1
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Di Maio R, Colangeli R, Di Giovanni G. WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT 2C/NMDA/CB 1 Receptors in the Rat Hippocampus. ACS Chem Neurosci 2019; 10:3296-3306. [PMID: 30912644 DOI: 10.1021/acschemneuro.9b00080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular basis for temporal lobe epileptogenesis remains poorly defined. Recent evidence shows that serotonin 2C receptors (5-HT2CRs), NR2A and NR2B subunit-containing N-methyl-d-aspartate receptors (NMDARs) and cannabinoid 1 receptors (CB1Rs) may be involved in the progression of the epileptic disorders. Moreover, CB1R activation has been reported to modulate the activity of 5-HT2C and NMDA receptors. Here, we treated Sprague-Dawley rats with the pro-convulsant agent pilocarpine (PILO) to induce status epilepticus (SE) in order to study the effect, with regards to receptor signaling and their interactions, of the preactivation of the CB1Rs on early changes that occur 24 h from the initial insult in the hippocampus. Pretreatment with the synthetic CB1/2R agonist WIN 55,212-2 (2 mg/kg, ip) counteracted PILO-induced 5-HT2CR downregulation. Moreover, WIN 55,212-2 uncoupled PILO-induced 5-HT2CR/NR2A and prevented NR2ATyr1325 phosphorylation indirectly since no 5-HT2CR/CB1R interactions were observed. WIN 55,212-2 treatment also prevented PILO-mediated impairment of CB1R/NR2B interactions and NR2B subunit internalization, suggesting a possible role of CB1R in NR2B-containing NMDAR turn over. All the effects observed in animals treated with WIN 55,212-2 were blocked by pretreatment with the selective CB1R antagonist AM251 (1 mg/kg, ip) given 45 min before PILO injection. These results, obtained in vivo in post-PILO-induced SE, provide new insights on the early cellular responses during epileptogenesis and identify new CB1R-mediated mechanisms by which cannabinoids may prevent the development of chronic epilepsy.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
3
|
Colciaghi F, Finardi A, Nobili P, Locatelli D, Spigolon G, Battaglia GS. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia. PLoS One 2014; 9:e89898. [PMID: 24587109 PMCID: PMC3937400 DOI: 10.1371/journal.pone.0089898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
4
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
5
|
Prakash O, Lukiw WJ, Peruzzi F, Reiss K, Musto AE. Gliomas and seizures. Med Hypotheses 2012; 79:622-6. [PMID: 22959996 DOI: 10.1016/j.mehy.2012.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/28/2012] [Indexed: 10/27/2022]
Abstract
Glial neoplasms account for nearly 50% of all adult primary brain tumors. They originate from glial cells in the brain and/or spinal cord and include low-grade diffuse astrocytomas, anaplastic-astrocytomas, and glioblastomas. Of all brain tumors, glioblastoma multiforme (GBM) is the most aggressive and is characterized by rapid glial cell growth, resistance to radio- and chemo- therapies, and relentless infiltration and spreading throughout the central nervous system (CNS). In glioblastomas, primary tumor growth and CNS invasion are associated with the activation of complex structural molecular and metabolic changes within the tumor tissue, which profoundly affect the surrounding neuronal networks and may in part explain induction of epilepsy. In fact, epileptic seizures are very common among patients with glial tumors, reaching nearly 50% in glioblastoma patients and almost 90% in low-grade astrocytomas. The overall hypothesis presented here discusses the possibility that the aberrant tumor cell metabolism may act directly on neuronal network, and this leads to seizure susceptibility. Further invasion and growth of the malignant glial cells exacerbate this initial pathologic state which promotes recurrent seizures (epileptogenesis).
Collapse
Affiliation(s)
- O Prakash
- LSUHSC - Cancer Center, Neurosurgery Department and Neuroscience Center of Excellence, 2020 Gravier St., New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
6
|
Wang H, Wang Z, Mi W, Zhao C, Liu Y, Wang Y, Sun H. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression. Neural Regen Res 2012; 7:827-32. [PMID: 25737709 PMCID: PMC4342709 DOI: 10.3969/j.issn.1673-5374.2012.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 01/30/2023] Open
Abstract
Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.
