1
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
2
|
Lusk R, Hoffman PL, Mahaffey S, Rosean S, Smith H, Silhavy J, Pravenec M, Tabakoff B, Saba LM. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front Genet 2022; 13:821026. [PMID: 35368676 PMCID: PMC8965255 DOI: 10.3389/fgene.2022.821026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556–3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.
Collapse
Affiliation(s)
- Ryan Lusk
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel Rosean
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harry Smith
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Laura M. Saba,
| |
Collapse
|
3
|
Abstract
The P2X7 receptor has been proposed as a novel drug target for different types of diseases associated with inflammation, including brain diseases, peripheral inflammation, and cancers. Structurally diverse P2X7 receptor antagonists, mainly negative allosteric modulators (NAMs), have been developed in recent years, and several P2X7 receptor antagonists are currently evaluated in clinical trials. The P2X7 receptor requires high micro- to even millimolar ATP concentrations to be activated. Selective agonists for the P2X7 receptor are not available. Positive allosteric modulators (PAMs) have been described, but PAMs with high potency and selectivity are still lacking. This chapter discusses medicinal chemistry approaches toward the development of P2X7 receptor modulators and presents a selection of recommended tool compounds for studying P2X7 receptors in humans and rodents.
Collapse
Affiliation(s)
- Christa E Müller
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
5
|
Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci 2020; 21:E5562. [PMID: 32756482 PMCID: PMC7432758 DOI: 10.3390/ijms21155562] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The release and extracellular action of ATP are a widespread mechanism for cell-to-cell communication in living organisms through activation of P2X and P2Y receptors expressed at the cell surface of most tissues, including the nervous system. Among ionototropic receptors, P2X4 receptors have emerged in the last decade as a potential target for CNS disorders such as epilepsy, ischemia, chronic pain, anxiety, multiple sclerosis and neurodegenerative diseases. However, the role of P2X4 receptor in each pathology ranges from beneficial to detrimental, although the mechanisms are still mostly unknown. P2X4 is expressed at low levels in CNS cells including neurons and glial cells. In normal conditions, P2X4 activation contributes to synaptic transmission and synaptic plasticity. Importantly, one of the genes present in the transcriptional program of myeloid cell activation is P2X4. Microglial P2X4 upregulation, the P2X4+ state of microglia, seems to be common in most acute and chronic neurodegenerative diseases associated with inflammation. In this review, we summarize knowledge about the role of P2X4 receptors in the CNS physiology and discuss potential pitfalls and open questions about the therapeutic potential of blocking or potentiation of P2X4 for different pathologies.
Collapse
Affiliation(s)
- Alejandro Montilla
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Gilda Paloma Mata
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Carlos Matute
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Maria Domercq
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| |
Collapse
|
6
|
Spampanato J, Gibson A, Dudek FE. The antihelminthic moxidectin enhances tonic GABA currents in rodent hippocampal pyramidal neurons. J Neurophysiol 2018; 119:1693-1698. [PMID: 29364072 DOI: 10.1152/jn.00587.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrocyclic lactones (MLs) are commonly used treatments for parasitic worm and insect infections in humans, livestock, and companion animals. MLs target the invertebrate glutamate-activated chloride channel that is not present in vertebrates. MLs are not entirely inert in vertebrates, though; they have been reported to have activity in heterologous expression systems consisting of ligand-gated ion channels that are present in the mammalian central nervous system (CNS). However, these compounds are typically not able to reach significant concentrations in the CNS because of the activity of the blood-brain barrier P-glycoprotein extrusion system. Despite this, these compounds are able to reach low levels in the CNS that may be useful in the design of novel "designer" ligand-receptor systems that can be used to directly investigate neuronal control of behavior in