1
|
Rosa AC, Nardini P, Sgambellone S, Gurrieri M, Spampinato SF, Dell’Accio A, Chazot PL, Obara I, Liu WL, Pini A. CNS-Sparing Histamine H3 Receptor Antagonist as a Candidate to Prevent the Diabetes-Associated Gastrointestinal Symptoms. Biomolecules 2022; 12:biom12020184. [PMID: 35204685 PMCID: PMC8961615 DOI: 10.3390/biom12020184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Among the histamine receptors, growing evidence points to the histamine H3 receptor as a pharmacological candidate to counteract the autonomic neuropathy associated with diabetes. The study aimed to evaluate the effect of PF00868087 (also known as ZPL-868), a CNS-sparing histamine H3 receptor antagonist, on the autonomic neuropathy of the intestinal tract associated with diabetes. Diabetes was induced in male BALB/c mice by a single high dose of streptozotocin (150 mg/kg). Colorectal specimens from control and diabetic mice, randomized to vehicle or PF0086087 (10, 30, 100 mg/kg/day by oral gavage for 14 days), were processed for morphological and immunohistochemical analysis. A significant overproduction of mucus in the intestinal mucosa of diabetic mice compared to the controls was observed. PF0086087 at the highest dose prevented mucin overproduction. The immunohistochemistry analysis demonstrated that diabetes causes a decrease in the inhibitory component of enteric motility, measured as the percentage of neuronal nitric oxide synthase-positive neurons (p < 0.05) and a parallel increase in the excitatory component evaluated as substance P-positive fibres (p < 0.01). PF0086087 dose-dependently prevented these pathophysiological events. In conclusion, PF0086087 may be an essential tool in preventing nitrergic dysfunction in the myenteric plexus of the distal colon and diabetes-induced gastrointestinal complications.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- Correspondence: (A.C.R.); (A.P.); Tel.: +39-0116707955 (A.C.R.); +39-0552758155 (A.P.)
| | - Patrizia Nardini
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (P.N.); (M.G.); (A.D.)
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Maura Gurrieri
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (P.N.); (M.G.); (A.D.)
| | - Simona Federica Spampinato
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Alfonso Dell’Accio
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (P.N.); (M.G.); (A.D.)
| | - Paul L Chazot
- School of Biological and Biomedical Science, Durham University, Durham DH1 3LE, UK;
| | - Ilona Obara
- School of Pharmacy and Translational and Clinical Research Institute, King George VI Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK;
| | - Wai L Liu
- Liu & Co Consulting Limited, Whitstable CT5 3RF, UK;
| | - Alessandro Pini
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (P.N.); (M.G.); (A.D.)
- Correspondence: (A.C.R.); (A.P.); Tel.: +39-0116707955 (A.C.R.); +39-0552758155 (A.P.)
| |
Collapse
|
2
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
3
|
Meldgaard T, Olesen SS, Farmer AD, Krogh K, Wendel AA, Brock B, Drewes AM, Brock C. Diabetic Enteropathy: From Molecule to Mechanism-Based Treatment. J Diabetes Res 2018; 2018:3827301. [PMID: 30306092 PMCID: PMC6165592 DOI: 10.1155/2018/3827301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The incidence of the micro- and macrovascular complications of diabetes is rising, mirroring the increase in the worldwide prevalence. Arguably, the most common microvascular complication is neuropathy, leading to deleterious changes in both the structure and function of neurons. Amongst the various neuropathies with the highest symptom burden are those associated with alterations in the enteric nervous system, referred to as diabetic enteropathy. The primary aim of this review is to provide a contemporaneous summary of pathophysiology of diabetic enteropathy thereby allowing a "molecule to mechanism" approach to treatment, which will include 4 distinct aspects. Firstly, the aim is to provide an overview of the diabetes-induced structural remodelling, biochemical dysfunction, immune-mediated alterations, and inflammatory properties of the enteric nervous system and associated structures. Secondly, the aim is to provide a synopsis of the clinical relevance of diabetic enteropathy. Thirdly, the aim is to discuss the various patient-reported outcome measures and the objective modalities for evaluating dysmotility, and finally, the aim is to outline the clinical management and different treatment options that are available. Given the burden of disease that diabetic enteropathy causes, earlier recognition is needed allowing prompt investigation and intervention, which may lead to improvements in quality of life for sufferers.
