1
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Kim HJ, Lee DK, Choi JY. Functional Role of Phospholipase D in Bone Metabolism. J Bone Metab 2023; 30:117-125. [PMID: 37449345 PMCID: PMC10346002 DOI: 10.11005/jbm.2023.30.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023] Open
Abstract
Phospholipase D (PLD) proteins are major enzymes that regulate various cellular functions, such as cell growth, cell migration, membrane trafficking, and cytoskeletal dynamics. As they are responsible for such important biological functions, PLD proteins have been considered promising therapeutic targets for various diseases, including cancer and vascular and neurological diseases. Intriguingly, emerging evidence indicates that PLD1 and PLD2, 2 major mammalian PLD isoenzymes, are the key regulators of bone remodeling; this suggests that these isozymes could be used as potential therapeutic targets for bone diseases, such as osteoporosis and rheumatoid arthritis. PLD1 or PLD2 deficiency in mice can lead to decreased bone mass and dysregulated bone homeostasis. Although both mutant mice exhibit similar skeletal phenotypes, PLD1 and PLD2 play distinct and nonredundant roles in bone cell function. This review summarizes the physiological roles of PLD1 and PLD2 in bone metabolism, focusing on recent findings of the biological functions and action mechanisms of PLD1 and PLD2 in bone cells.
Collapse
|
4
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
5
|
Surfactant-induced excimer emission: A versatile platform for the design of fluorogenic probes. Biomaterials 2022; 289:121749. [DOI: 10.1016/j.biomaterials.2022.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
|
6
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
7
|
Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, Elliott LT. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 2021; 24:737-745. [PMID: 33875891 PMCID: PMC7610742 DOI: 10.1038/s41593-021-00826-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023]
Abstract
UK Biobank is a major prospective epidemiological study, including multimodal brain imaging, genetics and ongoing health outcomes. Previously, we published genome-wide associations of 3,144 brain imaging-derived phenotypes, with a discovery sample of 8,428 individuals. Here we present a new open resource of genome-wide association study summary statistics, using the 2020 data release, almost tripling the discovery sample size. We now include the X chromosome and new classes of imaging-derived phenotypes (subcortical volumes and tissue contrast). Previously, we found 148 replicated clusters of associations between genetic variants and imaging phenotypes; in this study, we found 692, including 12 on the X chromosome. We describe some of the newly found associations, focusing on the X chromosome and autosomal associations involving the new classes of imaging-derived phenotypes. Our novel associations implicate, for example, pathways involved in the rare X-linked STAR (syndactyly, telecanthus and anogenital and renal malformations) syndrome, Alzheimer's disease and mitochondrial disorders.
Collapse
Affiliation(s)
- Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Winfield Chen
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby BC, Canada
| | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | | | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby BC, Canada.
| |
Collapse
|
8
|
Zhang X, Wu C, Tan W. Brain Lipid Dynamics in Amyloid Precursor Protein/Presenilin 1 Mouse Model of Early Alzheimer's Disease by Desorption Electrospray Ionization and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging Techniques. J Proteome Res 2021; 20:2643-2650. [PMID: 33780243 DOI: 10.1021/acs.jproteome.0c01050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is closely associated with lipid metabolism dysfunction. However, space distribution and metabolism of aberrant lipids in the brain of early-stage AD mouse remain unclear. In our current work, a novel lipidomics method based on mass spectrometry imaging was developed to visually disclose molecular perturbation and characterize space distribution in the brain of double transgenic amyloid precursor protein/presenilin 1 mouse (2 and 3 months old). Significant changes were detected, including phosphatidylethanolamines, phosphatidylcholines, fatty acids, lysophospholipids, and glycerides in AD mouse brain. The results in this study suggest that these significantly altered lipid metabolic pathways (glycerophospholipid metabolism) may be implicated in early-stage AD. Our work deepens the understanding of the physio-pathologic mechanism of early-stage AD.