mammals and have potential for use in treating human neurological diseases. To determine whether MLs might affect neurons in intact brains, we investigated the activity of the ML moxidectin (MOX) at native GABA receptors. Specifically, we recorded tonic and phasic miniature inhibitory postsynaptic currents (mIPSCs) in ex vivo brain slices. Our data show that MOX potentiated tonic GABA currents in a dose-dependent manner but had no concomitant effects on phasic GABA currents (i.e., MOX had no effect on the amplitude, frequency, or decay kinetics of mIPSCs). These studies indicate that behavioral experiments that implement a ML-based novel ligand-receptor system should take care to control for potential effects of the ML on native tonic GABA receptors. NEW & NOTEWORTHY We have identified a novel mechanism of action in the mammalian central nervous system for the antihelminthic moxidectin, commonly prescribed to animals worldwide and currently being evaluated for use in humans. Specifically, moxidectin applied to rodent brain slices selectively enhanced the tonic GABA conductance of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine , Salt Lake City, Utah
| | - Anne Gibson
- Department of Neurosurgery, University of Utah School of Medicine , Salt Lake City, Utah
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine , Salt Lake City, Utah
| |
Collapse
|
7
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
8
|
Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 2015; 104:31-49. [PMID: 26686393 DOI: 10.1016/j.neuropharm.2015.12.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain, diabetes, ischemic protection and many other conditions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2-MeSADP, (PubChem CID: 121990)
- A-740003, (PubChem CID: 23232014)
- ATP
- Agonists
- Antagonists
- DPCPX, (PubChem CID: 1329)
- GPCR
- IB-MECA, (PubChem CID: 123683)
- Ion channel
- LUF6000, (PubChem CID: 11711282)
- MRS2500, (PubChem CID: 44448831)
- Nucleosides
- Nucleotides
- PPTN, (PubChem CID: 42611190)
- PSB-1114, (PubChem CID: 52952605)
- PSB-603, (PubChem CID: 44185871)
- SCH442416, (PubChem CID: 10668061)
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892, Bethesda, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Franklin KM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Involvement of Purinergic P2X4 Receptors in Alcohol Intake of High-Alcohol-Drinking (HAD) Rats. Alcohol Clin Exp Res 2015; 39:2022-31. [PMID: 26334550 PMCID: PMC4592405 DOI: 10.1111/acer.12836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The P2X4 receptor (P2X4R) is thought to be involved in regulating alcohol-consuming behaviors, and ethanol (EtOH) has been reported to inhibit P2X4Rs. Ivermectin is an antiparasitic agent that acts as a positive allosteric modulator of the P2X4R. This study examined the effects of systemically and centrally administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD-2 rats. METHODS For the first experiment, adult male HAD-1 and HAD-2 rats were given 24-hour free-choice access to 15% EtOH versus water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg, intraperitoneally [i.p.]) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the second experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hour limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The third experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hour EtOH free-choice drinking of female HAD-2 rats. RESULTS The highest i.p. dose of ivermectin reduced alcohol drinking (30 to 45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD-1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hour limited access intake (~35%) of female HAD-2 rats; knockdown of P2rx4 expression in the posterior VTA reduced 24-hour free-choice EtOH intake (~20%). CONCLUSIONS Overall, the results of this study support a role for P2X4Rs within the mesolimbic system in mediating alcohol-drinking behavior.
Collapse
Affiliation(s)
- Kelle M. Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheketha R. Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Richard L. Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J. McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
10
|
Franklin KM, Asatryan L, Jakowec MW, Trudell JR, Bell RL, Davies DL. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 2014; 8:176. [PMID: 25009459 PMCID: PMC4068020 DOI: 10.3389/fnins.2014.00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/05/2014] [Indexed: 12/19/2022] Open
Abstract
Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy for AUDs.
