1
|
Tvrdonova V, Rokic MB, Stojilkovic SS, Zemkova H. Identification of functionally important residues of the rat P2X4 receptor by alanine scanning mutagenesis of the dorsal fin and left flipper domains. PLoS One 2014; 9:e112902. [PMID: 25398027 PMCID: PMC4232510 DOI: 10.1371/journal.pone.0112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022] Open
Abstract
Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. Here, we focused on the role of these domains in receptor activation, responsiveness to orthosteric ATP analogue agonists, and desensitization. Alanine scanning mutagenesis of the R203-L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor showed that ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists 2-(methylthio)adenosine 5′-triphosphate, adenosine 5′-(γ-thio)triphosphate, 2′(3′-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate, and α,β-methyleneadenosine 5′-triphosphate. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. Among these mutants, D280A, T281A, R282A, H286A, G291A, and Y292A also exhibited increased time-constant of the desensitizing current response. These experiments, together with homology modeling, indicate that residues located in the upper part of the dorsal fin and left flipper domains, relative to distance from the channel pore, contribute to the organization of the ATP binding pocket and to the initiation of signal transmission towards residues in the lower part of both domains. The R203 and N204 residues, deeply buried in the protein, may integrate the output signal from these two domains towards the gate. In addition, the left flipper residues predominantly account for the control of transition of channels from an open to a desensitized state.
Collapse
Affiliation(s)
- Vendula Tvrdonova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Physiology of Animals, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milos B. Rokic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
2
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
3
|
Sundukova M, Vilotti S, Abbate R, Fabbretti E, Nistri A. Functional differences between ATP-gated human and rat P2X3 receptors are caused by critical residues of the intracellular C-terminal domain. J Neurochem 2012; 122:557-67. [PMID: 22639984 DOI: 10.1111/j.1471-4159.2012.07810.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP-activated P2X3 receptors of sensory ganglion neurons contribute to pain transduction and are involved in chronic pain signaling. Although highly homologous (97%) in rat and human species, it is unclear whether P2X3 receptors have identical function. Studying human and rat P2X3 receptors expressed in patch-clamped human embryonic kidney (HEK) cells, we investigated the role of non-conserved tyrosine residues in the C-terminal domain (rat tyrosine-393 and human tyrosine-376) as key determinants of receptor function. In comparison with rat P2X3 receptors, human P2X3 receptors were more expressed and produced larger responses with slower desensitization and faster recovery. In general, desensitization was closely related to peak current amplitude for rat and human receptors. Downsizing human receptor expression to the same level of the rat one still yielded larger responses retaining slower desensitization and faster recovery. Mutating phenylalanine-376 into tyrosine in the rat receptor did not change current amplitude; yet, it retarded desensitization onset, demonstrating how this residue was important to functionally link these two receptor states. Conversely, removing tyrosine from position 376 strongly down-regulated human receptor function. The different topology of tyrosine residues in the C-terminal domain has contrasting functional consequences and is sufficient to account for species-specific properties of this pain-transducing channel.
Collapse
Affiliation(s)
- Mayya Sundukova
- Neuroscience Department and Italian Institute of Technology Unit, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | |
Collapse
|
4
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
5
|
Petrenko N, Khafizov K, Tvrdonova V, Skorinkin A, Giniatullin R. Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor. Biochemistry 2011; 50:8427-36. [PMID: 21879712 DOI: 10.1021/bi200812u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor.
