1
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Feng F, Luo R, Mu D, Cai Q. Ferroptosis and Pyroptosis in Epilepsy. Mol Neurobiol 2024; 61:7354-7368. [PMID: 38383919 DOI: 10.1007/s12035-024-04018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is sudden, recurrent, and transient central nervous system dysfunction caused by abnormal discharge of neurons in the brain. Ferroptosis and pyroptosis are newly discovered ways of programmed cell death. One of the characteristics of ferroptosis is the oxidative stress generated by lipid peroxides. Similarly, pyroptosis has unique pro-inflammatory properties. As both oxidative stress and neuroinflammation are significant contributors to the pathogenesis of epilepsy, increasing evidence shows that ferroptosis and pyroptosis are closely related to epilepsy. This article reviews the current comprehension of ferroptosis and pyroptosis and elucidates potential mechanisms by which ferroptosis and pyroptosis may contribute to epilepsy. In addition, we also highlight the possible interactions between ferroptosis and pyroptosis because they reportedly coexist in many diseases, and increasing studies have demonstrated the convergence of pathways between the two. This is of great significance for explaining the occurrence and development of epilepsy and provides a new therapeutic perspective for the treatment of epilepsy.
Collapse
Affiliation(s)
- Fan Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kale MB, Chandurkar PA, Taksande BG, Aglawe MM, Rahangdale SR, Upaganlawar AB, Kopalli SR, Umekar MJ, Wankhede NL. Agmatine alleviates ethanol withdrawal-associated cognitive impairment and neurochemical imbalance in rats. Neurosci Lett 2024; 832:137804. [PMID: 38692559 DOI: 10.1016/j.neulet.2024.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The present study aimed to investigate the role of agmatine in the neurobiology underlying memory impairment during ethanol withdrawal in rats. Sprague-Dawley rats were subjected to a 21-day chronic ethanol exposure regimen (2.4 % w/v ethanol for 3 days, 4.8 % w/v for the next 4 days, and 7.2 % w/v for the following 14 days), followed by a withdrawal period. Memory impairment was assessed using the passive avoidance test (PAT) at 24, 48, and 72 h post-withdrawal. The ethanol-withdrawn rats displayed a significant decrease in step-through latency in the PAT, indicative of memory impairment at 72 h post-withdrawal. However, administration of agmatine (40 µg/rat) and its modulators (L-arginine, arcaine, and amino-guanidine) significantly increases the latency time in the ethanol-withdrawn rats, demonstrating the attenuation of memory impairment. Further, pretreatment with imidazoline receptor agonists enhances agmatine's effects, while antagonists block them, implicating imidazoline receptors in agmatine's actions. Neurochemical analysis in ethanol-withdrawn rats reveals dysregulated glutamate and GABA levels, which was attenuated by agmatine and its modulators. By examining the effects of agmatine administration and modulators of endogenous agmatine, the study aimed to shed light on the potential therapeutic implications of agmatinergic signaling in alcohol addiction and related cognitive deficits. Thus, the present findings suggest that agmatine administration and modulation of endogenous agmatine levels hold potential as therapeutic strategies for managing alcohol addiction and associated cognitive deficits. Understanding the neurobiology underlying these effects paves the way for the development of novel interventions targeting agmatinergic signaling in addiction treatment.
Collapse
Affiliation(s)
- Mayur B Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India; SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra 423101, India.
| | - Pranali A Chandurkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh G Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manish M Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Sandip R Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra 423101, India.
| | - Spandana R Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Milind J Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nitu L Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India; SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra 423101, India.
| |
Collapse
|
4
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
5
|
Vinchurney MD, Dhokne MD, Kotagale N, Umekar MJ, Taksande B. Agmatine prevents the manifestation of impulsive burying and depression-like behaviour in progesterone withdrawn female rats. Horm Behav 2023; 152:105361. [PMID: 37163843 DOI: 10.1016/j.yhbeh.2023.105361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by various physical and affective symptoms, including anxiety, irritability, anhedonia, social withdrawal, and depression. The present study investigated the role of the agmatinergic system in animal model of progesterone withdrawal in female rats. Chronic progesterone exposure of female rats for 21 days and its abrupt withdrawal showed enhanced marble burying, increased immobility time, and reduced no. of entries in open arm as compared to control animals. The progesterone withdrawal-induced enhanced marble burying anxiety and immobility time was significantly attenuated by agmatine (5-20 mg/kg, i.p.), and its endogenous modulators like L-arginine (100 mg/kg, i.p.), amino-guanidine (25 mg/kg, i.p.) and arcaine (50 mg/kg, i.p.) by their once-daily administration from day 14-day 21 of the protocol. We have also analysed the levels of agmatine, progesterone, and inflammatory cytokines in the hippocampal region of progesterone withdrawn rats. There was a significant decline in agmatine and progesterone levels and an elevation in cytokine levels in the hippocampal region of progesterone withdrawn rats compared to the control animals. In conclusion, the present studies suggest the importance of the endogenous agmatinergic system in progesterone withdrawal-induced anxiety-like and depression-like behaviour. The data also projects agmatine as a potential therapeutic target for the premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- Madhura Dixit Vinchurney
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Mrunali D Dhokne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
6
|
Agmatine-mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NF-κB signaling cascade in rotenone lesioned rats. Life Sci 2022; 311:121049. [DOI: 10.1016/j.lfs.2022.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
|
7
|