Collapse
Affiliation(s)
- Xueju Zhang
- Postdoctoral Innovation Base, Zhuhai Yuanzhi Health Technology Co. Ltd, Hengqin New Area, Zhuhai, Guangdong 519000, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wen Tan
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| |
Collapse
|
9
|
Zhang X, Liu W, Zan J, Wu C, Tan W. Untargeted lipidomics reveals progression of early Alzheimer's disease in APP/PS1 transgenic mice. Sci Rep 2020; 10:14509. [PMID: 32884056 PMCID: PMC7471266 DOI: 10.1038/s41598-020-71510-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is closely connected to aberrant lipid metabolism. However, how early AD-like pathology synchronously influences brain and plasma lipidome in AD mice remains unclear. The study of dynamic change of lipidome in early-stage AD mice could be of great interest for the discovery of lipid biomarkers for diagnosis and monitoring of early-stage AD. For the purpose, an untargeted lipidomic strategy was developed for the characterization of lipids (≤ 1,200 Da) perturbation occurring in plasma and brain in early-stage AD mice (2, 3 and 7 months) by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Significant changes were detected in the levels of several lipid species including lysophospholipids, phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and Ceramides (Cers), as well as other related lipid compounds such as fatty acids (FAs), diacylglycerols (DGs) and triacylglycerols (TGs) in AD mice. In this sense, disorders of lipid metabolism appear to involve in multiple factors including overactivation of phospholipases and diacylglycerol lipases, decreased anabolism of lysophospholipids in plasma and PEs in plasma and brain, and imbalances in the levels of PCs, FAs and glycerides at different ages. We revealed the changing panels of potential lipid biomarkers with the development of early AD. The study raises the possibility of developing lipid biomarkers for diagnosis of early-stage AD.
Collapse
Affiliation(s)
- Xueju Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.
- Postdoctoral Innovation Base, Zhuhai Yuanzhi Health Technology Co. Ltd, Hengqin New Area, Zhuhai, 519000, Guangdong, China.
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong, China.
| | - Weiwei Liu
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Jie Zan
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wen Tan
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Suppressing aberrant phospholipase D1 signaling in 3xTg Alzheimer's disease mouse model promotes synaptic resilience. Sci Rep 2019; 9:18342. [PMID: 31797996 PMCID: PMC6892889 DOI: 10.1038/s41598-019-54974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches in treatment of Alzheimer's disease (AD) is focused on early stages of cognitive decline. Identifying therapeutic targets that promote synaptic resilience during early stages may prevent progressive memory deficits by preserving memory mechanisms. We recently reported that the inducible isoform of phospholipase D (PLD1) was significantly increased in synaptosomes from post-mortem AD brains compared to age-matched controls. Using mouse models, we reported that the aberrantly elevated neuronal PLD1 is key for oligomeric amyloid driven synaptic dysfunction and underlying memory deficits. Here, we demonstrate that chronic inhibition using a well-tolerated PLD1 specific small molecule inhibitor is sufficient to prevent the progression of synaptic dysfunction during early stages in the 3xTg-AD mouse model. Firstly, we report prevention of cognitive decline in the inhibitor-treated group using novel object recognition (NOR) and fear conditioning (FC). Secondly, we provide electrophysiological assessment of better synaptic function in the inhibitor-treated group. Lastly, using Golgi staining, we report that preservation of dendritic spine integrity as one of the mechanisms underlying the action of the small molecule inhibitor. Collectively, these studies provide evidence for inhibition of PLD1 as a potential therapeutic strategy in preventing progression of cognitive decline associated with AD and related dementia.
