant functions in mammals. They have both adhesive and signaling properties and may, in principle, act as both ligands and receptors. Moreover, they bind a multitude of synapse-specific proteins, and we predict that additional interacting protein partners will be discovered. Transgenic mice with modified or abolished expression of APP and APLPs have synaptic defects that are readily apparent. Studies of the neuromuscular junction (NMJ) in these transgenic mice have revealed molecular and functional deficits in neurotransmitter release, in organization of the postsynaptic receptors, and in coordinated intercellular development. The results summarized here from invertebrate and vertebrate systems confirm that the NMJ with its accessibility, large size, and homogeneity provides a model synapse for identifying and analyzing molecular pathways of APP actions.
Collapse
|
37
|
Jiang L, Yu G, Meng W, Wang Z, Meng F, Ma W. Overexpression of amyloid precursor protein in acute myeloid leukemia enhances extramedullary infiltration by MMP-2. Tumour Biol 2012. [PMID: 23179400 DOI: 10.1007/s13277-012-0589-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that leukemia patients with extramedullary infiltration (EMI) have a worse prognosis than patients without it. Recent data indicate that the amyloid precursor protein (APP) is involved in cell adhesion, motility, and proliferation. The expression of APP and its prognostic significance in acute myeloid leukemia (AML) have not been studied. Our study shows that AML/ETO(+) leukemia patients that overexpress APP easily get EMI and that their long-term survival rate is lower than patients without overexpression of APP. In an in vitro study, we knocked down APP in Kasumi-1 cells using small interfering RNA (siRNA). Transwell data show that siRNA/APP substantially impairs cell migration, but it does not inhibit cell proliferation. Furthermore, by quantitative real-time polymerase chain reaction and Western blot, we found that siRNA/APP decreases MMP-2 expression in vitro. Our study provides a novel clue that APP is involved in the extramedullary infiltration of leukemia by MMP-2.
Collapse
MESH Headings
- Adult
- Amyloid beta-Protein Precursor/antagonists & inhibitors
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Blotting, Western
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Core Binding Factor Alpha 2 Subunit/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemic Infiltration/pathology
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Neoplasm Invasiveness
- Oncogene Proteins, Fusion/genetics
- Prognosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RUNX1 Translocation Partner 1 Protein
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Westmark CJ, Malter JS. The regulation of AβPP expression by RNA-binding proteins. Ageing Res Rev 2012; 11:450-9. [PMID: 22504584 DOI: 10.1016/j.arr.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimer's disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.
Collapse
Affiliation(s)
- Cara J Westmark
- University of Wisconsin, Waisman Center for Developmental Disabilities, 1500 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
39
|
Schrötter A, Pfeiffer K, El Magraoui F, Platta HW, Erdmann R, Meyer HE, Egensperger R, Marcus K, Müller T. The amyloid precursor protein (APP) family members are key players in S-adenosylmethionine formation by MAT2A and modify BACE1 and PSEN1 gene expression-relevance for Alzheimer's disease. Mol Cell Proteomics 2012; 11:1274-88. [PMID: 22879628 DOI: 10.1074/mcp.m112.019364] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Central hallmark of Alzheimer's disease are senile plaques mainly composed of β-amyloid, which is a cleavage product of the amyloid precursor protein (APP). The physiological function of APP and its family members APLP1 and APLP2 is poorly understood. In order to fill this gap, we established a cell-culture based model with simultaneous knockdown of all members of the family. A comprehensive proteome study of the APP/APLP1/APLP2 knockdown cell lysates versus controls revealed significant protein abundance changes of more than 30 proteins. Targeted validation of selected candidates by immunoblotting supported the significant down-regulation of the methionine adenosyltransferase II, alpha (MAT2A) as well as of peroxiredoxin 4 in the knockdown cells. Moreover, MAT2A was significantly down-regulated at the mRNA level as well. MAT2A catalyzes the production of S-adenosylmethionine from methionine and ATP, which plays a pivotal role in the methylation of neurotransmitters, DNA, proteins, and lipids. MAT2A-dependent significant up-regulation of S-adenosylmethionine was also detectable in the knockdown cells compared with controls. Our results point to a role of the APP family proteins in cellular methylation mechanisms and fit to findings of disturbed S-adenosylmethionine levels in tissue and CSF of Alzheimer disease patients versus controls. Importantly, methylation plays a central role for neurotransmitter generation like acetylcholine pointing to a crucial relevance of our findings for Alzheimer's disease. In addition, we identified differential gene expression of BACE1 and PSEN1 in the knockdown cells, which is possibly a consequence of MAT2A deregulation and may indicate a self regulatory mechanism.