Kotagale N, Bhondekar S, Bhad M, Pise S, Charpe A, Umekar M, Taksande B. Agmatine prevents development of tolerance to anti-nociceptive effect of ethanol in mice. Alcohol 2022; 101:1-8. [PMID: 35227825 DOI: 10.1016/j.alcohol.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Drug tolerance is directly correlated with drug abuse and physical dependence. The development of tolerance is manifested as the decline in pharmacological responses of drugs following repeated administration of the constant dose. The present study evaluated the effect of agmatine in ethanol-induced anti-nociception and tolerance in the tail-flick assay in mice. In an acute protocol, ethanol (1 and 2 g/kg, i.p. [intraperitoneally]) and agmatine (20 and 40 μg/mouse, i.c.v. [intracerebroventricularly]) produced significant analgesic effects in mice, as was evident from the increased baseline tail-flick latency when tested 20 minutes after their administration. Agmatine in a per se non-effective dose (5 μg/mouse, i.c.v.), L-arginine (40 μg/mouse, i.c.v.), and arcaine (25 μg/mouse, i.c.v.) significantly potentiated the anti-nociceptive effect of ethanol. Blood ethanol analysis showed no significant differences in blood ethanol concentration between ethanol/saline- and ethanol/agmatine-treated mice, suggesting that the effects of agmatine were not due to any possible effects on the pharmacokinetics of ethanol. In a separate study, mice were injected with ethanol (2 g/kg, i.p., 12%) or saline (1 mL/kg, i.p.) once daily for 9 days. On days 1, 3, 5, 7, and 9 of the experiment, they were subjected to the tail-flick test. Agmatine (5-20 μg/mouse, i.c.v.), L-arginine (40 μg/mouse, i.c.v.), arcaine (25 μg/mouse, i.c.v.), aCSF (2 μL/mouse, i.c.v.), or saline (1 mL/kg, i.p.) was administered daily prior to the first daily ethanol or saline injections, and reaction latencies were determined in the tail-flick assay. Injections of agmatine, L-arginine, and arcaine prevented the development of tolerance to ethanol-induced analgesia. Given that agmatine and its endogenous modulation can prevent tolerance to the anti-nociceptive effects of ethanol, these data suggest it as a possible new therapeutic strategy for the treatment of alcohol use disorder and associated complications.
Collapse
Affiliation(s)
- Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India; Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, 444604, Maharashtra, India
| | - Shraddha Bhondekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Mrunalini Bhad
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Shailesh Pise
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Ashwini Charpe
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India.
| |
Collapse
|
8
|
Wiśniewska A, Stachowicz A, Kuś K, Ulatowska-Białas M, Totoń-Żurańska J, Kiepura A, Stachyra K, Suski M, Gajda M, Jawień J, Olszanecki R. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio. Int J Mol Sci 2021; 22:ijms221910688. [PMID: 34639029 PMCID: PMC8509476 DOI: 10.3390/ijms221910688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis and NAFLD are the leading causes of death worldwide. The hallmark of NAFLD is triglyceride accumulation caused by an imbalance between lipogenesis de novo and fatty acid oxidation. Agmatine, an endogenous metabolite of arginine, exerts a protective effect on mitochondria and can modulate fatty acid metabolism. In the present study, we investigate the influence of agmatine on the progression of atherosclerotic lesions and the development of hepatic steatosis in apoE−/− mice fed with a Western high-fat diet, with a particular focus on its effects on the DNL pathway in the liver. We have proved that treatment of agmatine inhibits the progression of atherosclerosis and attenuates hepatic steatosis in apoE−/− mice on a Western diet. Such effects are associated with decreased total macrophage content in atherosclerotic plaque as well as a decrease in the TG levels and the TG/HDL ratio in plasma. Agmatine also reduced TG accumulation in the liver and decreased the expression of hepatic genes and proteins involved in lipogenesis de novo such as SREBP-1c, FASN and SCD1. In conclusion, agmatine may present therapeutic potential for the treatment of atherosclerosis and fatty liver disease. However, an exact understanding of the mechanisms of the advantageous actions of agmatine requires further study.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | | | - Justyna Totoń-Żurańska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Cracow, Poland;
| | - Jacek Jawień
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
- Correspondence: ; Tel.: +48-12-421-1168
| |
Collapse
|
9
|
Li X, Lin J, Hua Y, Gong J, Ding S, Du Y, Wang X, Zheng R, Xu H. Agmatine Alleviates Epileptic Seizures and Hippocampal Neuronal Damage by Inhibiting Gasdermin D-Mediated Pyroptosis. Front Pharmacol 2021; 12:627557. [PMID: 34421582 PMCID: PMC8378273 DOI: 10.3389/fphar.2021.627557] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Epilepsy is a common neurological disease, and neuroinflammation is one of the main contributors to epileptogenesis. Pyroptosis is a type of pro-inflammatory cell death that is related to epilepsy. Agmatine, has anti-inflammatory properties and exerts neuroprotective effects against seizures. Our study investigated the effect of agmatine on the core pyroptosis protein GSDMD in the context of epilepsy. Methods: A chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ)-induced kindling or lipopolysaccharide (LPS) stimulation. H&E and Nissl staining were used to evaluate hippocampal neuronal damage. The expression of pyroptosis and inflammasome factors was examined by western blotting, quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Results: Agmatine disrupted the kindling acquisition process, which decreased seizure scores and the incidence of full kindling and blocked hippocampal neuronal damage. In addition, agmatine increased BV2 microglial cell survival in vitro and alleviated seizures in vivo by suppressing the levels of PTZ-induced pyroptosis. Finally, the expression of TLR4, MYD88, phospho-IκBα, phospho-NF-κB and the NLRP3 inflammasome was significantly upregulated in LPS-induced BV2 microglial cells, while agmatine suppressed the expression of these proteins. Conclusions: Our results indicate that agmatine affects epileptogenesis and exerts neuroprotective effects by inhibiting neuroinflammation, GSDMD activation, and pyroptosis. The inhibitory effect of agmatine on pyroptosis was mediated by the suppression of the TLR4/MYD88/NF-κB/NLRP3 inflammasome pathway. Therefore, agmatine may be a potential treatment option for epilepsy.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Lin
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingjie Hua
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaoni Gong
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Ding
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanru Du
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinshi Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyuan Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