Collapse
Affiliation(s)
- Kelle M Franklin
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - James R Trudell
- Beckman Program for Molecular and Genetic Medicine, Department of Anesthesia, Stanford University Palo Alto, CA, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
11
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
12
|
Abstract
Extracellular adenosine 5' triphosphate (ATP) is a widespread cell-to-cell signaling molecule in the brain, where it activates cell surface P2X and P2Y receptors. P2X receptors define a protein family unlike other neurotransmitter-gated ion channels in terms of sequence, subunit topology, assembly, and architecture. Within milliseconds of binding ATP, they catalyze the opening of a cation-selective pore. However, recent data show that P2X receptors often underlie neuromodulatory responses on slower time scales of seconds or longer. Herein, we review these findings at molecular, cellular and systems levels. We propose that, while P2X receptors are fast ligand-gated cation channels, they are most adept at mediating slow neuromodulatory functions that are more widespread and more physiologically utilized than fast ATP synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
13
|
|
14
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
15
|
Vavra V, Bhattacharya A, Zemkova H. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience 2011; 188:1-12. [PMID: 21575687 DOI: 10.1016/j.neuroscience.2011.04.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The supraoptic nuclei (SON), the hypothalamic release site of vasopressin and oxytocin, receive a non-glutamatergic, excitatory input from the caudal medulla that uses noradrenaline and ATP as neurotransmitters. Here, we studied the actions of extracellular ATP on SON neurons in hypothalamic slices isolated from the brains of 16- to 24-day-old rats. Whole-cell current clamp recordings performed 1-6 h after isolation showed that exogenous ATP application increased the frequency of action potentials and induced the depolarization of resting membranes. Voltage clamp recordings showed that ATP increased the frequency of GABAergic or glutamatergic spontaneous synaptic currents without changing their amplitude and evoked inward current (126±13 pA) in about 80% of SON neurons. The application of ATPγS and 2MeSATP mimicked the effects of ATP, but 2MeSADP, 2MeSAMP and αβmeATP had no effect. The P2X7 receptor agonist, BzATP, did not induce an inward current, but it increased intracellular calcium concentration in non-neuronal SON cells in slices. Suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) inhibited ATP-induced currents, whereas pH 6.5 and ivermectin, a specific allosteric modulator of the P2X4 receptor, potentiated ATP-induced currents. The P2Y1-selective antagonist, 2'-deoxy-N⁶-methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS 2179), had no effect on ATP-induced responses. Quantitative real-time PCR showed that P2X2>P2X7>P2X4 purinergic receptor mRNAs were expressed in the SON tissue, but the levels of P2X1, P2X3, P2X5, P2X6, P2Y1, P2Y2 and P2Y12 mRNA were minor. These results show that SON neurons express functional presynaptic and extrasynaptic P2X2 and P2X4 receptors that modulate glutamate and GABA release and control the electrical excitability of SON neurons.
Collapse
Affiliation(s)
- V Vavra
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | | | | |
Collapse
|
16
|
Pharmacologically targeting the P2rx4 gene on maintenance and reinstatement of alcohol self-administration in rats. Pharmacol Biochem Behav 2011; 98:533-8. [PMID: 21402096 DOI: 10.1016/j.pbb.2011.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/04/2011] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
Abstract
Genetic studies indicate that alcohol consumption associates with expression of the P2rx4 gene, a gene that codes for the P2X(4) receptor. This receptor is a subtype in the purinergic system of ligand-gated ion channels that when activated exerts excitatory effects in CNS. P2X(4) function is inhibited by alcohol and P2X(4) receptors are modulated positively by the antiparasitic agent, ivermectin. Two experiments were performed to test the ability of ivermectin to alter the behavioral effects of alcohol in rats. After alcohol exposure was achieved via the "drinking in the dark" procedure, separate groups of Sprague-Dawley rats were trained to lever press for either alcohol (10% ethanol/2% sucrose) or sucrose (3%) solutions in operant chambers. Rats were tested for maintenance of operant self-administration under a progressive ratio condition (Experiment 1) and for reinstatement of extinguished responding induced by solution presentation (Experiment 2) after ivermectin (0; 1-10mg/kg; IP) administration. Ivermectin decreased the amount of work that the animal performed to obtain reinforcers in the maintenance study, particularly in the group reinforced with alcohol, and tended to decrease reinstated lever press responding. Conditioned approach behavior (head entries) was significantly reduced by ivermectin in both experiments. Reduction in motor activity was seen during the longer maintenance sessions but not in the shorter reinstatement sessions. Results suggest some support for ivermectin-like drugs as potential treatment agents for alcohol dependence. Caution is warranted due to modest specificity on behavior reinforced by alcohol, some reduction in general activity levels, and the lack of dose-response effects.