Collapse
Affiliation(s)
- Andreas Schrötter
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lazarov O, Demars MP. All in the Family: How the APPs Regulate Neurogenesis. Front Neurosci 2012; 6:81. [PMID: 22675290 PMCID: PMC3366480 DOI: 10.3389/fnins.2012.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
Recent intriguing evidence suggests that metabolites of amyloid precursor protein (APP), mutated in familial forms of Alzheimer's disease (AD), play critical roles in developmental and postnatal neurogenesis. Of note is soluble APPα (sAPPα) that regulates neural progenitor cell proliferation. The APP family encompasses a group of ubiquitously expressed and evolutionarily conserved, type I transmembrane glycoproteins, whose functions have yet to be fully elucidated. APP can undergo proteolytic cleavage by mutually exclusive pathways. The subtle structural differences between metabolites generated in the different pathways, as well as their equilibrium, may be crucial for neuronal function. The implications of this new body of evidence are significant. Miscleavage of APP would readily impact developmental and postnatal neurogenesis, which might contribute to cognitive deficits characterizing Alzheimer's disease. This review will discuss the implications of the role of the APP family in neurogenesis for neuronal development, cognitive function, and brain disorders that compromise learning and memory, such as AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at ChicagoChicago, IL, USA
| | - Michael P. Demars
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
41
|
Vetreno RP, Ramos RL, Anzalone S, Savage LM. Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke-Korsakoff Syndrome. Brain Res 2012; 1436:178-92. [PMID: 22192411 PMCID: PMC3266665 DOI: 10.1016/j.brainres.2011.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 01/24/2023]
Abstract
Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Raddy L. Ramos
- Department of Neuroscience & Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury NY 11568
| | - Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| |
Collapse
|
42
|
Koudinova N, Koudinov A, Kezlya E, Kozirev K, Medvedev A, Berezov T. Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein. BIOMEDITSINSKAYA KHIMIYA 2012. [DOI: 10.18097/pbmc20125804385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In-depth scholar literature analysis of Alzheimer's disease neurodegenerative features of amyloid beta protein neurochemistry modification and excessive phosphorylation of tau protein (and associated neuronal cytoskeleton rearrangements) are secondary phenomena. At early disease stage these neurobiochemical mechanisms are reversible and serve to heal an impairment of biophysical properties of neuronal membranes, neurotransmission, basic neuronal function and neuroplasticity, while preserving anatomical and functional brain fields. Aβ and tau could well serve to biochemically restore physico-chemical properties of neual membranes due to a role these proteins play in lipid metabolism. Under such scenario therapeutic block of aggregation and plaque formation of Aβ and inhibition of tau phosphorylation, as well as pharmaceutical modification of other secondary neurodegenerative features (such as a cascade of oxidative stress reactions) are unable to provide an effective cure of Alzheimer's disease and related pathologies of the Central and peripheral nervous systems, because they are not arraying primary pathagenetic cause. We review the role of Aβ in compensatory mechanisms of neuroplasticity restoration under normal physiological condition and Alzheimer's disease.