NMDA Receptor Mediates the Anticonvulsant Effect of Hydroalcoholic Extract of Artemisia persica in PTZ-Induced Seizure in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6422451. [PMID: 34394390 PMCID: PMC8360731 DOI: 10.1155/2021/6422451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023]
Abstract
It is necessary to seek more effective sources to design new drug against epilepsy. This study aimed to evaluate the effect of hydroalcoholic extract of Artemisia persica on pentylenetetrazole- (PTZ-) induced seizure in male mice by investigating the possible role of the NMDA receptor and antioxidative stress effect. The phenolic profile of A. persica extract was determined by HPLC-DAD analysis. Mice were treated with normal saline or A. persica extract or pentobarbital or a subeffective dose of extract plus ketamine (NMDA receptor antagonist) and/or effective dose of extract plus NMDA. PTZ (90 mg/kg) was injected intravenously for induction of seizure. The seizure threshold was measured. Then mice were euthanized and the antioxidant capacity and the level of malondialdehyde (MDA) of the prefrontal cortex and serum were measured. The gene expression of NMDA receptor subunits (Nr2a and Nr2b) was determined by real-time PCR. Findings showed that A. persica extract increased the seizure threshold, increased antioxidant capacity, and decreased MDA levels in the serum and brain samples. A. persica extract reduced the expression of NMDA receptor subunits. The result showed that ketamine potentiated the effect of the subeffective dose of extract. HPLC analysis showed that quercetin had the highest flavonoid content and also caffeic acid had the highest content of the phenolic acids. A. persica extract probably via NMDA receptor exerts anticonvulsant properties.
Collapse
|
11
|
Kosonen R, Barua S, Kim JY, Lee JE. Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects. Anat Cell Biol 2021; 54:143-151. [PMID: 34162764 PMCID: PMC8225474 DOI: 10.5115/acb.21.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.
Collapse
Affiliation(s)
- Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Gangar K, Bhatt LK. Therapeutic Targets for the Treatment of Comorbidities Associated with Epilepsy. Curr Mol Pharmacol 2021; 13:85-93. [PMID: 31793425 DOI: 10.2174/1874467212666191203101606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.
Collapse
Affiliation(s)
- Kinjal Gangar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| |
Collapse
|
13
|
Alterations in mRNA and Protein Expression of Glutamate Receptor Subunits Following Pentylenetetrazole-induced Acute Seizures in Young Rats. Neuroscience 2021; 468:1-15. [PMID: 34102267 DOI: 10.1016/j.neuroscience.2021.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
Acute seizures can severely affect brain function and development. However, the underlying pathophysiological mechanisms are still poorly understood. Disturbances of the glutamatergic system are considered one of the critical mechanisms of neurological abnormalities. In the present study, we analyzed changes in the expression of NMDA and AMPA receptor subunits in the different brain regions (dorsal hippocampus, amygdala, and the medial prefrontal, temporal, and entorhinal cortex) using a pentylenetetrazole (PTZ) model of seizures in 3-week-old rats. A distinctive feature of this model is that the administration of PTZ causes severe acute seizures, which are not followed by the development of spontaneous recurrent seizures later on. Subunit expression was analyzed using qRT-PCR and Western blotting during the first week after seizures. The most pronounced alterations of mRNA and protein levels were observed in the dorsal hippocampus. We found decreased expression of the GluA2 mRNA 7 days after seizures (PSE7), as well as reduced GluN2a protein levels on PSE7. Significant alterations in the expression of different receptor subunits in the mRNA but not protein levels were observed in the entorhinal cortex and amygdala. In contrast, in the medial prefrontal and temporal cortex, we found almost no changes in the expression of the studied genes. The identified changes deepen our understanding of post-seizure disturbances in the developing brain and confirm that although various brain structures are involved in seizures, the hippocampus is the most vulnerable.
Collapse
|
14
|
Fokoua AR, Ndjenda MK, Kaptué Wuyt A, Tatsinkou Bomba FD, Dongmo AK, Chouna R, Nkeng-Efouet PA, Nguelefack TB. Anticonvulsant effects of the aqueous and methanol extracts from the stem bark of Psychotria camptopus Verdc. (Rubiacaea) in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113955. [PMID: 33610704 DOI: 10.1016/j.jep.2021.113955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The decoction from the stem bark of Psychotria camptopus (Rubiaceae) is used in the Cameroonian pharmacopoeia to treat neurological pathologies including epilepsy. AIM The present work was undertaken to study the anticonvulsant properties of the aqueous (AE) and methanol (ME) extracts from the stem bark of P. camptopus in acute models of epileptic seizures in Wistar rats. METHOD AE and ME were obtained by decoction and maceration of the stem bark powder in water and methanol, respectively. They were tested orally at the doses of 40, 80 and 120 mg/kg, on the latency of onset and duration of epileptic seizures induced by pentylene tetrazole (PTZ, 70 mg/kg, i.p.). The kinetic effect of both extracts at 120 mg/kg was evaluated. Their effects on diazepam (50 mg/kg) induced sleep and strychnine (STR, 2.5 mg/kg, i.p.) induced seizures were determined. ME was further tested on picrotoxin (PIC, 7.5 mg/kg, i.p.) and thiosemicarbazide (TSC, 50 mg/kg, i.p.) induced seizure models. The phytochemical composition of ME was assessed using LC-MS method, as well as its acute toxicity. RESULTS AE and ME significantly (p < 0.001) reduced the duration of seizures in both PTZ and STR models. Their maximal effect was observed at 1 h after administration, though their effect at 120 mg/kg was maintained (p < 0.05) up to 24 h post-treatment. Both extracts significantly (p < 0.01) reduced sleep duration. ME significantly (p < 0.001) increased the latency of rat death on PIC-induced convulsions. In TSC rats, ME significantly (p < 0.001) delayed the latency to the first convulsion, and decreased the duration and frequency of convulsions. ME showed no acute toxicity while its phytochemical screening revealed the presence of two flavonoids (Rutin and Butin), two triterpenoid saponins (Psycotrianoside B and Bauerenone) and four alkaloids (10-Hydroxy-antirhine, 10-hydroxy-iso-deppeaninol, Emetine and Hodkinsine). In conclusion, AE and ME from the stem bark of P. camptopus have comparable anticonvulsant properties. The effect of ME is likely due to the presence of flavonoids and alkaloid and the activation of GABA pathway. These results further justify and support the use of P. camptopus in traditional medicine for the treatment of epilepsy.
