1
|
Dugré JR, Potvin S. Neural bases of frustration-aggression theory: A multi-domain meta-analysis of functional neuroimaging studies. J Affect Disord 2023; 331:64-76. [PMID: 36924847 DOI: 10.1016/j.jad.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Early evidence suggests that unexpected non-reward may increase the risk for aggressive behaviors. Despite the growing interest in understanding brain functions that may be implicated in aggressive behaviors, the neural processes underlying such frustrative events remain largely unknown. Furthermore, meta-analytic results have produced discrepant results, potentially due to substantial differences in the definition of anger/aggression constructs. METHODS Therefore, we conducted a coordinate-based meta-analysis, using the activation likelihood estimation algorithm, on neuroimaging studies examining reward omission and retaliatory behaviors in healthy subjects. Conjunction analyses were further examined to discover overlapping brain activations across these meta-analytic maps. RESULTS Frustrative non-reward deactivated the orbitofrontal cortex, ventral striatum and posterior cingulate cortex, whereas increased activations were observed in midcingulo-insular regions. Retaliatory behaviors recruited the left fronto-insular and anterior midcingulate cortices, the dorsal caudate and the primary somatosensory cortex. Conjunction analyses revealed that both strongly activated midcingulo-insular regions. LIMITATIONS Spatial overlap between neural correlates of frustration and retaliatory behaviors was conducted using a conjunction analysis. Therefore, neurobiological markers underlying the temporal sequence of the frustration-aggression theory should be interpreted with caution. CONCLUSIONS Nonetheless, our results underscore the role of anterior midcingulate/pre-supplementary motor area and fronto-insular cortex in both frustration and retaliatory behaviors. A neurobiological framework for understanding frustration-based impulsive aggression is provided.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| |
Collapse
|
2
|
Li C, Dai W, Miao S, Xie W, Yu S. Medication overuse headache and substance use disorder: A comparison based on basic research and neuroimaging. Front Neurol 2023; 14:1118929. [PMID: 36937526 PMCID: PMC10017752 DOI: 10.3389/fneur.2023.1118929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
It has yet to be determined whether medication overuse headache (MOH) is an independent disorder or a combination of primary headache and substance addiction. To further explore the causes of MOH, we compared MOH with substance use disorder (SUD) in terms of the brain regions involved to draw more targeted conclusions. In this review, we selected alcohol use disorder (AUD) as a representative SUD and compared MOH and AUD from two aspects of neuroimaging and basic research. We found that in neuroimaging studies, there were many overlaps between AUD and MOH in the reward circuit, but the extensive cerebral cortex damage in AUD was more serious than that in MOH. This difference was considered to reflect the sensitivity of the cortex structure to alcohol damage. In future research, we will focus on the central amygdala (CeA), prefrontal cortex (PFC), orbital-frontal cortex (OFC), hippocampus, and other brain regions for interventions, which may have unexpected benefits for addiction and headache symptoms in MOH patients.
Collapse
|
3
|
Mungoven TJ, Marciszewski KK, Macefield VG, Macey PM, Henderson LA, Meylakh N. Alterations in pain processing circuitries in episodic migraine. J Headache Pain 2022; 23:9. [PMID: 35033014 PMCID: PMC8903545 DOI: 10.1186/s10194-021-01381-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 01/13/2023] Open
Abstract
Background The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. Methods Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. Results Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. Conclusions These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.