Collapse
|
17
|
Lalo U, Verkhratsky A, Pankratov Y. Ionotropic ATP receptors in neuronal-glial communication. Semin Cell Dev Biol 2011; 22:220-8. [PMID: 21320623 DOI: 10.1016/j.semcdb.2011.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/05/2011] [Accepted: 02/07/2011] [Indexed: 01/10/2023]
Abstract
In the central nervous system ATP is released from both neurones and astroglial cells acting as a homo- and heterocellular neurotransmitter. Glial cells express numerous purinoceptors of both ionotropic (P2X) and metabotropic (P2Y) varieties. Astroglial P2X receptors can be activated by ongoing synaptic transmission and can mediate fast local signalling through elevation in cytoplasmic Ca(2+) and Na(+) concentrations. These ionic signals can be translated into various physiological messages by numerous pathways, including release of gliotransmitters, metabolic support of neurones and regulation of activity of postsynaptic glutamate and GABA receptors. Ionotropic purinoceptors represent a novel pathway of glia-driven modulation of synaptic signalling that involves the release of ATP from neurones and astrocytes followed by activation of P2X receptors which can regulate synaptic activity by variety of mechanisms expressed in both neuronal and glial compartments.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
18
|
Sattelle DB, Buckingham SD, Akamatsu M, Matsuda K, Pienaar IS, Jones AK, Sattelle BM, Almond A, Blundell CD. Comparative pharmacology and computational modelling yield insights into allosteric modulation of human alpha7 nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:836-43. [PMID: 19549506 DOI: 10.1016/j.bcp.2009.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 11/18/2022]
Abstract
The human alpha7 nicotinic acetylcholine receptor (nAChR) subunit and its Caenorhabditis elegans homolog, ACR-16, can generate functional recombinant homomeric receptors when expressed in Xenopus laevis oocytes. Both nAChRs express robustly in the presence of the co-injected chaperone, RIC-3, and show striking differences in the actions of a type I positive allosteric modulator (PAM), ivermectin (IVM). Type I PAMs are characterised by an increase in amplitude only of the response to acetylcholine (ACh), whereas type II PAMs exhibit, in addition, changes in time-course/desensitization of the ACh response. The type I PAMs, ivermectin, 5-hydroxyindole (5-HI), NS-1738 and genistein and the type II PAM, PNU-120596, are all active on human alpha7 but are without PAM activity on ACR-16, where they attenuate the amplitude of the ACh response. We used the published structure of avermectin B1a to generate a model of IVM, which was then docked into the candidate transmembrane allosteric binding site on alpha7 and ACR-16 in an attempt to gain insights into the observed differences in IVM actions. The new pharmacological findings and computational approaches being developed may inform the design of novel PAM drugs targeting major neurological disorders.
Collapse
Affiliation(s)
- David B Sattelle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
20
|
Alqallaf SM, Evans BAJ, Kidd EJ. Atypical P2X receptor pharmacology in two human osteoblast-like cell lines. Br J Pharmacol 2009; 156:1124-35. [PMID: 19226284 DOI: 10.1111/j.1476-5381.2009.00119.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression and function of P2X(7) receptors in osteoclasts is well established, but less is known about their role in osteoblast-like cells. A study in P2X(7) receptor knockout mice suggested the involvement of these receptors in bone formation. We have investigated the expression and pharmacology of several P2X receptors in two human osteosarcoma cell lines to see if they could be involved in bone turnover in man. EXPERIMENTAL APPROACH Reverse transcriptase-polymerase chain reaction and Western blotting were used to study P2X(2), P2X(4) and P2X(7) receptor expression at mRNA and protein levels, respectively, in human osteoblast-like cells. P2X(7) receptor pharmacology was studied by measuring pore formation in the presence of different agonists and antagonists using the YO-PRO 1 uptake method. KEY RESULTS P2X(4) and P2X(7) receptor mRNA and protein were found to be expressed by these cell lines. No evidence was found for P2X(4)/P2X(7) receptor heteropolymerization. 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (DBzATP) was equipotent to ATP and the antagonists used were either ineffective or weakly blocked pore formation. CONCLUSIONS AND IMPLICATIONS This study demonstrates that P2X(4) and P2X(7) receptors are expressed by human osteoblast-like cells. The affinities of the different agonists suggest that the P2X(7) receptor is mainly responsible for pore formation although P2X(4) receptors may also be involved. The low affinity of DBzATP and the weak action of the antagonists support the previously described atypical pharmacology of the P2X(7) receptor in osteoblasts. Targeting the P2X(7) receptor in osteoblasts could represent a promising new treatment for bone diseases such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- S M Alqallaf
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, UK
| | | | | |
Collapse
|
21
|
P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 2008; 28:5473-80. [PMID: 18495881 DOI: 10.1523/jneurosci.1149-08.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ATP plays an important role in signal transduction between neuronal and glial circuits and within glial networks. Here we describe currents activated by ATP in astrocytes acutely isolated from cortical brain slices by non-enzymatic mechanical dissociation. Brain slices were prepared from transgenic mice that express enhanced green fluorescent protein under the control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp. Exogenous ATP evoked inward currents in 75 of 81 astrocytes. In the majority ( approximately 65%) of cells, ATP-induced responses comprising a fast and delayed component; in the remaining subpopulation of astrocytes, ATP triggered a smoother response with rapid peak and slowly decaying plateau phase. The fast component of the response was sensitive to low concentrations of ATP (with EC(50) of approximately 40 nm). All ATP-induced currents were blocked by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS); they were insensitive to ivermectin. Quantitative real-time PCR demonstrated strong expression of P2X(1) and P2X(5) receptor subunits and some expression of P2X(2) subunit mRNAs. The main properties of the ATP-induced response in cortical astrocytes (high sensitivity to ATP, biphasic kinetics, and sensitivity to PPADS) were very similar to those reported for P2X(1/5) heteromeric receptors studied previously in heterologous expression systems.