Collapse
Affiliation(s)
- Nataliia Petrenko
- Department of Neurobiology, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
6
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
7
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
8
|
Bodnar M, Wang H, Riedel T, Hintze S, Kato E, Fallah G, Gröger-Arndt H, Giniatullin R, Grohmann M, Hausmann R, Schmalzing G, Illes P, Rubini P. Amino acid residues constituting the agonist binding site of the human P2X3 receptor. J Biol Chem 2010; 286:2739-49. [PMID: 21098022 DOI: 10.1074/jbc.m110.167437] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homomeric P2X3 receptors are present in sensory ganglia and participate in pain perception. Amino acid (AA) residues were replaced in the four supposed nucleotide binding segments (NBSs) of the human (h) P2X3 receptor by alanine, and these mutants were expressed in HEK293 cells and Xenopus laevis oocytes. Patch clamp and two-electrode voltage clamp measurements as well as the Ca(2+) imaging technique were used to compare the concentration-response curves of the selective P2X1,3 agonist α,β-methylene ATP obtained at the wild-type P2X3 receptor and its NBS mutants. Within these NBSs, certain Gly (Gly-66), Lys (Lys-63, Lys-176, Lys-284, Lys-299), Asn (Asn-177, Asn-279), Arg (Arg-281, Arg-295), and Thr (Thr-172) residues were of great importance for a full agonist response. However, the replacement of further AAs in the NBSs by Ala also appeared to modify the amplitude of the current and/or [Ca(2+)](i) responses, although sometimes to a minor degree. The agonist potency decrease was additive after the simultaneous replacement of two adjacent AAs by Ala (K65A/G66A, F171A/T172A, N279A/F280A, F280A/R281A) but was not altered after Ala substitution of two non-adjacent AAs within the same NBS (F171A/N177A). SDS-PAGE in the Cy5 cell surface-labeled form demonstrated that the mutants appeared at the cell surface in oocytes. Thus, groups of AAs organized in NBSs rather than individual amino acids appear to be responsible for agonist binding at the hP2X3 receptor. These NBSs are located at the interface of the three subunits forming a functional receptor.
Collapse
Affiliation(s)
- Mandy Bodnar
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The P2Y2 receptor sensitizes mouse bladder sensory neurons and facilitates purinergic currents. J Neurosci 2010; 30:2365-72. [PMID: 20147562 DOI: 10.1523/jneurosci.5462-09.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sensitization of bladder afferents is an underlying contributor to the development and maintenance of painful bladder syndrome/interstitial cystitis. Extracellular purines and pyrimidines (e.g., ATP and UTP), released during bladder distension or from damaged cells after tissue insult, are thought to play an important role in bladder physiological and pathological states by actions at ionotropic P2X and metabotropic P2Y receptors. In the present study, we examined the ability of P2Y receptors to sensitize and modulate P2X-mediated responses in mouse bladder sensory neurons. UTP (a P2Y(2) and P2Y(4) agonist) increased excitability of bladder neurons by depolarizing resting membrane potential, increasing action potential firing, and facilitating responses to suprathreshold current injection as well as to P2X agonist application. These effects of UTP on bladder neuron excitability were blocked by the P2Y(2) receptor antagonist suramin. UTP also facilitated bladder neuron homomeric P2X(2) sustained currents and homomeric P2X(3) fast currents. The facilitatory effect of UTP on P2X(2) sustained currents was mediated by a G-protein-coupled P2Y(2) receptor/PKC pathway, whereas the effect of UTP on P2X(3) fast currents was G-protein independent. We also examined P2X and P2Y receptor expression in bladder neurons. P2Y(2) and P2Y(4) transcripts were detected in approximately 50 and approximately 20% of bladder neurons, respectively. Approximately 50% of P2X(2)- and P2X(3)-positive bladder neurons expressed P2Y(2) transcripts, whereas < or =25% of the same bladder neurons expressed P2Y(4) transcripts. These results support involvement of P2Y(2) receptors in bladder sensation, suggesting an important contribution to bladder neuron excitability and hypersensitivity.
Collapse
|
10
|
Lack of evidence for direct phosphorylation of recombinantly expressed P2X(2) and P2X (3) receptors by protein kinase C. Purinergic Signal 2007; 3:377-88. [PMID: 18404451 PMCID: PMC2072911 DOI: 10.1007/s11302-007-9067-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however, is unlikely to involve direct PKC-mediated P2X receptor phosphorylation.