Collapse
|
11
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
12
|
Krishnan B, Kayed R, Taglialatela G. Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:89-102. [PMID: 29560412 PMCID: PMC5857521 DOI: 10.1016/j.trci.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Phospholipase D (PLD), a lipolytic enzyme that breaks down membrane phospholipids, is also involved in signaling mechanisms downstream of seven transmembrane receptors. Abnormally elevated levels of PLD activity are well-established in Alzheimer's disease (AD), implicating the two isoforms of mammalian phosphatidylcholine cleaving PLD (PC-PLD1 and PC-PLD2). Therefore, we took a systematic approach of investigating isoform-specific expression in human synaptosomes and further investigated the possibility of therapeutic intervention using preclinical studies. Methods Synaptosomal Western blot analyses on the postmortem human hippocampus, temporal cortex, and frontal cortex of AD patient brains/age-matched controls and the 3XTg-AD mice hippocampus (mouse model with overexpression of human amyloid precursor protein, presenilin-1 gene, and microtubule-associated protein tau causing neuropathology progressing comparable to that in human AD patients) were used to detect the levels of neuronal PLD1 expression. Mouse hippocampal long-term potentiation of PLD1-dependent changes was studied using pharmacological approaches in ex vivo slice preparations from wild-type and transgenic mouse models. Finally, PLD1-dependent changes in novel object recognition memory were assessed following PLD1 inhibition. Results We observed elevated synaptosomal PLD1 in the hippocampus/temporal cortex from postmortem tissues of AD patients compared to age-matched controls and age-dependent hippocampal PLD1 increases in 3XTg-AD mice. PLD1 inhibition blocked effects of oligomeric amyloid β or toxic oligomeric tau species on high-frequency stimulation long-term potentiation and novel object recognition deficits in wild-type mice. Finally, PLD1 inhibition blocked long-term potentiation deficits normally observed in aging 3XTg-AD mice. Discussion Using human studies, we propose a novel role for PLD1-dependent signaling as a critical mechanism underlying oligomer-driven synaptic dysfunction and consequent memory disruption in AD. We, further, provide the first set of preclinical studies toward future therapeutics targeting PLD1 in slowing down/stopping the progression of AD-related memory deficits as a complementary approach to immunoscavenging clinical trials that are currently in progress.
Collapse
Affiliation(s)
- Balaji Krishnan
- Corresponding author. Tel.: 409 772 8069; Fax: 409 747 0015.
| | | | | |
Collapse
|
13
|
Cho JH, Han JS. Phospholipase D and Its Essential Role in Cancer. Mol Cells 2017; 40:805-813. [PMID: 29145720 PMCID: PMC5712509 DOI: 10.14348/molcells.2017.0241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 11/11/2017] [Indexed: 11/27/2022] Open
Abstract
The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, NFκB, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 4321,
USA
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
14
|
Abstract
Phospholipase D (PLD) enzymes are one source of receptor-generated phosphatidic acid (PtdOH),which may subsequently be metabolized to diacylglycerol (DAG) and lysophosphatidic acid. There are other pathways that lead to PtdOH generation, but differences in pathways and in the acyl composition of the products seem to provide some specificity. Both direct and indirect inhibitors of PLD activity have been identified despite a long-held suspicion that this pathway was undruggable. The identification of raloxifene and halopemide as direct inhibitors was followed by the systematic development of isoenzyme-preferring compounds that have been used to further differentiate the functions of PLD1 and PLD2. PLD2 in host cells has been associated with viral entry processes and innate immune response pathways such that inhibition blocks efficient infection. This PLD2 pathway has been linked to autophagy via AKT kinases. As a potential target in antiretroviral therapy, PLD1 works through the CAD enzyme (which contains carbamoyl aspartate synthase, aspartate transcarbamylase and dihydro-orotase domains) to modulate pyrimidine biosynthesis. PLD activity and expression have been shown to be upregulated in several types of human cancers, in which PLD enzymes function downstream of a variety of known oncogenes. Inhibition of PtdOH production has a marked effect on tumorigenesis and malignant invasion. PLD1, PLD2 and PLD3 have each been suggested to have a role in Alzheimer disease and other neurodegenerative conditions, but a mechanism has not yet emerged to explain the roles of these proteins in central nervous system pathophysiology.
Lipid second messengers such as phosphatidic acid (PtdOH) have a role in a wide range of pathological processes, and phospholipase D (PLD) enzymes are one of the major sources of signal-activated PtdOH generation. In this Review, Brown, Thomas and Lindsley discuss the development of PLD inhibitors, with a focus on isoform-specific inhibitors, and their potential applications in the treatment of cancer, neurodegeneration and infection. Lipid second messengers have essential roles in cellular function and contribute to the molecular mechanisms that underlie inflammation, malignant transformation, invasiveness, neurodegenerative disorders, and infectious and other pathophysiological processes. The phospholipase D (PLD) isoenzymes PLD1 and PLD2 are one of the major sources of signal-activated phosphatidic acid (PtdOH) generation downstream of a variety of cell-surface receptors, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and integrins. Recent advances in the development of isoenzyme-selective PLD inhibitors and in molecular genetics have suggested that PLD isoenzymes in mammalian cells and pathogenic organisms may be valuable targets for the treatment of several human diseases. Isoenzyme-selective inhibitors have revealed complex inter-relationships between PtdOH biosynthetic pathways and the role of PtdOH in pathophysiology. PLD enzymes were once thought to be undruggable owing to the ubiquitous nature of PtdOH in cell signalling and concerns that inhibitors would be too toxic for use in humans. However, recent promising discoveries suggest that small-molecule isoenzyme-selective inhibitors may provide novel compounds for a unique approach to the treatment of cancers, neurodegenerative disorders and other afflictions of the central nervous system, and potentially serve as broad-spectrum antiviral and antimicrobial therapeutics.