Collapse
Affiliation(s)
- Tiffani J Mungoven
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Kasia K Marciszewski
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
4
|
A pain-induced tonic hypodopaminergic state augments phasic dopamine release in the nucleus accumbens. Pain 2021; 161:2376-2384. [PMID: 32453137 DOI: 10.1097/j.pain.0000000000001925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diseases and disorders such as Parkinson disease, schizophrenia, and chronic pain are characterized by altered mesolimbic dopaminergic neurotransmission. Dopamine release in the nucleus accumbens influences behavior through both tonic and phasic signaling. Tonic dopamine levels are hypothesized to inversely regulate phasic signals through dopamine D2 receptor feedback inhibition. We tested this hypothesis directly in the context of ongoing pain. Tonic and phasic dopamine signals were measured using fast-scan controlled-adsorption voltammetry and fast-scan cyclic voltammetry, respectively, in the nucleus accumbens shell of male rats with standardized levels of anesthesia. Application of capsaicin to the cornea produced a transient decrease in tonic dopamine levels. During the pain-induced hypodopaminergic state, electrically evoked phasic dopamine release was significantly increased when compared to baseline, evoked phasic release. A second application of capsaicin to the same eye had a lessened effect on tonic dopamine suggesting desensitization of TRPV1 channels in that eye. Capsaicin treatment in the alternate cornea, however, again produced coincident decreased dopaminergic tone and increased phasic dopamine release. These findings occurred independently of stimulus lateralization relative to the hemisphere of dopamine measurement. Our data show that (1) the mesolimbic dopamine circuit reliably encodes acute noxious stimuli; (2) ongoing pain produces decreases in dopaminergic tone; and (3) pain-induced decreases in tonic dopamine correspond to augmented evoked phasic dopamine release. Enhanced phasic dopamine neurotransmission resulting from salient stimuli may contribute to increased impulsivity and cognitive deficits often observed in conditions associated with decreased dopaminergic tone, including Parkinson disease and chronic pain.
Collapse
|
5
|
Archibald J, MacMillan EL, Enzler A, Jutzeler CR, Schweinhardt P, Kramer JL. Excitatory and inhibitory responses in the brain to experimental pain: A systematic review of MR spectroscopy studies. Neuroimage 2020; 215:116794. [DOI: 10.1016/j.neuroimage.2020.116794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
|
6
|
Bitar N, Dugré JR, Marchand S, Potvin S. Medial Orbitofrontal De-Activation During Tonic Cold Pain Stimulation: A fMRI Study Examining the Opponent-Process Theory. J Pain Res 2020; 13:1335-1347. [PMID: 32606900 PMCID: PMC7292263 DOI: 10.2147/jpr.s248056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the concomitant administration of painful and rewarding stimuli tends to reduce the perception of one another, recent evidence shows that pleasant pain relief is experience after the interruption of noxious stimuli. On neurobiological grounds, these opponent processes should translate into decreased activity in brain reward regions during nociceptive stimulation and increased activity in these regions after its interruption. While growing evidence supports the latter assumption, evidence is lacking in humans in support of the former. METHODS Twenty-six healthy individuals underwent a functional magnetic resonance imaging (fMRI) session during which they were administered a cold pain stimulation, using a novel paradigm which consisted in a cold gel applied on the right foot of participants. RESULTS After the interruption of noxious stimulation, participants experienced significant levels of pleasant pain relief. During cold pain stimulation, brain activations were observed in key regions of the pain matrix (eg, thalamus, primary somatosensory cortex and insula). Conversely, the medial orbitofrontal cortex was found to be de-activated. Medial orbitofrontal de-activations were negatively correlated with subclinical pain symptoms. DISCUSSION Our results show that a key brain reward region (eg, medial orbitofrontal cortex) is de-activated during cold pain stimulation, a result which is consistent with one of the central assumptions of the opponent-process theory. On methodological grounds, our results show that the cold gel applied to the foot can be used to trigger activations in the pain matrix, and that the interruption of the cold pressor test elicits significant levels of pleasant pain relief. fMRI studies on pain-reward interactions in chronic pain patients are warranted.