Collapse
Affiliation(s)
- Aliance Romain Fokoua
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Magloire K Ndjenda
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Adeline Kaptué Wuyt
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Francis Desire Tatsinkou Bomba
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Appolinaire Kene Dongmo
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Rodolphe Chouna
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Pepin Alango Nkeng-Efouet
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Télesphore Benoît Nguelefack
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| |
Collapse
|
15
|
AYDIN Ş, KAYGISIZ B, TOPRAK Ç, ÇENGELLİ ÜNEL Ç, EROL K. Agmatinin epilepsi tedavisindeki rolü ve bu etkilerin diğer antiepileptik ilaçlarla olan etkilerinin karşılaştırılması ve bu etkide nitrik oksitin rolü: Bir ön çalışma. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2021. [DOI: 10.17517/ksutfd.831948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Agmatine reverses ethanol consumption in rats: Evidences for an interaction with imidazoline receptors. Pharmacol Biochem Behav 2019; 186:172779. [DOI: 10.1016/j.pbb.2019.172779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
|
17
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1608692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Nagai T, Shan W, Yamada K. [Exploring Molecular Targets for Epilepsy Treatment from the Perspective of Neuronal Homeostasis]. YAKUGAKU ZASSHI 2019; 139:923-929. [PMID: 31155537 DOI: 10.1248/yakushi.18-00213-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain function is controlled by the balance between the excitatory and inhibitory systems. If this balance is disrupted and the excitatory system dominates, convulsions or epileptic seizures are induced. Neuronal hyperexcitability in the brain leads to marked changes in the function of the neurons, which adversely affect the stability of the neural network. Many of the currently used antiepileptic drugs are symptomatic treatments that suppress the electrical hyperexcitability of the cerebrum. Although patients with epilepsy should continuously take antiepileptic drugs to control their seizures, approximately 20% of patients are drug resistant. The brain has the ability to control neuronal functions within acceptable limits while it maintains the amount of synaptic inputs that form the basis of information accumulation. Neuronal self-regulation is known as homeostatic scaling by which the intensity of all excitatory synapses is suppressed when neuronal excitability is increased. However, the molecular mechanisms of homeostatic scaling and their pathophysiological significance in vivo remain unclear. Repeated treatment with a subconvulsive dosage of pentylenetetrazol (PTZ), a γ-aminobutyric acid (GABA)A receptor antagonist, is known to induce kindling in mice, which is a common animal model used to study epilepsy. We found that PTZ-induced kindling was potentiated in mice deficient in the transcription factor neuronal PAS domain protein 4 (Npas4), the expression of which is immediately induced in response to neuronal activity. At this symposium, we will discuss the possibility of Npas4 as a novel target molecule for epilepsy treatment.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine
| |
Collapse
|
19
|
Watts D, Pfaffenseller B, Wollenhaupt-Aguiar B, Paul Géa L, Cardoso TDA, Kapczinski F. Agmatine as a potential therapeutic intervention in bipolar depression: the preclinical landscape. Expert Opin Ther Targets 2019; 23:327-339. [DOI: 10.1080/14728222.2019.1581764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Devon Watts
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | - Luiza Paul Géa
- Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Flavio Kapczinski
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
20
|
Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol 2018; 16:1296-1305. [PMID: 28786346 PMCID: PMC6251039 DOI: 10.2174/1570159x15666170808120633] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lacking efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Methods: This review would focus on the neuroprotective actions of agmatine and its potential mechanisms in the setting of neurological diseases. Results: Numerous studies had demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alz-heimer’s disease). The potential mechanism of agmatine induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. Conclusions: The safety and low incidence of adverse effects indicate the vast potential therapeutic value of agmatine in the treatment of neurological diseases. However, most of the available studies relate to the agmatine are conducted in experi-mental models, more clinical trials are needed before the agmatine could be extensively clinically used
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
incebay H. A Sensitive Quantification of Agmatine Using a Hybrid Electrode Based on Zinc oxide Nanoparticles. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.401450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, Dehpour AR. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 2018; 78:142-148. [PMID: 29195160 DOI: 10.1016/j.yebeh.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor NG-nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway.