Collapse
Affiliation(s)
- Theresa Meldgaard
- Mech-Sense, Department of Clinical Medicine, Aalborg University, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Søren Schou Olesen
- Mech-Sense, Department of Clinical Medicine, Aalborg University, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Adam D. Farmer
- Centre for Digestive Diseases, Blizard Institute of Cell & Molecular Science, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, 4 Newark Street, London E1 2AT, UK
- Department of Gastroenterology, University Hospitals of North Midlands, Stoke-on-Trent, Staffordshire ST4 6QJ, UK
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| | - Anne Astrid Wendel
- Mech-Sense, Department of Clinical Medicine, Aalborg University, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Birgitte Brock
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Niels Steensens Vej 2-4, Building: NSK, 2820 Gentofte, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Clinical Medicine, Aalborg University, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Clinical Medicine, Aalborg University, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| |
Collapse
|
4
|
Abstract
Autonomic neuropathy complicates diabetes by increasing patient morbidity and mortality. Surprisingly, considering its importance, development and exploitation of animal models has lagged behind the wealth of information collected for somatic symmetrical sensory neuropathy. Nonetheless, animal studies have resulted in a variety of insights into the pathogenesis, neuropathology, and pathophysiology of diabetic autonomic neuropathy (DAN) with significant and, in some cases, remarkable correspondence between rodent models and human disease. Particularly in the study of alimentary dysfunction, findings in intrinsic intramural ganglia, interstitial cells of Cajal and the extrinsic parasympathetic and sympathetic ganglia serving the bowel vie for recognition as the chief mechanism. A body of work focused on neuropathologic findings in experimental animals and human subjects has demonstrated that axonal and dendritic pathology in sympathetic ganglia with relative neuron preservation represents one of the neuropathologic hallmarks of DAN but it is unlikely to represent the entire story. There is a surprising selectivity of the diabetic process for subpopulations of neurons and nerve terminals within intramural, parasympathetic, and sympathetic ganglia and innervation of end organs, afflicting some while sparing others, and differing between vascular and other targets within individual end organs. Rather than resulting from a simple deficit in one limb of an effector pathway, autonomic dysfunction may proceed from the inability to integrate portions of several complex pathways. The selectivity of the diabetic process appears to confound a simple global explanation (e.g., ischemia) of DAN. Although the search for a single unifying pathogenetic hypothesis continues, it is possible that autonomic neuropathy will have multiple pathogenetic mechanisms whose interplay may require therapies consisting of a cocktail of drugs. The role of multiple neurotrophic substances, antioxidants (general or pathway specific), inhibitors of formation of advanced glycosylation end products and drugs affecting the polyol pathway may be complex and therapeutic elements may have both salutary and untoward effects. This review has attempted to present the background and current findings and hypotheses, focusing on autonomic elements including and beyond the typical parasympathetic and sympathetic nervous systems to include visceral sensory and enteric nervous systems.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Meratan AA, Nemat-Gorgani M. Mitochondrial membrane permeabilization upon interaction with lysozyme fibrillation products: Role of mitochondrial heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2149-57. [DOI: 10.1016/j.bbamem.2012.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/18/2012] [Accepted: 04/26/2012] [Indexed: 11/30/2022]
|
6
|
Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med 2012; 23:499-505. [PMID: 22863425 DOI: 10.1016/j.ejim.2012.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Gastrointestinal symptoms occur frequently among patients with diabetes mellitus and are associated with considerable morbidity. Diabetic gastrointestinal autonomic neuropathy represents a complex disorder with multifactorial pathogenesis, which is still not well understood. It appears to involve a spectrum of metabolic and cellular changes that affect gastrointestinal motor and sensory control. It may affect any organ in the digestive system. Clinical manifestations are often underestimated, and therefore autonomic neuropathy should be suspected in all diabetic patients with unexplained gastrointestinal symptoms. Advances in technology have now enabled assessment of gastrointestinal motor function. Moreover, novel pharmacological approaches, along with endoscopic and surgical treatment options, contribute to improved outcomes. This review summarises the progress achieved in diabetic gastrointestinal autonomic neuropathy during the last years, focusing on clinical issues of practical importance to the everyday clinician.