Collapse
|
15
|
Application of metabolomics based on direct mass spectrometry analysis for the elucidation of altered metabolic pathways in serum from the APP/PS1 transgenic model of Alzheimer's disease. J Pharm Biomed Anal 2015; 107:378-85. [DOI: 10.1016/j.jpba.2015.01.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
|
16
|
Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer׳s disease. Talanta 2015; 131:480-9. [DOI: 10.1016/j.talanta.2014.07.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
|
17
|
Metabolomic study of lipids in serum for biomarker discovery in Alzheimer's disease using direct infusion mass spectrometry. J Pharm Biomed Anal 2014; 98:321-6. [DOI: 10.1016/j.jpba.2014.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/12/2014] [Accepted: 05/08/2014] [Indexed: 12/22/2022]
|
18
|
Palmitic acid and oleic acid differentially regulate choline transporter-like 1 levels and glycerolipid metabolism in skeletal muscle cells. Lipids 2014; 49:731-44. [PMID: 24972900 DOI: 10.1007/s11745-014-3925-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
Abstract
Choline is an essential nutrient required for the biosynthesis of membrane lipid phosphatidylcholine (PtdCho). Here we elucidate the mechanism of how palmitic acid (PAM) and oleic acid (OLA) regulate choline transporter-like protein 1 (CTL1/SLC44A1) function. We evaluated the mechanism of extracellular and intracellular transport of choline, and their contribution to PtdCho and other glycerolipid-diacylglycerol (DAG) and triacylglycerol (TAG) homeostasis in differentiated skeletal muscle cells. PAM reduces total and plasma membrane CTL1/SLC44A1 protein by lysosomal degradation, and limits the choline uptake while increasing DAG and TAG synthesis. OLA maintains total and plasma membrane CTL1/SLC44A1, but increases PtdCho synthesis more than PAM. OLA does not increase the rate of DAG synthesis, but does increase TAG content. Thus, the CTL1/SLC44A1 presence at the plasma membrane regulates choline requirements in accordance with the type of fatty acid. The increased PtdCho and TAG turnover by OLA stimulates cell growth and offers a specific protection mechanism from the excess of intracellular DAG and autophagy. This protection was present after OLA treatments, but not after PAM treatments. The mitochondrial choline uptake was reduced by both FA; however, the regulation is complex and guided not only by the presence of the mitochondrial CTL1/SLC44A1 protein but also by the membrane potential and general mitochondrial function.
Collapse
|
19
|
Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakanishi H, Kinoshita M, Frohman MA, Yamamoto A, Tani K. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 2014; 289:11497-11511. [PMID: 24599962 PMCID: PMC4036285 DOI: 10.1074/jbc.m113.531921] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.
Collapse
Affiliation(s)
- Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nagisa Arimitsu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takeshi Kogure
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayumi Edo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomohiro Maruyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuki Nakao
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan
| | - Makoto Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michael A Frohman
- Department of Pharmacology and Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794-5140, and
| | - Akitsugu Yamamoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan,.
| |
Collapse
|
20
|
Formation and regulation of mitochondrial membranes. Int J Cell Biol 2014; 2014:709828. [PMID: 24578708 PMCID: PMC3918842 DOI: 10.1155/2014/709828] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.