Collapse
Affiliation(s)
- Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Riazi
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, University of Calgary, Canada
| | - Ali Reza Noorian
- Stroke Program, Kaiser Permanente Orange County, Irvine, CA, United States
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Shan W, Nagai T, Tanaka M, Itoh N, Furukawa-Hibi Y, Nabeshima T, Sokabe M, Yamada K. Neuronal PAS domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazole-induced epilepsy through the induction of Homer1a. J Neurochem 2017; 145:19-33. [DOI: 10.1111/jnc.14274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Motoki Tanaka
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yoko Furukawa-Hibi
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory; Graduate School of Health Sciences; Fujita Health University; Toyoake Japan
- Aino University; Ibaraki Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
24
|
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int 2017; 108:318-331. [DOI: 10.1016/j.neuint.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
25
|
Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 2017; 92:720-725. [PMID: 28586743 DOI: 10.1016/j.biopha.2017.05.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is fourth most common neurological disorders associated with depression and cognitive deficits. As per present scenario, none of the antiseizure drugs have been reported successful to have ameliorative effect on epilepsy associated depression and cognitive deficits. Thus, the study was envisioned to assess an ameliorative potential of agmatine on epilepsy and its efficacy and safety for management of associated depression and cognitive deficits. The animals were made epileptic employing pentylenetetrazole (35mg/kg i.p. every 48±2h) kindling model of epilepsy and subsequently were treated with vehicle, valproic acid (300mg/kg/day i.p.) and agmatine (2.5, 5, and 10mg/kg)/day/i.p. for 15days. Except naïve, all the groups were challenged with same pentylenetetrazole dose as employed during kindling on days 5, 10, and 15 to evaluate seizure severity. Two hours after seizure severity test, tail suspension test and passive shock avoidance paradigm was employed to evaluate depression and cognitive behavior respectively. Results suggested that epileptic animals were significantly associated with depression and cognitive impairment. Chronic valproate treatment significantly reduced seizure severity, but was found unable to mitigate depression and cognitive deficits. However, agmatine treatment dose dependently ameliorated seizure severity as well as associated depression and cognitive deficits. On 15th day, animals were euthanized and pertinent neurochemical estimations were carried out in cortical and hippocampal areas of the mice brain. Thus, study concluded that agmatine ameliorated seizure severity, depression and cognitive impairment in epileptic animals, possibly via restoring glutamate-GABA neurotransmission and serotonin synthesis with decreased nitrosative stress.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Neetu Bagga
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Anureet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Navjot Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Dinesh Yugraj Gawande
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India; Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
26
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
27
|
Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, Ko MJ, Han SH, Banerjee S, Shin CY. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2016; 113:71-81. [PMID: 27638451 DOI: 10.1016/j.neuropharm.2016.09.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/26/2023]
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Chan Kim
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seol-Heui Han
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Sourav Banerjee
- National Brain Research Center, NH-8, Nainwal Mode, Haryana, India
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
28
|
Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats. Neurosci Bull 2016; 32:523-530. [PMID: 27161447 DOI: 10.1007/s12264-016-0031-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/26/2016] [Indexed: 01/03/2023] Open
Abstract
Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.
Collapse
|
29
|
Mao K, You C, Lei D, Zhang H. High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect. Int J Clin Exp Med 2015; 8:8820-8827. [PMID: 26309534 PMCID: PMC4537971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy. The chronic epilepsy rat model was prepared by intraperitoneally injecting pentylenetetrazole to the rats pre-treated with CBD (10, 20 and 50 mg/kg) for 28 consecutive days. Behavioral measurements of convulsion following pentylenetetrazole treatment and morphological changes of the hippocampal neurons with hematoxylin and eosin staining were used to observe the epileptic behaviour. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein and inducible nitric oxide synthase (iNOS) in the hippocampus. The mRNA expression of N-methyl-D-aspartic acid (NMDA) receptor subunits (NR1 and NR2B) was detected by reverse transcription polymerase chain reaction. The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg). The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased. CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly. Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA. Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.
Collapse
Affiliation(s)
- Ke Mao
- Department of Neurosurgery, West China Hospital of Sichuan University Chengdu 610041, China
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University Chengdu 610041, China
| | - Ding Lei
- Department of Neurosurgery, West China Hospital of Sichuan University Chengdu 610041, China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University Chengdu 610041, China
| |
Collapse
|
30
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
31
|
Zaitsev AV, Kim KK, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, Zhuravin IA, Magazanik LG. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 2014; 93:454-65. [DOI: 10.1002/jnr.23500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Kira Kh. Kim
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Dmitry S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Nera Ya. Lukomskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Valeria V. Lavrentyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Natalia L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Igor A. Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Lev G. Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
- Saint Petersburg State University; Saint Petersburg Russia
| |
Collapse
|
32
|
Xu H, Ou F, Wang P, Naren M, Tu D, Zheng R. High dosage of agmatine alleviates pentylenetetrazole-induced chronic seizures in rats possibly by exerting an anticonvulsive effect. Exp Ther Med 2014; 8:73-78. [PMID: 24944600 PMCID: PMC4061208 DOI: 10.3892/etm.2014.1711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/27/2014] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate the mechanism underlying the effects of different doses of agmatine in rats with chronic epilepsy. To generate chronic epilepsy models, rats pretreated with different doses of agmatine (20, 40 and 80 mg/kg) were intraperitoneally injected with pentylenetetrazole (35 mg/kg) for 28 consecutive days. Epileptic behavior was observed using behavioral measurements of convulsion for 1 h after each treatment with pentylenetetrazole. Morphological alterations of the hippocampal neurons were also observed using hematoxylin and eosin staining. In addition, the expression levels of glial fibrillary acidic protein and inducible nitric oxide synthase (iNOS) in the hippocampus were detected by immunohistochemistry. Furthermore, reverse transcription polymerase chain reaction was performed to detect the mRNA expression of two subunits (NR1 and NR2B) of the N-methyl-D-aspartic acid (NMDA) receptor in the rat hippocampus. The results demonstrated that administration of agmatine (80 mg/kg) significantly decreased the daily average grade of epileptic seizures and also reduced neuronal loss and astrocyte hyperplasia in the hippocampal area. Furthermore, agmatine (80 mg/kg) affected the mRNA expression levels of the NR1 subunit of the NMDA receptor, however, agmatine had no effect on the expression of iNOS in the hippocampus. Higher doses of agmatine inhibited the effect of pentylenetetrazole in rats, reduced astrocytic hyperplasia and neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA. Our results suggest that agmatine has an anticonvulsive effect in chronic epilepsy.