Collapse
Affiliation(s)
- A Gatopoulou
- Second Department of Internal Medicine, Democritus University of Thrace, Greece.
| | | | | |
Collapse
|
7
|
Abstract
Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain, neurons are the cells most vulnerable to excess reactive oxygen and nitrogen species; their survival relies on the antioxidant protection promoted by neighbouring astrocytes. However, neurons are also intrinsically equipped with a biochemical mechanism that links glucose metabolism to antioxidant defence. Neurons actively metabolize glucose through the pentose phosphate pathway, which maintains the antioxidant glutathione in its reduced state, hence exerting neuroprotection. This process is tightly controlled by a key glycolysis-promoting enzyme and is dependent on an appropriate supply of energy substrates from astrocytes. Thus brain bioenergetic and antioxidant defence is coupled between neurons and astrocytes. A better understanding of the regulation of this intercellular coupling should be important for identifying novel targets for future therapeutic interventions.
Collapse
|
8
|
Shotton HR, Lincoln J, McGorum BC. Effects of equine grass sickness on sympathetic neurons in prevertebral and paravertebral ganglia. J Comp Pathol 2011; 145:35-44. [PMID: 21457994 DOI: 10.1016/j.jcpa.2010.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/13/2010] [Accepted: 11/06/2010] [Indexed: 12/24/2022]
Abstract
Acute equine grass sickness (EGS) is a fatal disease of horses that is thought to be due to ingestion of a neurotoxic agent causing extensive damage to autonomic neurons. The aim of this study was to compare the effects of EGS on neurons in two sympathetic ganglia, the paravertebral cranial cervical ganglion (CCG) and the prevertebral coeliac/cranial mesenteric ganglion (CG/CMG). Specimens from horses with EGS and controls were obtained post mortem and processed using single and double immunofluorescence labelling for PGP 9.5 and HuC/HuD (pan-neuronal markers), TUNEL and caspase 3 (markers for apoptosis), vasoactive intestinal polypeptide (VIP) and galanin (markers of the cell body response to injury following axotomy or exposure to sympathetic neurotoxins) and tyrosine hydroxylase (TH, marker for noradrenaline synthesis). In control horses, all neurons contained PGP 9.5 and HuC/HuD. There was a significant loss of PGP 9.5 and HuC/HuD expression in samples from horses with EGS that occurred to a greater extent in the CG/CMG than the CCG. The number of caspase 3-positive neurons increased significantly in both ganglia, but TUNEL staining of sympathetic neurons was only significantly increased in the CG/CMG in EGS. No VIP was observed in any ganglia; however, there was a significant increase in galanin-positive neurons in both ganglia in EGS. In the CCG, there was a significant shift towards increased fluorescence intensity for TH, possibly indicating an initial accumulation of TH within the cell body. In contrast, TH fluorescence intensity was significantly reduced in the CG/CMG in EGS correlating with the greater loss of neurons. These results demonstrate that EGS can induce a cell body response that is similar to the response of sympathetic neurons to a chemical neurotoxin. EGS also causes loss of sympathetic neurons, some of which occurs via apoptosis. Changes were more marked in the CG/CMG than the CCG indicating that the prevertebral ganglia were affected earlier than the paravertebral ganglia in the pathological process and had undergone greater neurodegeneration.
Collapse
Affiliation(s)
- H R Shotton
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
9
|
Abstract
Gastrointestinal dysmotility presenting as nausea, vomiting, bloating, diarrhea, constipation or abdominal pain is seen in diabetic patients. Oxidative stress has recently been recognized as a significant player in the pathogenesis of gastrointestinal complications of diabetes. In this issue of Neurogastroenterology and Motility, a team of investigators from Emory University led by Dr. Srinivasan present new evidence on the effect of oxidative stress in the diabetic colon. They show in diabetic patients, increased oxidative stress is associated with loss of the inhibitory neuronal subpopulation of enteric neurons, and that the neuronal loss can be reversed in-vitro by anti-oxidant lipoic acid. This new information adds to the accumulating evidence on the deleterious effect of oxidative stress in the gastrointestinal tract and highlights the opportunity to develop newer therapies focused on augmenting anti-oxidant defenses in the gastrointestinal tract in diabetic patients.