Collapse
|
21
|
Feng P, Huang C. Phospholipase D-mTOR signaling is compromised in a rat model of depression. J Psychiatr Res 2013; 47:579-85. [PMID: 23421961 DOI: 10.1016/j.jpsychires.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Depression is associated with structural and neurochemical changes in limbic structures, including the hippocampus, that control emotion and mood. Structural abnormalities such as decrease in hippocampal cell proliferation, neurogenesis and hippocampal volume, and loss of neurons and glial cells have been widely reported in physical and psychosocial stress paradigms and animal model of depression, but corresponding neurochemical changes are largely unknown. Using neonatal clomipramine (CL)-treated rats as a model to elucidate the association of phospholipase D (PLD) and mammalian target of rapamycin (mTOR) signaling with depressive pathology, we found that the hippocampus of CL-treated rats showed significantly down-regulation of PLD1 expression and attenuation of PLD activity which leads to the less formation of phosphatidic acid (PA), an activator of mTOR, and free choline, a potential biomarker for depression. With lower PA levels which could affect mTOR signaling, we further observed that the phosphorylation of p70S6 kinase, one of the downstream effectors of mTOR, was also significantly decreased in the hippocampus of CL-treated rats compared to the controls. Down-regulation of PLD1 expression, PLD activity and p70S6 phosphorylation was also found in the hypothalamus and frontal cortex with CL-treated rats. Our results indicate that PLD-mTOR signaling is associated with depressive disorder.
Collapse
Affiliation(s)
- Pingfu Feng
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH 44109, USA
| | | |
Collapse
|
22
|
Choline-containing phospholipids in microdissected human Alzheimer's disease brain senile plaque versus neuropil. Bioanalysis 2013; 4:2153-5159. [PMID: 23013397 DOI: 10.4155/bio.12.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipidomic studies related to Alzheimer's disease have been reported on either biological fluids or large human brain samples. For a better understanding of the role of lipids, especially during the amyloid-β peptide aggregation, it is crucial to determine the composition of the senile plaque versus the surrounding tissue, that is, the neuropil. RESULTS A laser microdissection step was added to the analysis by UPLC-MS/MS. Despite the very low amount of sample, two phosphatidylcholines that were significantly depleted in the senile plaque were identified. CONCLUSION Changes in the phospholipid content have been shown between senile plaque versus neuropil. Nano HPLC, allowing a complete lipidomic profile, should further improve the results.
Collapse
|
23
|
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. BIOCHEMISTRY (MOSCOW) 2012; 77:1-14. [DOI: 10.1134/s0006297912010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
25
|
Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care 2011; 14:520-6. [PMID: 21849895 DOI: 10.1097/mco.0b013e32834ad966] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This study highlights two aspects of the concept of lipotoxicity. First, the metabolic consequences following ectopic fat accumulation are not only determined by the amount of lipid accumulated, but also the quality of lipid species. Second, the existence of allostatic mechanisms operating at cellular and tissue levels, which counterbalance the negative effects of lipid overload. RECENT FINDINGS The development of lipidomics has allowed the isolation and identification of a wide range of lipid species. Some are highly reactive and capable of inducing undesirable toxic effects. Here we focus on recent information related to pathways involved in the production of these reactive lipid species, their sites of generation and tropism for specific organelles and the molecular mechanisms through which they exert toxic effects. We describe how cell membranes and the lipid species forming their bilayer constitute the main platform from which reactive lipid species are generated. We propose that strategies aimed at maintaining membrane lipid homeostasis are fundamental to preventing the initiation of metabolically relevant lipotoxicity. SUMMARY It is essential to understand the qualitative component of lipid species involved in cellular toxicity and the molecular mechanisms mediating these toxic effects to identify new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge, Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
26
|
Romanitan MO, Popescu BO, Spulber S, Băjenaru O, Popescu LM, Winblad B, Bogdanovic N. Altered expression of claudin family proteins in Alzheimer's disease and vascular dementia brains. J Cell Mol Med 2010; 14:1088-100. [PMID: 20041969 PMCID: PMC3822746 DOI: 10.1111/j.1582-4934.2009.00999.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Claudins (Cls) are a multigene family of transmembrane proteins with different tissue distribution, which have an essential role in the formation and sealing capacity of tight junctions (TJs). At the level of the blood–brain barrier (BBB), TJs are the main molecular structures which separate the neuronal milieu from the circulatory space, by a restriction of the paracellular flow of water, ions and larger molecules into the brain. Different studies suggested recently significant BBB alterations in both vascular and degenerative dementia types. In a previous study we found in Alzheimer’s disease (AD) and vascular dementia (VaD) brains an altered expression of occludin, a molecular partner of Cls in the TJs structure. Therefore in this study, using an immunohistochemical approach, we investigated the expression of Cl family proteins (Cl-2, Cl-5 and Cl-11) in frontal cortex of aged control, AD and VaD brains. To estimate the number of Cl-expressing cells, we applied a random systematic sampling and the unbiased optical fractionator method. We found selected neurons, astrocytes, oligodendrocytes and endothelial cells expressing Cl-2, Cl-5 and Cl-11 at detectable levels in all cases studied. We report a significant increase in ratio of neurons expressing Cl-2, Cl-5 and Cl-11 in both AD and VaD as compared to aged controls. The ratio of astrocytes expressing Cl-2 and Cl-11 was significantly higher in AD and VaD as compared to aged controls. The ratio of oligodendrocytes expressing Cl-11 was significantly higher in AD and the ratio of oligodendrocytes expressing Cl-2 was significantly higher in VaD as compared to aged controls. Within the cerebral cortex, Cls were selectively expressed by pyramidal neurons, which are the ones responsible for cognitive processes and affected by AD pathology. Our findings suggest a new function of Cl family proteins which might be linked to response to cellular stress.
