1
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
4
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
5
|
Sun Y, Zhang L, Chen Y, Zhan L, Gao Z. Therapeutic Targets for Cerebral Ischemia Based on the Signaling Pathways of the GluN2B C Terminus. Stroke 2015; 46:2347-53. [DOI: 10.1161/strokeaha.115.009314] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Yongjun Sun
- From the Department of Pharmacy (Y.S., Y.C., L. Zhan, Z.G.), Hebei Research Center of Pharmaceutical and Chemical Engineering (Y.S., Z.G.), and State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug (Z.G.), Hebei University of Science and Technology, Shijiazhuang, China; and Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China (L. Zhang)
| | - Linan Zhang
- From the Department of Pharmacy (Y.S., Y.C., L. Zhan, Z.G.), Hebei Research Center of Pharmaceutical and Chemical Engineering (Y.S., Z.G.), and State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug (Z.G.), Hebei University of Science and Technology, Shijiazhuang, China; and Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China (L. Zhang)
| | - You Chen
- From the Department of Pharmacy (Y.S., Y.C., L. Zhan, Z.G.), Hebei Research Center of Pharmaceutical and Chemical Engineering (Y.S., Z.G.), and State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug (Z.G.), Hebei University of Science and Technology, Shijiazhuang, China; and Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China (L. Zhang)
| | - Liying Zhan
- From the Department of Pharmacy (Y.S., Y.C., L. Zhan, Z.G.), Hebei Research Center of Pharmaceutical and Chemical Engineering (Y.S., Z.G.), and State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug (Z.G.), Hebei University of Science and Technology, Shijiazhuang, China; and Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China (L. Zhang)
| | - Zibin Gao
- From the Department of Pharmacy (Y.S., Y.C., L. Zhan, Z.G.), Hebei Research Center of Pharmaceutical and Chemical Engineering (Y.S., Z.G.), and State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug (Z.G.), Hebei University of Science and Technology, Shijiazhuang, China; and Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China (L. Zhang)
| |
Collapse
|
6
|
Shen L, Li X, Chen W, Xu L, Liu W, Yu XR, Huang YG. PSD95 Gene Specific siRNAs Attenuate Neuropathic Pain through Modulating Neuron Sensibility and Postsynaptic CaMKIIα Phosphorylation. ACTA ACUST UNITED AC 2011; 26:201-7. [DOI: 10.1016/s1001-9294(12)60001-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Oyagi A, Morimoto N, Hamanaka J, Ishiguro M, Tsuruma K, Shimazawa M, Hara H. Forebrain specific heparin-binding epidermal growth factor-like growth factor knockout mice show exacerbated ischemia and reperfusion injury. Neuroscience 2011; 185:116-24. [PMID: 21524692 DOI: 10.1016/j.neuroscience.2011.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 01/28/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a hypoxia-inducible neuroprotective protein that also stimulates proliferation of neuronal precursor cells. In this study, we investigated the possible role of HB-EGF in ischemia and reperfusion injury by measuring the changes in its mRNA expression following focal cerebral ischemia. We also examined neural damage after a middle cerebral artery occlusion (MCAO) and reperfusion in ventral forebrain specific HB-EGF knockout (KO) mice. The levels of HB-EGF mRNA in the cerebral cortex of wild-type (WT) mice were significantly increased 3-24 h after MCAO and reperfusion. Cerebral infraction in HB-EGF KO mice was aggravated at 1 day and 6 days after MCAO and reperfusion compared with WT mice. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) and an oxidative stress marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG) positive cells, were higher in HB-EGF KO mice than in WT mice. On the other hand, fewer bromodeoxyuridine (BrdU) positive cells were found in the subventricular zone in HB-EGF KO mice compared with WT mice. These results indicate that HB-EGF may play a pivotal role in ischemia and reperfusion injury and that endogenously synthesized HB-EGF is necessary for both the neuroprotective effect and for regulation of cell proliferation in the subventricular zone.
Collapse
Affiliation(s)
- A Oyagi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Postsynaptic density-93 deficiency protects cultured cortical neurons from N-methyl-D-aspartate receptor-triggered neurotoxicity. Neuroscience 2010; 166:1083-90. [PMID: 20097270 DOI: 10.1016/j.neuroscience.2010.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/23/2022]
Abstract
It has been reported that N-methyl-D-aspartate receptor (NMDAR)-triggered neurotoxicity is related to excessive Ca(2+) loading and an increase in nitric oxide (NO) concentration. However, the molecular mechanisms that underlie these events are not completely understood. NMDARs and neuronal NO synthase each binds to the scaffolding protein postsynaptic density (PSD)-93 through its PDZ domains. In this study, we determined whether PSD-93 plays a critical role in NMDAR/Ca(2+)/NO-mediated neurotoxicity. We found that the targeted disruption of the PSD-93 gene attenuated the neurotoxicity triggered by NMDAR activation, but not by non-NMDAR activation, in cultured mouse cortical neurons. PSD-93 deficiency reduced the amount of NMDAR subunits NR2A and NR2B in synaptosomal fractions from the cortical neurons and significantly prevented NMDA-stimulated increases in cyclic guanosine 3',5'-monophosphate and Ca(2+) loading in the cortical neurons. These findings indicate that PSD-93 deficiency could block NMDAR-triggered neurotoxicity by disrupting the NMDAR-Ca(2+)-NO signaling pathway and reducing expression of synaptic NR2A and NR2B. Since NMDARs, Ca(2+), and NO play a critical role during the development of brain trauma, seizures, and ischemia, the present work suggests that PSD-93 might contribute to molecular mechanisms of neuronal damage in these brain disorders.