Collapse
Affiliation(s)
- P Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
10
|
Damon DH. Vascular-dependent effects of elevated glucose on postganglionic sympathetic neurons. Am J Physiol Heart Circ Physiol 2011; 300:H1386-92. [PMID: 21217063 DOI: 10.1152/ajpheart.00300.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular sympathetic nerves are important determinants of vascular function that are likely to contribute to vascular complications associated with hyperglycemia and diabetes. The present study tested the hypothesis that glucose modulates perivascular sympathetic nerves by studying the effects of 7 days of hyperglycemia on norepinephrine (NE) synthesis [tyrosine hydroxylase (TH)], release, and uptake. Direct and vascular-dependent effects were studied in vitro in neuronal and neurovascular cultures. Effects were also studied in vivo in rats made hyperglycemic (blood glucose >296 mg/dl) with streptozotocin (50 mg/kg). In neuronal cultures, TH and NE uptake measured in neurons grown in high glucose (HG; 25 mM) were less than that in neurons grown in low glucose (LG; 5 mM) (P < 0.05; n = 4 and 6, respectively). In neurovascular cultures, elevated glucose did not affect TH or NE uptake, but it increased NE release. Release from neurovascular cultures grown in HG (1.8 ± 0.2%; n = 5) was greater than that from cultures grown in LG (0.37 ± 0.28%; n = 5; P < 0.05; unpaired t-test). In vivo, elevated glucose did not affect TH or NE uptake, but it increased NE release. Release in hyperglycemic animals (9.4 + 1.1%; n = 6) was greater than that in control animals (5.39 + 1.1%; n = 6; P < 0.05; unpaired t-test). These data identify a novel vascular-dependent effect of elevated glucose on postganglionic sympathetic neurons that is likely to affect the function of perivascular sympathetic nerves and thereby affect vascular function.
Collapse
Affiliation(s)
- Deborah H Damon
- Department of Pharmacology, University of Vermont, Burlington, 05405, USA.
| |
Collapse
|
11
|
Loesch A, Tang H, Cotter MA, Cameron NE. Sciatic nerve of diabetic rat treated with epoetin delta: effects on C-fibers and blood vessels including pericytes. Angiology 2010; 61:651-68. [PMID: 20547541 DOI: 10.1177/0003319709360030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In diabetes mellitus (DM) reduced motor and sensory properties of peripheral nerves are linked with the dysfunction of neural vasculature. We investigated C-fibers and microvessels of sciatic nerve of normal, DM, and DM + epoetin delta-treated rats. C-fibers immunoreactive for calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), epoetin receptor (EpoR), and common beta receptor subunit of the interleukin 3 receptor (IL-3Rbeta) were present in all rats, whereas in DM and epoetin-treated rats C-fibers also showed neuronal (nNOS) and inducible (iNOS) nitric oxide synthases. The cross-sectional area of CGRP-positive C-fibers was decreased in DM, but it recovered after epoetin treatment. In all conditions, vascular endothelium showed scarce immunolabeling for endothelial nitric oxide synthase (eNOS); the profound immunoreactivity for eNOS, EpoR, and IL-3Rbeta was in pericytes. Some perivascular autonomic nerves were damaged and IL-3Rbeta positive. Findings are discussed in terms of declined sensory conduction velocity in DM, its improvement after epoetin treatment, and the possible vascular contribution to these phenomena.