Collapse
Affiliation(s)
- Mihaela O Romanitan
- Laboratory of Molecular Medicine, 'Victor Babeş' National Institute of Pathology, Spl Independenţei, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
27
|
Mueller C, Zhou W, Vanmeter A, Heiby M, Magaki S, Ross MM, Espina V, Schrag M, Dickson C, Liotta LA, Kirsch WM. The heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer's disease. J Alzheimers Dis 2010; 19:1081-91. [PMID: 20157261 DOI: 10.3233/jad-2010-1303] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the remaining challenges in Alzheimer's disease (AD) research is the establishment of biomarkers for early disease detection. As part of a prospective study spanning a period of five years, we have collected serial serum samples from cognitively normal, mild cognitively impaired (MCI), and mild AD participants, including same patient samples before and after cognitive decline. Using mass spectrometry we identified several promising leads for biomarker development, such as prosaposin, phospholipase D1, biliverdin reductase B, and S100 calcium binding protein A7. Selected candidate markers were verified using reverse phase protein microarray assays. Of 15 protein/protein abundance ratios that were significantly altered in sera from subjects with mild AD compared to Normal or MCI subjects, 14 were composed of ratios containing heme oxygenase-1, biliverdin reductase A, or biliverdin reductase B. Moreover, an increase in the protein abundance ratio of matrix metallopeptidase 9/biliverdin reductase differentiated stable MCI subjects from MCI subjects progressing into mild AD before the onset of cognitive decline. These findings strongly implicate the heme degradation pathway as a promising source of protein biomarkers for the early detection of AD.
Collapse
|
28
|
Oliveira TG, Di Paolo G. Phospholipase D in brain function and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:799-805. [PMID: 20399893 DOI: 10.1016/j.bbalip.2010.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disorder. Although lipids are major constituents of brain, their role in Alzheimer's disease pathogenesis is poorly understood. Much attention has been given to cholesterol, but growing evidence suggests that other lipids, such as phospholipids, might play an important role in this disorder. In this review, we will summarize the evidence linking phospholipase D, a phosphatidic acid-synthesizing enzyme, to multiple aspects of normal brain function and to Alzheimer's disease. The role of phospholipase D in signaling mechanisms downstream of beta-amyloid as well as in the trafficking and processing of amyloid precursor protein will be emphasized.