Collapse
Affiliation(s)
- Huiqin Xu
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Fuyong Ou
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Pei Wang
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Mangdula Naren
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Dongpei Tu
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Rongyuan Zheng
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
Shopsin B. The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsychiatr 2013; 25:113-8. [PMID: 25287313 DOI: 10.1111/j.1601-5215.2012.00675.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To examine and record the clinical antidepressant effect of exogenous agmatine, an amino acid derived central glutamaergic modulator in endogenously depressed subjects. It was also the author's intention to examine the effects of parachlorophenylalanine (PCPA) in therapeutic responders to determine if serotonergic mechanisms mediate agmatine's antidepressant effect. Methodology Exogenous agmatine was ingested in doses of 2-3mg/day by depressed subjects with Major Depresssive Disorder (MDD), clinically assessed using the 21 item Hamilton Rating Scale for Depression (HAM-D), the Clinical Global Impression (CGI) and the Brief Psychiatric Rating Scale (BPRS). Antidepressant responders volunteered to concommittantly ingest parachlorophenylalanine (PCPA) at starting doses of 250mg/day, and increased until depressive relapse, mitigating side effects, or a maximum dosage of 1250mg/day. RESULTS Three depressed subjects showing total illness remission with exogenous agmatine did not relapse after concomitantly adding PCPA. Effective in relieving both psychomotor agitation and retardation, the antidepressant effect was free of physical or behavioural side effects: gastrointestinal discomfort and loose stools in one subject resolved spontaneously within days. All three subjects refused to risk depressive relapse by temporarily stopping agmatine after PCPA was stopped. CONCLUSION The antidepressant effect of exogenous agmatine was documented in a small number of MDD subjects, and was not reversed/modified by PCPA confirming findings in animals that therapeutic response is not mediated by serotonergic mechanisms. A NAMDA (N-methyl-D-aspartate) receptor antagonist, agmatine's recognized function in brain as inhibitory modulator of excitatory glutamatergic transmission suggests a pivotal role for brain glutamate, contributing to the ripening glutamatergic basis of depression, and a rational basis for future antidepressant pharmacotherapy.
Collapse
Affiliation(s)
- Baron Shopsin
- 1 Former Chief, Unit for The Study and Treatment of Affective, Disorders, & Lithium Clinic, Neuropsychopharmacology Research Section, Department of Psychiatry, NYU Medical Center, and Associate Professor of Psychiatry, NYU School of Medicine, USA
| |
Collapse
|
34
|
Utkan T, Gocmez SS, Regunathan S, Aricioglu F. Agmatine, a metabolite of L-arginine, reverses scopolamine-induced learning and memory impairment in rats. Pharmacol Biochem Behav 2012; 102:578-84. [PMID: 22796489 DOI: 10.1016/j.pbb.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 01/28/2023]
Abstract
Agmatine (l-amino-4-guanidino-butane), a metabolite of L-arginine through the action of arginine decarboxylase, is a novel neurotransmitter. In the present study, effects of agmatine on cognitive functions have been evaluated by using one trial step-down passive avoidance and three panel runway task. Agmatine (20, 40, 80 mg/kg i.p.) was administered either in the presence or absence of a cholinergic antagonist, scopolamine (1 mg/kg i.p.). Scopolamine significantly impaired learning and memory in both passive avoidance and three panel runway test. Agmatine did not affect emotional learning, working and reference memory but significantly improved scopolamine-induced impairment of learning and memory in a dose dependent manner. Our results indicate that agmatine, as an endogenous substance, may have an important role in modulation of learning and memory functions.
Collapse
Affiliation(s)
- Tijen Utkan
- Kocaeli University Medical Faculty, Pharmacology Department and Experimental Medical Research and Application Unit, 41380 Kocaeli, Turkey.
| | | | | | | |
Collapse
|
35
|
Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential. Pharmacol Ther 2012; 133:351-65. [DOI: 10.1016/j.pharmthera.2011.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
36
|
Betancourt L, Rada P, Paredes D, Hernández L. In vivo monitoring of cerebral agmatine by microdialysis and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 880:58-65. [DOI: 10.1016/j.jchromb.2011.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
37
|
The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 2012; 36:502-19. [DOI: 10.1016/j.neubiorev.2011.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 01/28/2023]
|
38
|
Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 2011; 192:28-36. [PMID: 21777660 DOI: 10.1016/j.neuroscience.2011.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Agmatine, the decarboxylated metabolite of l-arginine, is considered to be a novel putative neurotransmitter. Recent studies have demonstrated that endogenous agmatine may directly participate in the processes of spatial learning and memory. Agmatine-immunoreactivity has been observed within synaptic terminals of asymmetric excitatory synapses in the hippocampal CA1 stratum radiatum (SR), suggesting that agmatine may be colocalized with glutamate. In the present study we demonstrate, using immunofluorescence confocal microscopy, that agmatine is colocalized with glutamate within CA1-CA3 hippocampal pyramidal cell bodies, in young Sprague-Dawley rats. Subcellular investigation, using postembedding electron microscopy-immunogold cytochemistry, has also revealed that agmatine is colocalized with glutamate in most synaptic terminals in the SR region of CA1. Ninety-seven percent of all agmatinergic profiles were found to contain glutamate, and 92% of all glutamatergic profiles contained agmatine (n=6; 300 terminals). Alterations in colocalized agmatine and glutamate levels in the SR synaptic terminals, following 4 days Morris water maze training, were also investigated. Compared with swim only control rats, water maze-trained rats had statistically significant increases in both agmatine (78%; P<0.01) and glutamate (41%; P<0.05) levels within SR terminals synapsing onto CA1 dendrites. These findings provide the first evidence that agmatine and glutamate are colocalized in synaptic terminals in the hippocampal CA1 region, and may co-participate in spatial learning and memory processing.