Collapse
|
22
|
Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2008; 158:137-48. [PMID: 18495357 DOI: 10.1016/j.neuroscience.2008.03.076] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/09/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Adenosine triphosphate (ATP) is released in many synapses in the CNS either together with other neurotransmitters, such as glutamate and GABA, or on its own. Postsynaptic action of ATP is mediated through metabotropic P2Y and ionotropic P2X receptors abundantly expressed in neural cells. Activation of P2X receptors induces fast excitatory postsynaptic currents in synapses located in various brain regions, including medial habenula, hippocampus and cortex. P2X receptors display relatively high Ca2+ permeability and can mediate substantial Ca2+ influx at resting membrane potential. P2X receptors can dynamically interact with other neurotransmitter receptors, including N-methyl-D-aspartate (NMDA) receptors, GABA(A) receptors and nicotinic acetylcholine (ACh) receptors. Activation of P2X receptors has multiple modulatory effects on synaptic plasticity, either inhibiting or facilitating the long-term changes of synaptic strength depending on physiological context. At the same time precise mechanisms of P2X-dependent regulation of synaptic plasticity remain elusive. Further understanding of the role of P2X receptors in regulation of synaptic transmission in the CNS requires dissection of P2X-mediated effects on pre-synaptic terminals, postsynaptic membrane and glial cells.
Collapse
Affiliation(s)
- Y Pankratov
- The University of Warwick, Department of Biological Sciences, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
23
|
Dergacheva O, Wang X, Kamendi H, Cheng Q, Pinol RM, Jameson H, Gorini C, Mendelowitz D. 5HT2 receptor activation facilitates P2X receptor mediated excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuropharmacology 2008; 54:1095-102. [PMID: 18396300 DOI: 10.1016/j.neuropharm.2008.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 12/20/2022]
Abstract
Parasympathetic preganglionic cardiac vagal neurons (CVNs) which dominate the control of heart rate are located within the nucleus ambiguus (NA). Serotonin (5HT), and in particular 5HT2 receptors, play an important role in cardiovascular function in the brainstem. However, there is a lack of information on the mechanisms of action of 5HT2 receptors in modulating parasympathetic cardiac activity. This study tests whether activation of 5HT2 receptors alters excitatory glutamatergic and purinergic neurotransmission to CVNs. Application of alpha-methyl-5-hydroxytryptamine (alpha-Me-5HT), a 5HT2 agonist, reversibly increased both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in CVNs. Similar responses were obtained with alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine hydrochloride (BW723C86), and m-chlorophenylpiperazine (m-CPP), 5HT2B and 5HT2B/C receptor agonists, respectively. The facilitation evoked by alpha-Me-5HT was prevented by the 5HT2B/C receptor antagonist SB206553 hydrochloride (SB206553). Interestingly, the blockage of both NMDA and non-NMDA glutamatergic receptors did not prevent alpha-Me-5HT-evoked facilitation of mEPSCs, however, the responses were blocked by the P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). The responses evoked by alpha-Me-5HT were mimicked by application of alpha,beta-methylene ATP (alpha,beta-Me-ATP), a P2X receptor agonist, which were also blocked by PPADS. In summary, these results indicate activation of 5HT2 receptors facilitates excitatory purinergic, but not glutamatergic, neurotransmission to CVNs.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|