Collapse
Affiliation(s)
| | - A.R. Koudinov
- Orekhovich Institute of Biomedical Chemistry of RAMS
| | - E.V. Kezlya
- Interhospital Medical Center "Intermedcenter"
| | - K.M. Kozirev
- Department of Pathological Anatomy, North Osetia State Medical Academy
| | - A.E. Medvedev
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences
| | - T.T. Berezov
- Orekhovich Institute of Biomedical Chemistry of RAMS Russian People`s Friendship University, Medical School, Department of Biochemistry
| |
Collapse
|
43
|
Abstract
The memory dysfunctions that characterize Alzheimer's disease (AD) are strongly correlated with synapse loss. The amyloid precursor protein (APP) and its cleavage product Aβ play central roles in synapse and memory loss, and thus are strongly implicated in the pathogenesis of AD. Numerous in vitro and transgenic AD mouse model studies have shown that overexpression of APP leads to Aβ accumulation, which causes decreased synaptic activity and dendritic spine density. However, the normal synaptic function of APP itself is not fully understood. Several recent studies have found that full-length APP promotes synaptic activity, synapse formation, and dendritic spine formation. These findings cast APP as a potential key player in learning and memory. It is of interest that the synaptic functions of full-length APP are opposite to the effects associated with pathological Aβ accumulation. In this review, we will summarize the normal functions of APP at synapses and spines along with other known functions of APP, including its role in cell motility, neuronal migration, and neurite outgrowth. These studies shed light on the physiological actions of APP, independent of Aβ effects, and thus lead to a better understanding of the synaptic dysfunctions associated with AD.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
44
|
The role of APP proteolytic processing in lipid metabolism. Exp Brain Res 2011; 217:365-75. [DOI: 10.1007/s00221-011-2975-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022]
|
45
|
Armstrong BC, Le Boutillier JC, Petit TL. Ultrastructural synaptic changes associated with neurofibromatosis type 1: a quantitative analysis of hippocampal region CA1 in a Nf1(+/-) mouse model. Synapse 2011; 66:246-55. [PMID: 22121000 DOI: 10.1002/syn.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequently diagnosed autosomal dominant inherited disorders resulting in neurological dysfunction, including an assortment of learning disabilities and cognitive deficits. To elucidate the neural mechanisms underlying the disorder, we employed a mouse model (Nf1(+/-) ) to conduct a quantitative analysis of ultrastructural changes associated with the NF1 disorder. Using both serial light and electron microscopy, we examined reconstructions of the CA1 region of the hippocampus, which is known to play a central role in many of the dysfunctions associated with NF1. In general, the morphology of synapses in both the Nf1(+/-) and wild-type groups of animals were similar. No differences were observed in synapse per neuron density, pre- and postsynaptic areas, or lengths. However, concave synapses were found to show a lower degree of curvature in the Nf1(+/-) mutant than in the wild type. These results indicate that the synaptic ultrastructure of Nf1(+/-) mice appears relatively normal with the exception of the degree of synaptic curvature in concave synapses, adding further support to the importance of synaptic curvature in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Blair C Armstrong
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
46
|
Amyloid precursor protein expression modulates intestine immune phenotype. J Neuroimmune Pharmacol 2011; 7:215-30. [PMID: 22124967 DOI: 10.1007/s11481-011-9327-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP(-/-) mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP(-/-) intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cyclooxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophages from APP(-/-) mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP(-/-) intestinal macrophages had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP(-/-) compared to wild type ileums. Finally, APP(-/-) mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer's disease but a range of immune-related disorders.
Collapse
|
47
|
Zhang H, Ma Q, Zhang YW, Xu H. Proteolytic processing of Alzheimer's β-amyloid precursor protein. J Neurochem 2011; 120 Suppl 1:9-21. [PMID: 22122372 DOI: 10.1111/j.1471-4159.2011.07519.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
β-Amyloid precursor protein (APP) is a critical factor in the pathogenesis of Alzheimer's disease (AD). APP undergoes post-translational proteolysis/processing to generate the hydrophobic β-amyloid (Aβ) peptides. Deposition of Aβ in the brain, forming oligomeric Aβ and plaques, is identified as one of the key pathological hallmarks of AD. The processing of APP to generate Aβ is executed by β- and γ-secretase and is highly regulated. Aβ toxicity can lead to synaptic dysfunction, neuronal cell death, impaired learning/memory and abnormal behaviors in AD models in vitro and in vivo. Aside from Aβ, proteolytic cleavages of APP can also give rise to the APP intracellular domain, reportedly involved in multiple types of cellular events such as gene transcription and apoptotic cell death. In addition to amyloidogenic processing, APP can also be cleaved by α-secretase to form a soluble or secreted APP ectodomain (sAPP-α) that has been shown to be mostly neuro-protective. In this review, we describe the mechanisms involved in APP metabolism and the likely functions of its various proteolytic products to give a better understanding of the patho/physiological functions of APP.