Collapse
|
9
|
Bartos JA, Ulrich JD, Li H, Beazely MA, Chen Y, MacDonald JF, Hell JW. Postsynaptic clustering and activation of Pyk2 by PSD-95. J Neurosci 2010; 30:449-63. [PMID: 20071509 PMCID: PMC2822408 DOI: 10.1523/jneurosci.4992-08.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
The tyrosine kinase Pyk2 plays a unique role in intracellular signal transduction by linking Ca(2+) influx to tyrosine phosphorylation, but the molecular mechanism of Pyk2 activation is unknown. We report that Pyk2 oligomerization by antibodies in vitro or overexpression of PSD-95 in PC6-3 cells induces trans-autophosphorylation of Tyr402, the first step in Pyk2 activation. In neurons, Ca(2+) influx through NMDA-type glutamate receptors causes postsynaptic clustering and autophosphorylation of endogenous Pyk2 via Ca(2+)- and calmodulin-stimulated binding to PSD-95. Accordingly, Ca(2+) influx promotes oligomerization and thereby autoactivation of Pyk2 by stimulating its interaction with PSD-95. We show that this mechanism of Pyk2 activation is critical for long-term potentiation in the hippocampus CA1 region, which is thought to underlie learning and memory.
Collapse
Affiliation(s)
- Jason A. Bartos
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Jason D. Ulrich
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Hongbin Li
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Michael A. Beazely
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Yucui Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - John F. MacDonald
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Johannes W. Hell
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
- Department of Pharmacology, University of California, Davis, Davis, California 95616-8636
| |
Collapse
|
10
|
Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischaemia. Biochem J 2009; 417:277-85. [PMID: 18721130 DOI: 10.1042/bj20080004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PSD (postsynaptic density)-95, a scaffold protein that tethers NMDA (N-methyl-D-aspartate) receptors to signal molecules, is implicated in pathological events resulting from excitotoxicity. The present study demonstrates that brain ischaemia and reperfusion increase the tyrosine phosphorylation of PSD-95 in the rat hippocampus. PP2, a specific inhibitor of SrcPTKs (Src family protein tyrosine kinases), prevents the ischaemia-induced increases not only in the tyrosine phosphorylation of PSD-95, but also in the interaction between PSD-95 and Src kinases. PSD-95 is phosphorylated either by purified Src/Fyn kinases in vitro or by co-expression of constitutively active Src/Fyn in COS7 cells. The results suggest that SrcPTKs are involved in PSD-95 phosphorylation. The single Tyr(523) mutation to phenylalanine (Y523F) reduces the Src/Fyn-mediated phosphorylation of PSD-95 in COS7 cells and in vitro. As shown with a rabbit polyclonal antibody against phospho-PSD-95 (Tyr(523)), Tyr(523) phosphorylation is responsible for the increased tyrosine phosphorylation of PSD-95 induced by ischaemia in the rat hippocampus. In cultured hippocampal neurons, overexpression of PSD-95 Y523F, but not PSD-95 Y533F, abolishes the facilitating effect of PSD-95 on the glutamate- or NMDA-mediated currents, implying that PSD-95 Tyr(523) phosphorylation contributes to the post-ischaemic over-activation of NMDA receptors. Thus the present study reveals an additional mechanism for the regulation of PSD-95 by tyrosine phosphorylation. This mechanism may be of pathological significance since it is associated with excitotoxicity in the ischaemic brain.
Collapse
|
11
|
Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2007; 29:409-21. [PMID: 18063376 DOI: 10.1016/j.nbd.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 11/20/2022] Open
Abstract
We study the striatal susceptibility to NMDA receptor (NMDAR)-mediated injury of two Huntington's disease (HD) transgenic mice: R6/1 and R6/1:BDNF(+/-). We found that R6/1:BDNF(+/-) mice--which express reduced levels of BDNF--were more resistant than R6/1 mice to intrastriatal injection of quinolinate. This increased resistance is related to a differential reduction in expression of NMDAR scaffolding proteins, MAGUKs (PSD-95, PSD-93, SAP-102 and SAP-97) but not to altered levels or synaptic location of NMDAR. A robust reorganization of postsynaptic density (PSD) was detected in HD transgenic mice, shown by a switch of PSD-93 by PSD-95 in PSD. Furthermore, NMDAR signaling pathways were affected by different BDNF levels in HD mice; we found a reduction of synaptic alpha CaMKII (but not of nNOS) in R6/1:BDNF(+/-) compared to R6/1 mice. The specific regulation of MAGUKs and alpha CaMKII in striatal neurons may reflect a protective mechanism against expression of mutant huntingtin exon-1.