Collapse
Affiliation(s)
- Nathalie Bitar
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jules R Dugré
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Serge Marchand
- Genome Quebec, Montreal, Canada
- Department of Surgery, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Stéphane Potvin
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
7
|
Ventral striatal dysfunction in cocaine dependence - difference mapping for subregional resting state functional connectivity. Transl Psychiatry 2018; 8:119. [PMID: 29915214 PMCID: PMC6006289 DOI: 10.1038/s41398-018-0164-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Research of dopaminergic deficits has focused on the ventral striatum (VS) with many studies elucidating altered resting state functional connectivity (rsFC) in individuals with cocaine dependence (CD). The VS comprises functional subregions and delineation of subregional changes in rsFC requires careful consideration of the differences between addicted and healthy populations. In the current study, we parcellated the VS using whole-brain rsFC differences between CD and non-drug-using controls (HC). Voxels with similar rsFC changes formed functional clusters. The results showed that the VS was divided into 3 subclusters, in the area of the dorsal-anterior VS (daVS), dorsal posterior VS (dpVS), and ventral VS (vVS), each in association with different patterns of rsFC. The three subregions shared reduced rsFC with bilateral hippocampal/parahippocampal gyri (HG/PHG) but also showed distinct changes, including reduced vVS rsFC with ventromedial prefrontal cortex (vmPFC) and increased daVS rsFC with visual cortex in CD as compared to HC. Across CD, daVS visual cortical connectivity was positively correlated with amount of prior-month cocaine use and cocaine craving, and vVS vmPFC connectivity was negatively correlated with the extent of depression and anxiety. These findings suggest a distinct pattern of altered VS subregional rsFC in cocaine dependence, and some of the changes have eluded analyses using the whole VS as a seed region. The findings may provide new insight to delineating VS circuit deficits in cocaine dependence and provide an alternative analytical framework to address functional dysconnectivity in other mental illnesses.
Collapse
|
8
|
Evolutionary Mismatch, Emotional Homeostasis, and “Emotional Addiction”: A Unifying Model of Psychological Dysfunction. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2018. [DOI: 10.1007/s40806-018-0153-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Combined approaches for the relief of spinal cord injury-induced neuropathic pain. Complement Ther Med 2016; 25:27-33. [DOI: 10.1016/j.ctim.2015.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
|
11
|
Lucas-Neto L, Reimão S, Oliveira E, Rainha-Campos A, Sousa J, Nunes RG, Gonçalves-Ferreira A, Campos JG. Advanced MR Imaging of the Human Nucleus Accumbens-Additional Guiding Tool for Deep Brain Stimulation. Neuromodulation 2015; 18:341-8. [DOI: 10.1111/ner.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lia Lucas-Neto
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Sofia Reimão
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Edson Oliveira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Alexandre Rainha-Campos
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - João Sousa
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - Rita G. Nunes
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - António Gonçalves-Ferreira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Jorge G. Campos
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| |
Collapse
|
12
|
Domsch S, Zapp J, Schad LR, Nees F, Hill H, Hermann D, Mann K, Vollstädt-Klein S. Optimized protocol for high resolution functional magnetic resonance imaging at 3T using single-shot echo planar imaging. J Neurosci Methods 2014; 239:170-82. [PMID: 25445785 DOI: 10.1016/j.jneumeth.2014.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND To translate highly accelerated EPI-fMRI protocols as commonly used at ultra-high field strengths to clinical 3T settings. NEW METHOD EPI protocols with increasing matrix sizes and parallel imaging (PI) factors were tested in two separate fMRI studies, a simple motor-task and a complex motivation-task experiment with focus on the sensorimotor cortex (SMC) and the nucleus accumbens (NAcc), respectively. RESULTS By increasing the matrix size and the PI-factor simultaneously, BOLD-sensitivity in terms of maximal t-values and numbers of activated clusters was uncompromised in single individuals in both fMRI experiments. In the SMC, the multi-subject analysis revealed an increase of 66% of the maximal t-value whereby the number of activated clusters was increased by a factor of 3.3 when the matrix size (PI-factor) was increased from 96×96 (R=2) to 192×192 (R=4). In the NAcc, the number of activated clusters increased from 5 to 7 whereby the maximal t-value remained unaffected when the matrix size (PI-factor) was increased from 96×96 (R=2) to 160×160 (R=3). COMPARISON WITH EXISTING METHOD Using the proposed high-resolution EPI protocol, spatial blurring was clearly reduced. Further, BOLD sensitivity was clearly improved in multi-subject analyses and remained unaffected in single individuals compared to using the standard protocols. CONCLUSIONS Conventionally used matrix sizes (PI-factors) might be non-optimal for some applications sacrificing BOLD spatial specificity. We recommend using the proposed high-resolution protocols applicable in detecting robust BOLD activation in fMRI.