Collapse
Affiliation(s)
- Han Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China.,Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China.,Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
48
|
Aydin D, Weyer SW, Müller UC. Functions of the APP gene family in the nervous system: insights from mouse models. Exp Brain Res 2011; 217:423-34. [PMID: 21931985 DOI: 10.1007/s00221-011-2861-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 06/16/2024]
Abstract
The amyloid precursor protein (APP) plays a key role in the pathogenesis of Alzheimer's disease (AD), as proteolytical cleavage of APP gives rise to the β-amyloid peptide which is deposited in the brains of Alzheimer patients. During the past years, intense research efforts have been directed at elucidating the physiological function(s) of APP and the question of whether a perturbation of these functions contributes to AD pathogenesis. Indeed, a growing body of evidence has accumulated supporting a role of APP and the two closely related homologues APLP1 and APLP2 in various aspects of nervous system development and function, in particular, for synapse formation and function. This review summarizes recent insights into the in vivo role of the APP gene family from mice lacking individual or combinations of APP family members, with particular emphasis on recently generated knockin mice to examine the in vivo relevance of distinct functional domains.
Collapse
Affiliation(s)
- Dorothee Aydin
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
49
|
Abstract
The amyloid precursor protein (APP) has been under intensive study in recent years, mainly due to its critical role in the pathogenesis of Alzheimer's disease (AD). β-Amyloid (Aβ) peptides generated from APP proteolytic cleavage can aggregate, leading to plaque formation in human AD brains. Point mutations of APP affecting Aβ production are found to be causal for hereditary early onset familial AD. It is very likely that elucidating the physiological properties of APP will greatly facilitate the understanding of its role in AD pathogenesis. A number of APP loss- and gain-of-function models have been established in model organisms including Caenorhabditis elegans, Drosophila, zebrafish and mouse. These in vivo models provide us valuable insights into APP physiological functions. In addition, several knock-in mouse models expressing mutant APP at a physiological level are available to allow us to study AD pathogenesis without APP overexpression. This article will review the current physiological and pathophysiological animal models of APP.
Collapse
|
50
|
Zhou ZD, Chan CHS, Ma QH, Xu XH, Xiao ZC, Tan EK. The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adh Migr 2011; 5:280-92. [PMID: 21785276 DOI: 10.4161/cam.5.4.16986] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The amyloid-beta (Aβ) peptide is the derivative of amyloid precursor protein (APP) generated through sequential proteolytic processing by β- and γ-secretases. Excessive accumulation of Aβ, the main constituent of amyloid plaques, has been implicated in the etiology of Alzheimer's disease (AD). It was found recently that the impairments of neurogenesis in brain were associated with the pathogenesis of AD. Furthermore recent findings implicated that APP could function to influence proliferation of neural progenitor cells (NPC) and might regulate transcriptional activity of various genes. Studies demonstrated that influence of neurogenesis by APP is conferred differently via its two separate domains, soluble secreted APPs (sAPPs, mainly sAPPα) and APP intracellular domain (AICD). The sAPPα was shown to be neuroprotective and important to neurogenesis, whereas AICD was found to negatively modulate neurogenesis. Furthermore, it was demonstrated recently that microRNA could function to regulate APP expression, APP processing, Aβ accumulation and subsequently influence neurotoxicity and neurogenesis related to APP, which was implicated to AD pathogenesis, especially for sporadic AD. Based on data accumulated, secretase balances were proposed. These secretase balances could influence the downstream balance related to regulation of neurogenesis by AICD and sAPPα as well as balance related to influence of neuron viability by Aβ and sAPPα. Disruption of these secretase balances could be culprits to AD onset.
Collapse
|