Collapse
Affiliation(s)
- Tiago Gil Oliveira
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
29
|
Epand RM, Epand RF, Berno B, Pelosi L, Brandolin G. Association of phosphatidic acid with the bovine mitochondrial ADP/ATP carrier. Biochemistry 2010; 48:12358-64. [PMID: 19902971 DOI: 10.1021/bi901769r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beef heart adenine nucleotide carrier protein (Anc) of the inner mitochondrial membrane can be purified in a form stabilized by binding the inhibitor carboxyatractyloside. The protein is copurified with bound lipid. We show for the first time that phosphatidic acid, although a minor component, is one of the lipids bound to Anc. The short spin-lattice relaxation time found by (31)P magic angle spinning nuclear magnetic resonance (MAS/NMR) for phosphatidic acid indicates that it is tightly bound to the protein. However, this lipid also has a comparatively small chemical shift anisotropy, suggesting that it can undergo rapid reorientation in space. In contrast, most of the lipid bound to Anc shows anisotropic motion typical of a bilayer arrangement. The phosphatidic acid that is detected in the purified preparation of Anc is also shown to be present initially in the unfractionated mitochondria, prior to the isolation of Anc. In Triton-solubilized mitochondria, phosphatidic acid, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine exhibit resonance lines in the static (31)P NMR spectra, but in the purified Anc, only the phosphatidylethanolamine and phosphatidylcholine can be detected by this method, even though the other lipids are still present. This demonstrates that the phosphatidic acid and cardiolipin are interacting with the Anc. The thermal denaturation of the Anc was determined by differential scanning calorimetry. The protein denatures at 74 degrees C both before and after the NMR studies with the same characteristics.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioL8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
30
|
Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1810-6. [PMID: 19834068 DOI: 10.2353/ajpath.2009.090219] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Presenilin-1 (PS1) and -2 (PS2), which when mutated cause familial Alzheimer disease, have been localized to numerous compartments of the cell, including the endoplasmic reticulum, Golgi, nuclear envelope, endosomes, lysosomes, the plasma membrane, and mitochondria. Using three complementary approaches, subcellular fractionation, gamma-secretase activity assays, and immunocytochemistry, we show that presenilins are highly enriched in a subcompartment of the endoplasmic reticulum that is associated with mitochondria and that forms a physical bridge between the two organelles, called endoplasmic reticulum-mitochondria-associated membranes. A localization of PS1 and PS2 in mitochondria-associated membranes may help reconcile the disparate hypotheses regarding the pathogenesis of Alzheimer disease and may explain many seemingly unrelated features of this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang H, Frohman MA. Lipid signaling on the mitochondrial surface. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:839-44. [PMID: 19540356 DOI: 10.1016/j.bbalip.2009.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/03/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Regulated production and elimination of the signaling lipids phosphatidic acid (PA), diacylglycerol (DAG), and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) creates a complex and interconnected signaling network that modulates a wide variety of eukaryotic cell biological events. PA production at the plasma membrane and on trafficking membrane organelles by classical Phospholipase D (PLD) through the hydrolysis of phosphatidylcholine (PC) has been studied widely. In this chapter, we review a newly identified, non-canonical member of the PLD superfamily, MitoPLD, which localizes to the mitochondrial surface and plays a role in mitochondrial fusion via the hydrolysis of cardiolipin (CL) to generate PA. The role of PA in facilitating the mitochondrial fusion event carried out by proteins known as Mitofusins is intriguing in light of the role classic PLD-generated PA plays in facilitating SNARE-mediated fusion of secretory membrane vesicles into the plasma membrane. In addition, however, PA on the mitochondrial surface may also trigger a signaling cascade that elevates DAG, leading to downstream events that affect mitochondrial fission and energy production. PA production on the mitochondrial surface may also stimulate local production of PI4,5P(2) to facilitate mitochondrial fission and subcellular trafficking or facilitate Ca(2+) influx.
Collapse
Affiliation(s)
- Huiyan Huang
- Program in Molecular and Cellular Pharmacology, the Department of Pharmacology, and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
32
|
Michel V, Bakovic M. The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J 2009; 23:2749-58. [PMID: 19357133 DOI: 10.1096/fj.08-121491] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Choline oxidation to betaine takes place in the mitochondria; however, a protein regulating mitochondrial choline transport was never identified. The purpose of this study was to analyze subcellular localization of the solute carrier 44A1 (SLC44A1), a plasma membrane choline transporter sensitive to inhibition by hemicholinium-3. We generated N- and C-terminal-SLC44A1-specific antibodies and analyzed localization of endogenous and overexpressed SLC44A1 in C2C12 mouse muscle cells, MCF7 human breast cancer cells, and mouse tissues using confocal microscopy, differential centrifugation, and Western blotting. We further performed choline uptake competition studies on isolated mitochondria using the specific inhibitor hemicholinium-3 and SLC44A1 antibodies, and analyzed mitochondria of FL83B hepatocytes after the targeted knock-down of SLC44A1 using siRNA technology. In addition, we analyzed SLC44A1 expression during choline deficiency. Localization studies revealed plasma membrane, cytosolic, microsomal, and mitochondrial localization of endogenous and His-tagged SLC44A1. Uptake studies in isolated mitochondria show an accumulation of (3)H-choline, which is strongly inhibited by hemicholinium-3 (60%), by an excess of unlabeled choline (97%), and by both SLC44A1 antibodies. SLC44A1 mRNA and protein expression were down-regulated during choline deficiency. These data clearly establish SLC44A1 as an important mediator of choline transport across both the plasma membrane and the mitochondrial membrane.