Collapse
Affiliation(s)
- Sebastian Domsch
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Jascha Zapp
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Lothar R Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Holger Hill
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
13
|
Free-operant avoidance behavior by rats after reinforcer revaluation using opioid agonists and D-amphetamine. J Neurosci 2014; 34:6286-93. [PMID: 24790199 DOI: 10.1523/jneurosci.4146-13.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The associative processes that support free-operant instrumental avoidance behavior are still unknown. We used a revaluation procedure to determine whether the performance of an avoidance response is sensitive to the current value of the aversive, negative reinforcer. Rats were trained on an unsignaled, free-operant lever press avoidance paradigm in which each response avoided or escaped shock and produced a 5 s feedback stimulus. The revaluation procedure consisted of noncontingent presentations of the shock in the absence of the lever either paired or unpaired with systemic morphine and in a different cohort with systemic d-amphetamine. Rats were then tested drug free during an extinction test. In both the d-amphetamine and morphine groups, pairing of the drug and shock decreased subsequent avoidance responding during the extinction test, suggesting that avoidance behavior was sensitive to the current incentive value of the aversive negative reinforcer. Experiment 2 used central infusions of D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO), a mu-opioid receptor agonist, in the periacqueductal gray and nucleus accumbens shell to revalue the shock. Infusions of DAMGO in both regions replicated the effects seen with systemic morphine. These results are the first to demonstrate the impact of revaluation of an aversive reinforcer on avoidance behavior using pharmacological agents, thereby providing potential therapeutic targets for the treatment of avoidance behavior symptomatic of anxiety disorders.
Collapse
|
14
|
Becerra L, Navratilova E, Porreca F, Borsook D. Analogous responses in the nucleus accumbens and cingulate cortex to pain onset (aversion) and offset (relief) in rats and humans. J Neurophysiol 2013; 110:1221-6. [PMID: 23785130 PMCID: PMC3763092 DOI: 10.1152/jn.00284.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
In humans, functional magnetic resonance imaging (fMRI) activity in the anterior cingulate cortex (ACC) and the nucleus accumbens (NAc) appears to reflect affective and motivational aspects of pain. The responses of this reward-aversion circuit to relief of pain, however, have not been investigated in detail. Moreover, it is not clear whether brain processing of the affective qualities of pain in animals parallels the mechanisms observed in humans. In the present study, we analyzed fMRI blood oxygen level-dependent (BOLD) activity separately in response to an onset (aversion) and offset (reward) of a noxious heat stimulus to a dorsal part of a limb in both humans and rats. We show that pain onset results in negative activity change in the NAc and pain offset produces positive activity change in the ACC and NAc. These changes were analogous in humans and rats, suggesting that translational studies of brain circuits modulated by pain are plausible and may offer an opportunity for mechanistic investigation of pain and pain relief.
Collapse
Affiliation(s)
- L Becerra
- P.A.I.N. Group, Children's Hospital of Boston, Waltham, MA 02453, USA.
| | | | | | | |
Collapse
|
15
|
van den Bosch G, van Hemmen J, White T, Tibboel D, Peters J, van der Geest J. Standard and individually determined thermal pain stimuli induce similar brain activations. Eur J Pain 2013; 17:1307-15. [DOI: 10.1002/j.1532-2149.2013.00311.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2013] [Indexed: 12/11/2022]
Affiliation(s)
- G.E. van den Bosch
- Intensive Care and Department of Pediatric Surgery; Erasmus MC-Sophia; Rotterdam; The Netherlands
| | - J. van Hemmen
- Neuroendocrinology Group; The Netherlands Institute for Neuroscience; Amsterdam; The Netherlands
| | | | - D. Tibboel
- Intensive Care and Department of Pediatric Surgery; Erasmus MC-Sophia; Rotterdam; The Netherlands
| | - J.W.B. Peters
- Master Advanced Nursing Practice; HAN University of Applied Sciences; Nijmegen; The Netherlands
| | | |
Collapse
|
16
|
Alcohol dependence as a chronic pain disorder. Neurosci Biobehav Rev 2012; 36:2179-92. [PMID: 22975446 DOI: 10.1016/j.neubiorev.2012.07.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 07/16/2012] [Indexed: 01/22/2023]
Abstract
Dysregulation of pain neurocircuitry and neurochemistry has been increasingly recognized as playing a critical role in a diverse spectrum of diseases including migraine, fibromyalgia, depression, and PTSD. Evidence presented here supports the hypothesis that alcohol dependence is among the pathologies arising from aberrant neurobiological substrates of pain. In this review, we explore the possible influence of alcohol analgesia and hyperalgesia in promoting alcohol misuse and dependence. We examine evidence that neuroanatomical sites involved in the negative emotional states of alcohol dependence also play an important role in pain transmission and may be functionally altered under chronic pain conditions. We also consider possible genetic links between pain transmission and alcohol dependence. We propose an allostatic load model in which episodes of alcohol intoxication and withdrawal, traumatic stressors, and injury are each capable of dysregulating an overlapping set of neural substrates to engender sensory and affective pain states that are integral to alcohol dependence and comorbid conditions such as anxiety, depression, and chronic pain.