Collapse
Affiliation(s)
- S Seo
- Department of Anatomy & Structural Biology, Otago School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
39
|
Agmatine modulates neuroadaptations of glutamate transmission in the nucleus accumbens of repeated morphine-treated rats. Eur J Pharmacol 2011; 650:200-5. [DOI: 10.1016/j.ejphar.2010.09.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Accepted: 09/23/2010] [Indexed: 11/22/2022]
|
40
|
Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats. Brain Res 2010; 1334:58-64. [DOI: 10.1016/j.brainres.2010.03.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 01/08/2023]
|
41
|
Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT. Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 2010; 637:89-101. [PMID: 20394743 DOI: 10.1016/j.ejphar.2010.03.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/06/2010] [Accepted: 03/31/2010] [Indexed: 11/15/2022]
Abstract
Present study investigated the role of agmatine in ethanol-induced anxiolysis and withdrawal anxiety using elevated plus maze (EPM) test in rats. The anxiolytic-like effect of ethanol was potentiated by pretreatment with imidazoline I(1)/I(2) receptor agonist agmatine (10-20 mg/kg, i.p.), imidazoline I(1) receptor agonists, moxonidine (0.25 mg/kg, i.p.) and clonidine (0.015 mg/kg, i.p.), imidazoline I(2) receptor agonist, 2-BFI (5 mg/kg, i.p.) as well as by the drugs known to increase endogenous agmatine levels in brain viz., L-arginine, an agmatine biosynthetic precursor (100 microg/rat, i.c.v.), ornithine decarboxylase inhibitor, DFMO (125 microg/rat, i.c.v.), diamine oxidase inhibitor, aminoguanidine (65 microg/rat, i.c.v.) and agmatinase inhibitor, arcaine (50 microg/rat, i.c.v.). Conversely, prior administration of I(1) receptor antagonist, efaroxan (1 mg/kg, i.p.), I(2) receptor antagonist, idazoxan (0.25mg/kg, i.p.) and arginine decarboxylase inhibitor, D-arginine (100 microg/rat, i.c.v.) blocked the anxiolytic-like effect of ethanol. Moreover, ethanol withdrawal anxiety was markedly attenuated by agmatine (10-20 mg/kg, i.p.), moxonidine (0.25 mg/kg, i.p.), clonidine (0.015 mg/kg, i.p.), 2-BFI (5 mg/kg, i.p.), L-arginine (100 microg/rat, i.c.v.), DFMO (125 microg/rat, i.c.v.), aminoguanidine (65 microg/rat, i.c.v.) and arcaine (50 microg/rat, i.c.v.). The anti-anxiety effect of agmatine in ethanol-withdrawn rats was completely blocked by efaroxan (1 mg/kg, i.p.) and idazoxan (0.25 mg/kg, i.p.). These results suggest that agmatine and imidazoline receptor system may be implicated in ethanol-induced anxiolysis and withdrawal anxiety and strongly support further investigation of agmatine in ethanol dependence mechanism. The data also project agmatine as a potential therapeutic target in overcoming alcohol withdrawal symptoms such as anxiety.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar, College of Pharmacy, New Kamptee, Nagpur, MS, India
| | | | | | | | | | | |
Collapse
|
42
|
Wellmann K, Lewis B, Barron S. Agmatine reduces ultrasonic vocalization deficits in female rat pups exposed neonatally to ethanol. Neurotoxicol Teratol 2009; 32:158-63. [PMID: 19945529 DOI: 10.1016/j.ntt.2009.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 10/30/2009] [Accepted: 11/21/2009] [Indexed: 11/17/2022]
Abstract
Rat pups, in isolation, produce ultrasonic vocalizations (USVs). These USVs have been used as a diagnostic tool for developmental toxicity. We have shown that neonatal ethanol (ETOH) exposure produces deficits in this behavior. The current study was designed to examine whether agmatine (AG), which binds to imidazoline receptors and modulates n-methyl-d-aspartate receptors (NMDAR), could reduce these deficits. In addition, this study examined critical periods for ETOH's effects on USVs by administering ETOH during either the 1st or 2nd postnatal week. Neonatal rats received intragastric intubations of either ETOH (6g/kg/day), ETOH and AG (6g/kg/day and 20mg/kg/day), AG (20mg/kg/day), or maltose on postnatal days (PND) 1-7 or 8-14. A non-intubated control was also included. Subjects were tested on PND 15. Neonatal ETOH exposure significantly increased the latency to vocalize for females and reduced the rate of USVs in both males and females exposed to ETOH on PND 1-7. Agmatine reduced these deficits, in female but not male pups. Subjects exposed to ETOH on PND 8-14 showed no evidence of abnormal USVs. These findings suggest that there may be gender differences in response to AG following neonatal ETOH exposure and also provide further support that the first neonatal week is a particularly sensitive time for the developmentally toxic effects of ETOH in rodents.
Collapse
Affiliation(s)
- Kristen Wellmann
- Department of Psychology, Kastle Hall, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
43
|
Wade CL, Eskridge LL, Nguyen HOX, Kitto KF, Stone LS, Wilcox G, Fairbanks CA. Immunoneutralization of agmatine sensitizes mice to micro-opioid receptor tolerance. J Pharmacol Exp Ther 2009; 331:539-46. [PMID: 19684255 DOI: 10.1124/jpet.109.155424] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-D-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two micro-opioid receptor-selective agonists, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity.