Collapse
Affiliation(s)
- Vera Michel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
33
|
Cowell CF, Döppler H, Yan IK, Hausser A, Umezawa Y, Storz P. Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci 2009; 122:919-28. [PMID: 19258390 DOI: 10.1242/jcs.041061] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increases in reactive oxygen species (ROS) have been implicated in age-related diseases, including cancer. The serine/threonine kinase protein kinase D1 (PKD1) is a stress-responsive kinase and sensor for reactive oxygen species, which can initiate cell survival through NF-kappaB signaling. We have previously shown that in response to ROS, PKD1 is activated at the mitochondria. However, the initial signaling events leading to localization of PKD1 to the mitochondria are unknown. Here, we show that formation of mitochondrial diacylglycerol (DAG) and its binding to PKD1 is the means by which PKD1 is localized to the mitochondria in response to ROS. Interestingly, DAG to which PKD1 is recruited in this pathway is formed downstream of phospholipase D1 (PLD1) and a lipase-inactive PLD1 or inhibition of PLD1 by pharmacological inhibitors blocked PKD1 activation under oxidative stress. To date it has been viewed that monosaturated and saturated DAG formed via PLD1 have no signaling function. However, our data describe a role for PLD1-induced DAG as a competent second messenger at the mitochondria that relays ROS to PKD1-mediated mitochondria-to-nucleus signaling.
Collapse
Affiliation(s)
- Catherine F Cowell
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
34
|
Jang YH, Ahn BH, Namkoong S, Kim YM, Jin JK, Kim YS, Min DS. Differential regulation of apoptosis by caspase-mediated cleavage of phospholipase D isozymes. Cell Signal 2008; 20:2198-207. [PMID: 18694819 DOI: 10.1016/j.cellsig.2008.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/20/2008] [Accepted: 07/17/2008] [Indexed: 11/27/2022]
Abstract
Phospholipase D (PLD) has been implicated in survival and anti-apoptosis, but the molecular mechanism by which it responds to apoptotic stimuli is poorly unknown. Here, we demonstrate that cleavage of PLD isozymes as specific substrates of caspase differentially regulates apoptosis. PLD1 is cleaved at one internal site (DDVD(545)S) and PLD2 is cleaved at two or three sites (PTGD(13)ELD(16)S and DEVD(28)T) in the front of N-terminus. Cleavage of PLD was endogenously detected in post-mortem Alzheimer brain together with activated caspase-3, suggesting the physiological relevance. The cleavage of PLD1 but not PLD2 might act as an inactivating process since PLD1 but not PLD2 activity is significantly decreased during apoptosis, suggesting that differential cleavage of PLD isozymes could affect its enzymatic activity. Moreover, caspase-resistant mutant of PLD1 showed more potent anti-apoptotic capacity than that of wild type PLD1, whereas PLD2 maintained anti-apoptotic potency in spite of its cleavage during apoptosis. Moreover, PLD2 showed more potent anti-apoptotic effect than that of PLD1 in overexpression and knockdown experiments, suggesting that difference in anti-apoptotic potency between PLD1 and PLD2 might be due to its intrinsic protein property. Taken together, our results demonstrate that differential cleavage pattern of PLD isozymes by caspase might affect its enzymatic activity and anti-apoptotic function.
Collapse
Affiliation(s)
- Young Hoon Jang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Mammalian phospholipase D (PLD), a signal transduction-activated enzyme, hydrolyzes phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. Genetic and pharmacological methods have implicated PLD and its product PA in a wide variety of cellular processes including vesicle trafficking, receptor signaling, cell proliferation and survival. Dysregulation of these cell biologic processes occurs in a diverse range of illnesses including cancer. This review summarizes PLD regulation and function and highlights its potential as a therapeutic target in disease settings.
Collapse
Affiliation(s)
- Ping Huang
- University Medical Center at Stony Brook, Department of Pharmacology and the Center for Developmental Genetics, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|