Collapse
|
17
|
Targeting the affective and cognitive aspects of chronic neuropathic pain using basal forebrain neuromodulation: rationale, review and proposal. J Clin Neurosci 2012; 19:1216-21. [PMID: 22771143 DOI: 10.1016/j.jocn.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 01/21/2023]
Abstract
Chronic pain is a major health problem in developed countries where it may affect as much as 20% of the adult population. There have been no significant clinical breakthroughs in therapeutic options for persons with chronic neuropathic pain. These limitations underscore the importance of developing new therapies for this disabling pain syndrome. We have reviewed the limitations of the present treatment strategies for chronic pain, neurophysiology of somatosensory transmission and nociception, mechanisms of neuropathic pain, the concept of a "pain matrix" and the "top-down" modulation of pain, and the cognitive affective role in processing of the pain experience. We found that affective and cognitive aspects of pain constitute important considerations in achieving improvements in the outcomes of pain neuromodulation in patients with chronic neuropathic pain. Based on our review, we propose that future novel neuromodulatory therapeutic strategies should be directed at areas in the brain that are involved in the neural mechanisms of reward valuation and appetitive motivation such as nucleus accumbens, ventral tegmental area, and prefrontal cortex.
Collapse
|
18
|
Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 2011; 34:109-49. [PMID: 22131304 DOI: 10.1002/hbm.21416] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/28/2011] [Accepted: 07/05/2011] [Indexed: 12/23/2022] Open
Abstract
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.
Collapse
Affiliation(s)
- Emma G Duerden
- Département de Physiologie, Groupe de Recherche Sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
19
|
Costa VD, Lang PJ, Sabatinelli D, Versace F, Bradley MM. Emotional imagery: assessing pleasure and arousal in the brain's reward circuitry. Hum Brain Mapp 2010; 31:1446-57. [PMID: 20127869 PMCID: PMC3620013 DOI: 10.1002/hbm.20948] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/04/2009] [Accepted: 10/19/2009] [Indexed: 11/10/2022] Open
Abstract
Research on emotional perception and learning indicates appetitive cues engage nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), whereas amygdala activity is modulated by the emotional intensity of appetitive and aversive cues. This study sought to determine patterns of functional activation and connectivity among these regions during narrative emotional imagery. Using event-related fMRI, we investigate activation of these structures when participants vividly imagine pleasant, neutral, and unpleasant scenes. Results indicate that pleasant imagery selectively activates NAc and mPFC, whereas amygdala activation was enhanced during both pleasant and unpleasant imagery. NAc and mPFC activity were each correlated with the rated pleasure of the imagined scenes, while amygdala activity was correlated with rated emotional arousal. Functional connectivity of NAc and mPFC was evident throughout imagery, regardless of hedonic content, while correlated activation of the amygdala with NAc and mPFC was specific to imagining pleasant scenes. These findings provide strong evidence that pleasurable text-driven imagery engages a core appetitive circuit, including NAc, mPFC, and the amygdala.