Collapse
Affiliation(s)
- Henglin Wang
- Department of Anesthesiology, the 309 Hospital of Chinese PLA, Beijing 100091, China
| | - Zhuoqiang Wang
- Department of Anesthesiology, the 309 Hospital of Chinese PLA, Beijing 100091, China
| | - Weidong Mi
- Center of Anesthesiology and Operation, General Hospital of Chinese PLA, Beijing 100853, China
| | - Cong Zhao
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing 100850, China
| | - Yanqin Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing 100850, China
| | - Yongan Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing 100850, China
| | - Haipeng Sun
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing 100850, China
| |
Collapse
|
7
|
Frasca A, Aalbers M, Frigerio F, Fiordaliso F, Salio M, Gobbi M, Cagnotto A, Gardoni F, Battaglia GS, Hoogland G, Di Luca M, Vezzani A. Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol Dis 2011; 43:507-15. [DOI: 10.1016/j.nbd.2011.04.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/15/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
|
8
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
9
|
Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G, Locatelli D, Vezzani A, Battaglia G. Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. ACTA ACUST UNITED AC 2011; 134:2828-43. [PMID: 21482549 DOI: 10.1093/brain/awr045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, via Temolo 4, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lesting J, Geiger M, Narayanan RT, Pape HC, Seidenbecher T. Impaired extinction of fear and maintained amygdala-hippocampal theta synchrony in a mouse model of temporal lobe epilepsy. Epilepsia 2010; 52:337-46. [PMID: 21054349 DOI: 10.1111/j.1528-1167.2010.02758.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE The relationship between epilepsy and fear has received much attention. However, seizure-modulated fear and physiologic or structural correlates have not been examined systematically, and the underlying basics of network levels remain unclear to date. Therefore, this project was set up to characterize the neurophysiologic basis of seizure-related fear and the contribution of the amygdala-hippocampus system. METHODS The experimental strategy was composed of the following steps: (1) use of the mouse pilocarpine model of temporal lobe epilepsy (TLE); (2) behavioral analyses of anxiety states in the elevated plus maze test, light-dark avoidance test, and Pavlovian fear conditioning; and (3) probing neurophysiologic activity patterns in amygdala-hippocampal circuits in freely behaving mice. RESULTS Our results displayed no significant differences in basic anxiety levels comparing mice that developed spontaneous recurrent seizures (SRS) and controls. Furthermore, conditioned fear memory retrieval was not influenced in SRS mice. However, during fear memory extinction, SRS mice showed an extended freezing behavior and a maintained amygdala-hippocampal theta frequency synchronization compared to controls. DISCUSSION These results indicate specific alterations in conditioned fear behavior and related neurophysiologic activities in the amygdala-hippocampal network contributing to impaired fear memory extinction in mice with TLE. Clinically, the nonextinguished fear memories may well contribute to the experience of fear in patients with TLE.
Collapse
|
11
|
Graebenitz S, Lesting J, Sosulina L, Seidenbecher T, Pape HC. Alteration of NMDA receptor-mediated synaptic interactions in the lateral amygdala associated with seizure activity in a mouse model of chronic temporal lobe epilepsy. Epilepsia 2010; 51:1754-62. [DOI: 10.1111/j.1528-1167.2010.02561.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Neuroprotection after status epilepticus by targeting protein interactions with postsynaptic density protein 95. J Neuropathol Exp Neurol 2009; 68:823-31. [PMID: 19535989 DOI: 10.1097/nen.0b013e3181ac6b70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate essential neuronal excitation, but overactivation of NMDARs results in excitotoxic cell death in a variety of pathologic conditions, including status epilepticus (SE). Although NMDAR antagonists attenuate SE-induced brain injury, undesirable side effects have limited their clinical efficacy. Tat-NR2B9c was designed to disrupt protein interactions involving postsynaptic density protein 95 in the NMDAR signaling complex while not interfering with function of the NMDAR ion channel. We examined the ability of Tat-NR2B9c to provide neuroprotection in the hippocampus of rats after 60 minutes of SE induced by the repeated injection of low doses of pilocarpine (10 mg/kg). Tat-NR2B9c was administered 3hours after the termination of SE, and neuronal densities were assessed 14 days later by stereologic analysis of NeuN-positive cells. After SE, pyramidal cell densities were reduced by 70% in CA1, 34% in CA3, 58% in CA4, and 88% in the piriform cortex. In Tat-NR2B9c-treated rats, neuronal densities in CA1, a subregion of CA3, and CA4 were decreased by only 38%, 4%, and 26%, respectively. Tat-NR2B9c did not reduce cell loss in the posterior piriform cortex. The results indicate that targeted disruption of the NMDAR signaling complex represents a potential therapeutic approach for limiting neuronal cell loss after SE.