Collapse
|
11
|
Fischer W, Zadori Z, Kullnick Y, Gröger-Arndt H, Franke H, Wirkner K, Illes P, Mager PP. Conserved lysin and arginin residues in the extracellular loop of P2X(3) receptors are involved in agonist binding. Eur J Pharmacol 2007; 576:7-17. [PMID: 17764672 DOI: 10.1016/j.ejphar.2007.07.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/23/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Wild-type human (h) P2X(3) receptors expressed in HEK293 cells responded to the prototypic agonist alpha,beta-methylene ATP (alpha,beta-meATP) with rapidly desensitizing inward currents and an increase in the intracellular Ca(2+) concentration. In contrast to electrophysiological recordings, Ca(2+) microfluorimetry showed a lower maximum of the concentration-response curve of alpha,beta-meATP in the transiently than in the permanently transfected HEK293 cells. However, the concentrations causing 50% of the maximum possible effect (EC(50) values) were identical, when measured with either method. In order to determine the role of certain conserved, positively charged amino acids in the nucleotide binding domains (NBD-1-4) of hP2X(3) receptors for agonist binding, the lysine-63, -65, -176 and -299 as well as the arginine-281 and -295 residues were substituted by the neutral amino acid alanine. We observed no effect of alpha,beta-meATP at the K63A, K176A, R295A, and K299A mutants, and a marked decrease of agonist potency at the K65A and R281A mutants. The P2X(3) receptor antagonist 2',3'-O-trinitrophenyl-ATP (TNP-ATP) blocked the effect of alpha,beta-meATP at the wild-type hP2X(3) receptor with lower affinity than at the mutant K65A, indicating an interference of this mutation with the docking of the antagonist with its binding sites. The use of confocal fluorescence microscopy in conjunction with an antibody raised against the extracellular loop of the hP2X(3) receptor documented the expression of all mutants in the plasma membrane of HEK293 cells. Eventually, we modelled the possible agonist and antagonist binding sites NBD-1-4 of the hP2X(3) subunit by using structural bioinformatics. This model is in complete agreement with the available data and integrates results from mutagenesis studies with geometry optimization of the tertiary structure predictions of the receptor.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gerevich Z, Zadori Z, Müller C, Wirkner K, Schröder W, Rubini P, Illes P. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br J Pharmacol 2007; 151:226-36. [PMID: 17351651 PMCID: PMC2013946 DOI: 10.1038/sj.bjp.0707217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to investigate whether the endogenous metabotropic P2Y receptors modulate ionotropic P2X(3) receptor-channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp experiments were carried out on HEK293 cells permanently transfected with human P2X(3) receptors (HEK293-hP2X(3) cells) and rat dorsal root ganglion (DRG) neurons. KEY RESULTS In both cell types, the P2Y(1,12,13) receptor agonist, ADP-beta-S, inhibited P2X(3) currents evoked by the selective agonist, alpha,beta-methylene ATP (alpha,beta-meATP). This inhibition could be markedly counteracted by replacing in the pipette solution the usual GTP with GDP-beta-S, a procedure known to block all G protein heterotrimers. P2X(3) currents evoked by ATP, activating both P2Y and P2X receptors, caused a smaller peak amplitude and desensitized faster than those currents evoked by the selective P2X(3) receptor agonist alpha,beta-meATP. In the presence of intracellular GDP-beta-S, ATP- and alpha,beta-meATP-induced currents were identical. Recovery from P2X(3) receptor desensitization induced by repetitive ATP application was slower than the recovery from alpha,beta-meATP-induced desensitization. When G proteins were blocked by intracellular GDP-beta-S, the recovery from the ATP- and alpha,beta-meATP-induced desensitization were of comparable speed. CONCLUSIONS AND IMPLICATIONS Our results suggest that the activation of P2Y receptors G protein-dependently facilitates the desensitization of P2X(3) receptors and suppresses the recovery from the desensitized state. Hence, the concomitant stimulation of P2X(3) and P2Y receptors of DRG neurons by ATP may result both in an algesic effect and a partly counterbalancing analgesic activity.