Collapse
|
12
|
Li C, Han D, Zhang F, Zhou C, Yu HM, Zhang GY. Preconditioning ischemia attenuates increased neurexin-neuroligin1-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett 2007; 426:192-7. [PMID: 17904739 DOI: 10.1016/j.neulet.2007.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/31/2007] [Accepted: 08/31/2007] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the interactions between synapse adhesion molecules neurexin, neuroligin1, neuroligin2 and postsynaptic density protein 95 (PSD-95) in transient cerebral ischemia and possible regulatory mechanism of these interactions. Our data show that preconditioning ischemia can down-regulate the increased neurexin-neuroligin1-PSD-95 interaction induced by ischemia injury and exerts a neuroprotective effect. Pre-treatment of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine can demolish this neuroprotective effect of preconditioning by increasing neurexin-neuroligin1-PSD-95 interaction. These results indicate that the neurexin-neuroligin1-PSD-95 is an important signalling module in ischemic injury and a novel possible target in therapeutics of brain ischemia.
Collapse
Affiliation(s)
- Chong Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Hou XY, Liu Y, Zhang GY. PP2, a potent inhibitor of Src family kinases, protects against hippocampal CA1 pyramidal cell death after transient global brain ischemia. Neurosci Lett 2007; 420:235-9. [PMID: 17556100 DOI: 10.1016/j.neulet.2007.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 11/30/2022]
Abstract
It has been indicated that Src family protein tyrosine kinases (SrcPTKs) potentiate N-methyl-D-aspartate (NMDA) receptor function by phosphorylating NR2A subunits and that postsynaptic density protein 95 (PSD-95) facilitates this regulation. In this paper, we define the role of SrcPTKs in delayed neuronal damage following transient brain ischemia and explore the underlying mechanisms involved in this event. Transient global brain ischemia was induced by the four-vessel occlusion method. A specific Src family kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) and a PP2 negative control PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyramidine) were infused into rat cerebroventricule 30 min before occlusion. Hematoxylin and eosine staining showed that the number of surviving pyramidal neurons in rat hippocampal CA1 subfield increased markedly in PP2-treated rats comparing to PP3-treated groups after 5 days of reperfusion following ischemia. Additionally, immunoprecipitation and immunoblot analysis revealed that preadministration of PP2, but not PP3, attenuated not only the increased tyrosine phosphorylation of NR2A but also the enhanced interactions among Src, NR2A and PSD-95 induced by ischemia/reperfusion. In conclusion, SrcPTKs promote binding of the kinases and their substrate NR2A attributed to the scaffolding effect of PSD-95 during transient brain ischemia and reperfusion, which are responsible for the elevation of NR2A tyrosine phosphorylation and consequent delayed neuronal cell death.
Collapse
Affiliation(s)
- Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China
| | | | | |
Collapse
|
14
|
Charych EI, Akum BF, Goldberg JS, Jörnsten RJ, Rongo C, Zheng JQ, Firestein BL. Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 2006; 26:10164-76. [PMID: 17021172 PMCID: PMC6674632 DOI: 10.1523/jneurosci.2379-06.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic morphology determines many aspects of neuronal function, including action potential propagation and information processing. However, the question remains as to how distinct neuronal dendrite branching patterns are established. Here, we report that postsynaptic density-95 (PSD-95), a protein involved in dendritic spine maturation and clustering of synaptic signaling proteins, plays a novel role in regulating dendrite outgrowth and branching, independent of its synaptic functions. In immature neurons, overexpression of PSD-95 decreases the proportion of primary dendrites that undergo additional branching, resulting in a marked reduction of secondary dendrite number. Conversely, knocking down PSD-95 protein in immature neurons increases secondary dendrite number. The effect of PSD-95 is activity-independent and is antagonized by cypin, a nonsynaptic protein that regulates PSD-95 localization. Binding of cypin to PSD-95 correlates with formation of stable dendrite branches. Finally, overexpression of PSD-95 in COS-7 cells disrupts microtubule organization, indicating that PSD-95 may modulate microtubules to regulate dendritic branching. Whereas many factors have been identified which regulate dendrite number, our findings provide direct evidence that proteins primarily involved in synaptic functions can also play developmental roles in shaping how a neuron patterns its dendrite branches.
Collapse
Affiliation(s)
| | - Barbara F. Akum
- Departments of Cell Biology and Neuroscience
- Molecular Biosciences Graduate Program, Rutgers University, Piscataway, New Jersey 08854-8082, and
| | | | | | | | - James Q. Zheng
- Neuroscience and Cell Biology, The University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| | | |
Collapse
|