Collapse
|
13
|
Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA, Lombroso PJ. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 2009; 29:9330-43. [PMID: 19625523 PMCID: PMC2737362 DOI: 10.1523/jneurosci.2212-09.2009] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/08/2009] [Accepted: 06/15/2009] [Indexed: 12/31/2022] Open
Abstract
NMDA receptor (NMDAR)-mediated excitotoxicity plays an important role in several CNS disorders, including epilepsy, stroke, and ischemia. Here we demonstrate the involvement of striatal-enriched protein tyrosine phosphatase (STEP) in this critical process. STEP(61) is an alternatively spliced member of the family that is present in postsynaptic terminals. In an apparent paradox, STEP(61) regulates extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, two proteins with opposing functions; activated p38 promotes cell death, whereas activated ERK1/2 promotes cell survival. We found that synaptic stimulation of NMDARs promoted STEP(61) ubiquitination and degradation, concomitant with ERK1/2 activation. In contrast, extrasynaptic stimulation of NMDARs invoked calpain-mediated proteolysis of STEP(61), producing the truncated cleavage product STEP(33) and activation of p38. The calpain cleavage site on STEP was mapped to the kinase interacting motif, a domain required for substrate binding. As a result, STEP(33) neither interacts with nor dephosphorylates STEP substrates. A synthetic peptide spanning the calpain cleavage site efficiently reduced STEP(61) degradation and attenuated p38 activation and cell death in slice models. Furthermore, this peptide was neuroprotective when neurons were subjected to excitotoxicity or cortical slices were exposed to ischemic conditions. These findings suggest a novel mechanism by which differential NMDAR stimulation regulates STEP(61) to promote either ERK1/2 or p38 activation and identifies calpain cleavage of STEP(61) as a valid target for the development of neuroprotective therapy.
Collapse
Affiliation(s)
- Jian Xu
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pradeep Kurup
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Yongfang Zhang
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Susan M. Goebel-Goody
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Peter H. Wu
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, and
| | - Ammar H. Hawasli
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew L. Baum
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Paul J. Lombroso
- The Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
14
|
Wu H, Wu H, Li H, Wu H, Li H, Guo J. Spry2-mediated inhibition of the Ras/ERK pathway through interaction with Src kinase following cerebral ischemia. Brain Inj 2009; 22:275-81. [DOI: 10.1080/02699050801911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Involvement of the cAMP-dependent pathway in the reduction of epileptiform bursting caused by somatostatin in the mouse hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:563-77. [PMID: 18665350 DOI: 10.1007/s00210-008-0338-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/10/2008] [Indexed: 11/27/2022]
Abstract
The cyclic AMP pathway is major signal transduction system involved in hippocampal neurotransmission. Recently, the peptide somatostatin-14 (SRIF) has emerged as a key signal that, by activating its receptors, inhibits epileptiform bursting in the mouse hippocampus. Little is known on transduction mechanisms, which may mediate SRIF function in native cell/tissues. Using a well-established model of epileptiform activity induced by Mg(2+)-free medium with 4-aminopyridine [0 Mg(2+)/4-aminopyridine (4-AP)] in mouse hippocampal slices, we demonstrated that protein kinase A (PKA)-related signaling is upregulated by hippocampal bursting and that treatment with SRIF normalizes this upregulation. We also demonstrated that the SRIF-induced inhibition of PKA impairs phosphorylation of the NMDA receptor subunit NR1. Extracellular recordings of the 0 Mg(2+)/4-AP-induced hippocampal discharge from the CA3 region demonstrated that treating slices with compounds, which interfere with PKA activity, prevent SRIF inhibition of epileptiform bursting. Our results suggest that SRIF modulation of hippocampal activity may involve PKA-related signaling.
Collapse
|
16
|
Gurd JW, Rawof S, Zhen Huo J, Dykstra C, Bissoon N, Teves L, Wallace MC, Rostas JAP. Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253. Brain Res 2008; 1218:158-65. [PMID: 18514171 DOI: 10.1016/j.brainres.2008.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/15/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
Ca2+-stimulated protein kinase II (CaMKII) is critically involved in the regulation of synaptic function and is implicated in the neuropathology associated with ischemia and status epilepticus (SE). The activity and localization of CaMKII is regulated by multi-site phosphorylation. In the present study we investigated the effects of global ischemia followed by reperfusion and of SE on the phosphorylation of CaMKII on T253 in rat forebrains and compared this to the phosphorylation of T286. Both ischemia and SE resulted in marked increases in the phosphorylation of T253, and this was particularly marked in the postsynaptic density (PSD). Phosphorylation of T286 decreased rapidly towards basal levels following ischemia whereas phosphorylation of T253 remained elevated for between 1 and 6 h before decreasing to control values. Following SE, phosphorylation of T253 remained elevated for between 1 and 3 h before decreasing to control levels. In contrast, phosphorylation of T286 remained elevated for at least 24 h following the termination of SE. Total CaMKII associated with PSDs transiently increased 10 min following ischemia, but only several hours following SE. The results demonstrate that phoshorylation of CaMKII on T253 is enhanced following both ischemia/reperfusion and SE and indicate that the phosphorylation of T253 and T286 are differentially regulated.