Collapse
Affiliation(s)
- Andrzej Loesch
- Research Department of Inflammation, University College London Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
12
|
Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2:12. [PMID: 20552050 PMCID: PMC2874397 DOI: 10.3389/fnagi.2010.00012] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer's disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center, The University of Kansas Lawrence, KS, USA
| | | |
Collapse
|
13
|
Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 2010; 22:7-18. [PMID: 19686308 DOI: 10.1111/j.1365-2982.2009.01381.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of neural circuits, neurotransmitters and receptors involved in the sympathetic regulation of gastrointestinal (GI) function is well established. However, it is only recently that the interaction of sympathetic neurons, and of sympathetic transmitters, with the GI immune system and with gut flora has begun to be explored. Changes in the behaviour of sympathetic nerves when gut function is compromised, for example in ileus and in inflammation, have been observed, but the roles of the sympathetic innervation in these and other pathologies are not adequately understood. In this article, we first review the principal roles of the sympathetic innervation of the GI tract in controlling motility, fluid exchange and gut blood flow in healthy individuals. We then discuss the evidence that there are important interactions of sympathetic transmitters with the gut immune system and enteric glia, and evidence that inflammation has substantial effects on sympathetic neurons. These reciprocal interactions contribute to pathological changes in ways that are not yet clarified. Finally, we focus on inflammation, diabetes and postoperative ileus as conditions in which there is sympathetic involvement in compromised gut function.
Collapse
Affiliation(s)
- A E Lomax
- Gastrointestinal Diseases Research Unit, Department of Physiology, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
14
|
NGF protects paravertebral but not prevertebral sympathetic neurons against exposure to high glucose in vitro. Brain Res 2009; 1285:164-73. [DOI: 10.1016/j.brainres.2009.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 12/26/2022]
|
15
|
Schmidt RE, Green KG, Snipes LL, Feng D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol 2009; 216:207-18. [PMID: 19111542 PMCID: PMC2672346 DOI: 10.1016/j.expneurol.2008.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/24/2008] [Accepted: 11/30/2008] [Indexed: 12/14/2022]
Abstract
Diabetic autonomic neuropathy is a debilitating, poorly studied complication of diabetes. Our previous studies of non-obese diabetic (NOD) and related mouse models identified rapidly developing, dramatic pathology in prevertebral sympathetic ganglia; however, once diabetic, the mice did not survive for extended periods needed to examine the ability of therapeutic agents to correct established neuropathy. In the current manuscript we show that the Akita (Ins2(Akita)) mouse is a robust model of diabetic sympathetic autonomic neuropathy with unambiguous, spontaneous, rapidly-developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. Akita mice diabetic for 2, 4 or 8 months of diabetes progressively developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric (SMG) and celiac ganglia (CG). Comparable changes failed to develop in the superior cervical ganglia (SCG) of the Akita mouse or in any ganglia of non-diabetic mice. Morphometric studies demonstrate an overall increase in presynaptic axon terminal cross sectional area, including those without any ultrastructural features of dystrophy. Neurons in Akita mouse prevertebral sympathetic ganglia show an unusual perikaryal alteration characterized by the accumulation of membranous aggregates and minute mitochondria and loss of rough endoplasmic reticulum. These changes result in the loss of a third of neurons in the CG over the course of 8 months of diabetes. The extended survival of diabetic mice and robust pathologic findings provide a clinically relevant paradigm that will facilitate the analysis of novel therapeutic agents on the reversal of autonomic neuropathy.
Collapse
Affiliation(s)
- Robert E Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
16
|
Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress. BMC Neurosci 2009; 10:12. [PMID: 19228403 PMCID: PMC2677396 DOI: 10.1186/1471-2202-10-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/19/2009] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches. Results In this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons. Conclusion Low energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.
Collapse
|
17
|
|
18
|
Abstract
Diabetes is associated with several changes in gastrointestinal (GI) motility and associated symptoms such as nausea, bloating, abdominal pain, diarrhoea and constipation. The pathogenesis of altered GI functions in diabetes is multifactorial and the role of the enteric nervous system (ENS) in this respect has gained significant importance. In this review, we summarize the research carried out on diabetes-related changes in the ENS. Changes in the inhibitory and excitatory enteric neurons are described highlighting the role of loss of inhibitory neurons in early diabetic enteric neuropathy. The functional consequences of these neuronal changes result in altered gastric emptying, diarrhoea or constipation. Diabetes can also affect GI motility through changes in intestinal smooth muscle or alterations in extrinsic neuronal control. Hyperglycaemia and oxidative stress play an important role in the pathophysiology of these ENS changes. Antioxidants to prevent or treat diabetic GI motility problems have therapeutic potential. Recent research on the nerve-immune interactions demonstrates inflammation-associated neurodegeneration which can lead to motility related problems in diabetes.
Collapse
Affiliation(s)
- B Chandrasekharan
- Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|