Collapse
Affiliation(s)
- Vincent D. Costa
- NIMH Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| | - Peter J. Lang
- NIMH Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| | - Dean Sabatinelli
- NIMH Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
- Present address:
Dean Sabatinellli is currently at University of Georgia, Athens, Georgia, USA
| | - Francesco Versace
- NIMH Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
- Present address:
Francesco Versace is currently at MD Anderson Cancer Center at the University of Texas, Houston, Texas, USA
| | - Margaret M. Bradley
- NIMH Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Borsook D, Upadhyay J, Chudler EH, Becerra L. A key role of the basal ganglia in pain and analgesia--insights gained through human functional imaging. Mol Pain 2010; 6:27. [PMID: 20465845 PMCID: PMC2883978 DOI: 10.1186/1744-8069-6-27] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/13/2010] [Indexed: 01/18/2023] Open
Abstract
The basal ganglia (BG) are composed of several nuclei involved in neural processing related to the execution of motor, cognitive and emotional activities. Preclinical and clinical data have implicated a role for these structures in pain processing. Recently neuroimaging has added important information on BG activation in conditions of acute pain, chronic pain and as a result of drug effects. Our current understanding of alterations in cortical and sub-cortical regions in pain suggests that the BG are uniquely involved in thalamo-cortico-BG loops to integrate many aspects of pain. These include the integration of motor, emotional, autonomic and cognitive responses to pain.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
21
|
Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE. Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 2009; 21:875-89. [PMID: 18702577 DOI: 10.1162/jocn.2009.21062] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of high-frequency activity occur preferentially during specific phases of slower oscillations. We examined whether the human nucleus accumbens engages such a mechanism by recording electrophysiological activity directly from the accumbens of human patients undergoing deep brain stimulation surgery. Oscillatory activity in the gamma (40-80 Hz) frequency range was synchronized with the phase of simultaneous alpha (8-12 Hz) waves. Further, losing and winning small amounts of money elicited relatively increased gamma oscillation power prior to and following alpha troughs, respectively. Gamma-alpha synchronization may reflect an electrophysiological gating mechanism in the human nucleus accumbens, and the phase differences in gamma-alpha coupling may reflect a reward information coding scheme similar to phase coding.
Collapse
|
22
|
Becerra L, Borsook D. Signal valence in the nucleus accumbens to pain onset and offset. Eur J Pain 2008; 12:866-9. [PMID: 18226937 DOI: 10.1016/j.ejpain.2007.12.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 12/05/2007] [Accepted: 12/09/2007] [Indexed: 10/22/2022]
Abstract
Pain and relief are at opposite ends of the reward-aversion continuum. Studying them provides an opportunity to evaluate dynamic changes in brain activity in reward-aversion pathways as measured by functional magnetic resonance imaging (fMRI). Of particular interest is the nucleus accumbens (NAc), a brain substrate known to be involved in reward-aversion processing, whose activation valence has been observed to be opposite in response to reward or aversive stimuli. Here we have used pain onset (aversive) and pain offset (rewarding) involving a prolonged stimulus applied to the dorsum of the hand in 10 male subjects over 120s to study the NAc fMRI response. The results show a negative signal change with pain onset and a positive signal change with pain offset in the NAc contralateral to the stimulus. The study supports the idea that the NAc fMRI signal may provide a useful marker for the effects of pain and analgesia in healthy volunteers.
Collapse
Affiliation(s)
- Lino Becerra
- P.A.I.N. Group, Brain Imaging Center, McLean Hospital, 115 Mill Street, Belmont MA, United States.
| | | |
Collapse
|
23
|
Borsook D, Becerra L. Phenotyping central nervous system circuitry in chronic pain using functional MRI: considerations and potential implications in the clinic. Curr Pain Headache Rep 2007; 11:201-7. [PMID: 17504647 DOI: 10.1007/s11916-007-0191-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Functional MRI (fMRI) has provided new insights into brain mechanisms in chronic pain. However, unlike acute pain measures in healthy volunteers, there are additional concerns relating to mapping brain circuits in these patients. These include the ability to measure evoked versus spontaneous pain, background conditions such as medications, or comorbid diseases such as depression, anxiety, or addiction. Nevertheless, our understanding of the centralization of pain with attendant changes in sensory, emotional, and autonomic function is being more clearly realized and has significant implications for defining the disease state and therapeutic interventions. It is possible that fMRI may become clinically useful.