Collapse
Affiliation(s)
- James W Gurd
- Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Martin BS, Kapur J. A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia 2007; 49:248-55. [PMID: 17941842 DOI: 10.1111/j.1528-1167.2007.01384.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE New treatments are needed for status epilepticus (SE) that is refractory to drugs modulating GABA(A) receptors, and NMDA receptor antagonists are candidate drugs. METHODS Clinically available NMDA receptor antagonist ketamine was tested for effectiveness in terminating prolonged SE induced by a combination of lithium and pilocarpine. Animals were treated 10 min after first grade 5 behavioral seizure (Racine scoring scale) by intraperitoneal administration of ketamine, diazepam, or saline. Seizure termination was determined by electroencephalogram (EEG) recordings from the hippocampus and the cortex. RESULTS Animals treated with normal saline or either 20 mg/kg diazepam, or 50 mg/kg ketamine continued in SE for the next 300 min. However, combined treatment with diazepam and ketamine rapidly terminated prolonged cholinergic stimulation-induced SE. Detailed study of dose response relationships demonstrated that diazepam enhanced efficacy and potency of ketamine in terminating SE. DISCUSSION This study demonstrated synergistic action of diazepam and ketamine in terminating SE. It suggests that a ketamine-diazepam combination might be a clinically useful therapeutic option for the treatment of refractory SE.
Collapse
Affiliation(s)
- Brandon S Martin
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-800394, U.S.A
| | | |
Collapse
|
18
|
Brevetoxin-induced phosphorylation of Pyk2 and Src in murine neocortical neurons involves distinct signaling pathways. Brain Res 2007; 1184:17-27. [PMID: 17963734 DOI: 10.1016/j.brainres.2007.09.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 12/14/2022]
Abstract
Brevetoxins (PbTx-1 to PbTx-10) are potent lipid soluble polyether neurotoxins produced by the marine dinoflagellate Karenia brevis. Brevetoxins bind to site 5 of the alpha-subunit of voltage-gated sodium channels (VGSCs) and augment Na(+) influx. In neocortical neurons brevetoxins elevate intracellular Ca(2+) and augment NMDA receptor signaling. In this study, we explored the effects of PbTx-2 on Pyk2 and Src activation in neocortical neurons. We found that both Pyk2 and Src were activated following PbTx-2 exposure. PbTx-2-induced Pyk2 Tyr402 phosphorylation was dependent on elevation of Ca(2+) influx through NMDA receptors. Moreover, Pyk2 Tyr402 phosphorylation was also found to require PKC activation inasmuch as RO-31-8425 and GF 109203x both attenuated the response. In contrast, PbTx-2-induced Src Tyr416 phosphorylation involved a Gq-coupled receptor inasmuch as U73122, a specific PLC inhibitor, abolished the response. This Gq-coupled receptor appears to be mGluR 5. The PKCdelta inhibitor rottlerin abolished PbTx-2-induced Src activation demonstrating that this isoform of PKC is involved in the activation of Src by PbTx-2. Considered together these data suggest that although activation of neuronal Pyk2 and Src result from PbTx-2 stimulation of VGSC, engagement of these two non-receptor tyrosine kinases involves distinct signaling pathways.
Collapse
|
19
|
Khanna S, Roy S, Park HA, Sen CK. Regulation of c-Src activity in glutamate-induced neurodegeneration. J Biol Chem 2007; 282:23482-90. [PMID: 17569670 DOI: 10.1074/jbc.m611269200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Src is heavily expressed in the brain and in human neural tissues. Our pursuit for characterization of the neuroprotective mechanisms of tocotrienols led to the first evidence demonstrating that rapid c-Src activation plays a central role in executing glutamate-induced neurodegeneration. It is now known that Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Here, we sought to examine the mechanisms that regulate inducible c-Src activity in glutamate-challenged HT4 neural cells and primary cortical neurons. Knockdown of c-Src protected cells against glutamate-induced loss of viability. Consistently, microinjection of siRNA against c-Src protected cells against glutamate. Using overexpression and knockdown approaches, we noted that SHP-1 may be implicated in glutamate-induced c-Src activation. Following such activation, Cbp and caveolin-1 were phosphorylated and associated with Csk. Csk was translocated to the membrane where it down-regulated glutamate-induced c-Src activity by catalyzing the inhibitory phosphorylation of a tyrosine residue in c-Src. Findings of this study present a new paradigm that addresses the regulation of c-Src under neurodegenerative conditions.
Collapse
Affiliation(s)
- Savita Khanna
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
20
|
McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. ACTA ACUST UNITED AC 2006; 2006:re12. [PMID: 17033045 DOI: 10.1126/stke.3562006re12] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|