Collapse
Affiliation(s)
- Carrie L Wade
- Departments of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Regunathan S, Dozier D, Takkalapalli R, Phillips WJ. Agmatine Levels in the Cerebrospinal Fluid of Normal Human Volunteers. J Pain Palliat Care Pharmacother 2009; 23:35-9. [DOI: 10.1080/15360280902728161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Aggarwal S, Shavalian B, Kim E, Rawls SM. Agmatine enhances cannabinoid action in the hot-plate assay of thermal nociception. Pharmacol Biochem Behav 2009; 93:426-32. [PMID: 19538988 DOI: 10.1016/j.pbb.2009.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Agmatine-cannabinoid interactions are supported by the close association between cannabinoid CB(1) receptors and agmatine immunoreactive neurons and evidence that shared brain mechanisms underlie the pharmacological effects of agmatine and cannabinoid agonists. In the present study, we used the hot-plate assay of thermal nociception to determine if agmatine alters cannabinoid action through activation of imidazoline sites and/or alpha(2)-adrenoceptors. WIN 55212-2 (1, 2 or 3 mg/kg, i.p.) or CP55,940 (1, 2 or 3 mg/kg, i.p.) administration increased hot-plate response latency. Agmatine (50 or 100 mg/kg, i.p.) was ineffective. Administration of agmatine (50 mg/kg, i.p.) with WIN 55212-2 (1, 2 or 3 mg/kg, i.p.) or CP55,940 (1, 2 or 3 mg/kg, i.p.) produced response-latency enhancement. Regression analysis indicated that agmatine increased the potency of WIN 55212-2 and CP55,940 by 3- and 4.4-fold, respectively, indicating synergy for both drug interactions. Idazoxan, a mixed imidazoline site/alpha(2)-adrenoceptor antagonist, but not yohimbine (5 mg/kg, i.p.), a selective alphia(2)-adrenoceptor antagonist, blocked response-latency enhancement produced by a combination of WIN 55212-2 (2 mg/kg) and agmatine. Response-latency enhancement produced by WIN 55212-2 (2 mg/kg) was blocked by SR 141716A (5 mg/kg, i.p.), a cannabinoid CB(1) receptor antagonist; attenuated by idazoxan (2 and 5 mg/kg); and not affected by yohimbine (5 mg/kg). These results demonstrate a synergistic interaction between agmatine and cannabinoid agonists and suggest that agmatine administration enhances cannabinoid action in vivo.
Collapse
Affiliation(s)
- Saniya Aggarwal
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
46
|
Łuszczki JJ, Czernecki R, Dudra- Jastrzębska M, Borowicz KK, Czuczwar SJ. Influence of agmatine on the protective action of numerous antiepileptic drugs against pentetrazole-induced seizures in miceA. Pharmacol Rep 2009; 61:252-60. [DOI: 10.1016/s1734-1140(09)70029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 02/18/2009] [Indexed: 10/25/2022]
|
47
|
Zhu MY, Wang WP, Huang J, Feng YZ, Regunathan S, Bissette G. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels. Neurochem Int 2008; 53:346-54. [PMID: 18832001 PMCID: PMC2654250 DOI: 10.1016/j.neuint.2008.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/05/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study, we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to 2h immobilization stress daily for 7 days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with beta-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50mg/kg/day), i.p.). Likewise, endogenous agmatine levels measured by high-performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92 to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that the administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism.
Collapse
Affiliation(s)
- Meng-Yang Zhu
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Combined blockade of AMPA and NMDA receptors in the brain of rats prevents pentylenetetrazole-induced clonic and tonic-clonic seizures without ataxia. Bull Exp Biol Med 2008; 145:728-30. [DOI: 10.1007/s10517-008-0194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Wade CL, Schuster DJ, Domingo KM, Kitto KF, Fairbanks CA. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration. Eur J Pharmacol 2008; 587:135-40. [PMID: 18495108 DOI: 10.1016/j.ejphar.2008.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 03/19/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
The decarboxylation product of arginine, agmatine, has effectively reduced or prevented opioid-induced tolerance and dependence when given either systemically (intraperitoneally or subcutaneously) or centrally (intrathecally or intracerebroventricularly). Systemically administered agmatine also reduces the escalation phase of intravenous fentanyl self-administration in rats. The present study assessed whether centrally (intracerebroventricular, i.c.v.) delivered agmatine could prevent the development of fentanyl self-administration in mice. Mice were trained to respond under a fixed-ratio 1 (FR1) schedule for either fentanyl (0.7 microg/70 microl, p.o.) or food reinforcement. Agmatine (10 nmol/5 microl), injected i.c.v. 12-14 h before the first session and every other evening (12-14 h before session) for 2 weeks, completely attenuated oral fentanyl self-administration (but not food-maintained responding) compared to saline-injected controls. When agmatine was administered after fentanyl self-administration had been established (day 8) it had no attenuating effects on bar pressing. This dose of agmatine does not decrease locomotor activity as assessed by rotarod. The present findings significantly extend the previous observation that agmatine prevents opioid-maintained behavior to a chronic model of oral fentanyl self-administration as well as identifying a supraspinal site of action for agmatine inhibition of drug addiction.
Collapse
Affiliation(s)
- Carrie L Wade
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
50
|
Zhu MY, Wang WP, Cai ZW, Regunathan S, Ordway G. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci 2008; 27:1320-32. [PMID: 18364017 PMCID: PMC2771702 DOI: 10.1111/j.1460-9568.2008.06104.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with beta-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress.
Collapse
Affiliation(s)
- Meng-Yang Zhu
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604, USA.
| | | | | | | | | |
Collapse
|