Collapse
Affiliation(s)
- Z Gerevich
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Brown DA, Yule DI. Protein kinase C regulation of P2X3 receptors is unlikely to involve direct receptor phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:166-75. [PMID: 17052768 PMCID: PMC1861828 DOI: 10.1016/j.bbamcr.2006.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/25/2006] [Accepted: 09/13/2006] [Indexed: 11/30/2022]
Abstract
P2X receptors (P2XR) act as ligand-gated, cation-selective ion channels. A common characteristic of all seven P2X family members is a conserved consensus sequence for protein kinase C (PKC)-mediated phosphorylation in the intracellular N-terminus of the receptor. Activation of PKC has been shown to enhance currents through P2X(3)R, however the molecular mechanism of this potentiation has not been elucidated. In the present study we show that activation of PKC can enhance adenosine triphosphate (ATP)-mediated Ca(2+) signals approximately 2.5-fold in a DT-40 3KO cell culture system (P2 receptor null) transiently overexpressing P2X(3)R. ATP-activated cation currents were also directly studied using whole cell patch clamp techniques in HEK-293 cells, a null background for ionotropic P2XR. PKC activation resulted in a approximately 8.5-fold enhancement of ATP-activated current in HEK-293 cells transfected with P2X(3)R cDNA, but had no effect on currents through either P2X(4)R- or P2X(7)R-transfected cells. P2X(3)R-transfected HEK-293 cells were metabolically labeled with (32)PO(4)(-) and following treatment with phorbol-12-myristate-13-acetate (PMA) and subsequent immunoprecipitation, there was no incorporation of (32)PO(4)(-) in bands corresponding to P2X(3)R. Similarly, in vitro phosphorylation experiments, utilizing purified PKC catalytic subunits failed to establish phosphorylation of either P2X(3)R or P2X(3)R-EGFP. These data indicate that PKC activation can enhance both the Ca(2+) signal as well as the cation current through P2X(3)R, however it appears that the regulation is unlikely to be a result of direct phosphorylation of the receptor.
Collapse
Affiliation(s)
- David A. Brown
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - David I. Yule
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
- *Address for correspondence: Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642. Tel: 585-275-6128; Fax: 585-273-2652; E-mail:
| |
Collapse
|
14
|
Franke H, Krügel U, Illes P. P2 receptors and neuronal injury. Pflugers Arch 2006; 452:622-44. [PMID: 16645849 DOI: 10.1007/s00424-006-0071-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 02/08/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) was proposed to be an activity-dependent signaling molecule that regulates glia-glia and glia-neuron communications. ATP is a neurotransmitter of its own right and, in addition, a cotransmitter of other classical transmitters such as glutamate or GABA. The effects of ATP are mediated by two receptor families belonging either to the P2X (ligand-gated cationic channels) or P2Y (G protein-coupled receptors) types. P2X receptors are responsible for rapid synaptic responses, whereas P2Y receptors mediate slow synaptic responses and other types of purinergic signaling involved in neuronal damage/regeneration. ATP may act at pre- and postsynaptic sites and therefore, it may participate in the phenomena of long-term potentiation and long-term depression of excitatory synaptic transmission. The release of ATP into the extracellular space, e.g., by exocytosis, membrane transporters, and connexin hemichannels, is a widespread physiological process. However, ATP may also leave cells through their plasma membrane damaged by inflammation, ischemia, and mechanical injury. Functional responses to the activation of multiple P2 receptors were found in neurons and glial cells under normal and pathophysiological conditions. P2 receptor-activation could either be a cause or a consequence of neuronal cell death/glial activation and may be related to detrimental and/or beneficial effects. The present review aims at demonstrating that purinergic mechanisms correlate with the etiopathology of brain insults, especially because of the massive extracellular release of ATP, adenosine, and other neurotransmitters after brain injury. We will focus in this review on the most important P2 receptor-mediated neurodegenerative and neuroprotective processes and their beneficial modulation by possible therapeutic manipulations.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|