Collapse
Affiliation(s)
- David Borsook
- P. A. I. N. Group, Brain Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
24
|
Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 2007; 191:461-82. [PMID: 17225164 DOI: 10.1007/s00213-006-0668-9] [Citation(s) in RCA: 671] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. OBJECTIVE The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. RESULTS The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. CONCLUSIONS Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.
Collapse
Affiliation(s)
- J D Salamone
- Division of Behavioral Neuroscience, Department of Psychology, University of Connecticut, Storrs, CT, 06269-1020, USA.
| | | | | | | |
Collapse
|
25
|
Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, Pendse G, Moulton E, Scrivani S, Keith D, Chizh B, Borsook D. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006; 26:10646-57. [PMID: 17050704 PMCID: PMC6674763 DOI: 10.1523/jneurosci.2305-06.2006] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional magnetic resonance imaging was used to study patients with chronic neuropathic pain involving the maxillary region (V2) of the trigeminal nerve in patients with spontaneous pain and evoked pain to brush (allodynia). Patients underwent two functional scans (2-3 months apart) with mechanical and thermal stimuli applied to the affected region of V2 and to the mirror site in the unaffected contralateral V2 region, as well as bilaterally to the mandibular (V3) division. Patients were stimulated with brush, noxious cold, and noxious heat. Significant changes were observed in regions within and outside the primary trigeminal sensory pathway. Stimulation to the affected (neuropathic) side resulted in predominantly frontal region and basal ganglia activation compared with the control side. The differences were consistent with the allodynia to brush and cold. A region of interest-based analysis of the trigeminal sensory pathway revealed patterns of activation that differentiated between the affected and unaffected sides and that were particular to each stimulus. Activation in the spinal trigeminal nucleus was constant in location for all pain stimuli. Activation in other brainstem nuclei also showed differences in the blood oxygenation level-dependent signal for the affected versus the unaffected side. Thus, sensory processing in patients with trigeminal neuropathic pain is associated with distinct activation patterns consistent with sensitization within and outside of the primary sensory pathway.
Collapse
Affiliation(s)
- Lino Becerra
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Susie Morris
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Shelly Bazes
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Richard Gostic
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Seth Sherman
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Julie Gostic
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Gautam Pendse
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Eric Moulton
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Steven Scrivani
- The Craniofacial Pain Center, Tufts University School of Dental Medicine, Boston, Massachusetts 02111
| | - David Keith
- Oral and Maxillofacial Surgery Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Boris Chizh
- Clinical Pharmacology and Discovery Medicine, GlaxoSmithKline, Cambridge CB2 2GG, United Kingdom
| | - David Borsook
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Borsook D, Becerra LR. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2006; 2:30. [PMID: 16982005 PMCID: PMC1592305 DOI: 10.1186/1744-8069-2-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 09/18/2006] [Indexed: 12/29/2022] Open
Abstract
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain.
Collapse
Affiliation(s)
- David Borsook
- P.A.I.N. Group, Brain Imaging Center, Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Athinoula Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lino R Becerra
- P.A.I.N. Group, Brain Imaging Center, Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
27
|
Borsook D, Becerra L, Carlezon WA, Shaw M, Renshaw P, Elman I, Levine J. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2006; 11:7-20. [PMID: 16495096 DOI: 10.1016/j.ejpain.2005.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 01/06/2023]
Abstract
Sensory and emotional systems normally interact in a manner that optimizes an organism's ability to survive using conscious and unconscious processing. Pain and analgesia are interpreted by the nervous system as aversive and rewarding processes that trigger specific behavioral responses. Under normal physiological conditions these processes are adaptive. However, under chronic pain conditions, functional alterations of the central nervous system frequently result in maladaptive behaviors. In this review, we examine: (a) the interactions between sensory and emotional systems involved in processing pain and analgesia in the physiological state; (b) the role of reward/aversion circuitry in pain and analgesia; and (c) the role of alterations in reward/aversion circuitry in the development of chronic pain and co-morbid psychiatric disorders. These underlying features have implications for understanding the neurobiology of functional illnesses such as depression and anxiety and for the development and evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Department of Psychiatry, Brain Imaging Center, McLean Hospital and Harvard Medical School, Belmont MA 02748, United States.
| | | | | | | | | | | | | |
Collapse
|