1
|
Sun J, Deng X, Zhu L, Lin J, Chen G, Tang Y, Lu S, Lu Z, Meng Z, Li Y, Zhu Y. Zona incerta mediates early life isoflurane-induced fear memory deficits. Sci Rep 2024; 14:15136. [PMID: 38956153 PMCID: PMC11220074 DOI: 10.1038/s41598-024-66106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
The potential long-term effects of anesthesia on cognitive development, especially in neonates and infants, have raised concerns. However, our understanding of its underlying mechanisms and effective treatments is still limited. In this study, we found that early exposure to isoflurane (ISO) impaired fear memory retrieval, which was reversed by dexmedetomidine (DEX) pre-treatment. Measurement of c-fos expression revealed that ISO exposure significantly increased neuronal activation in the zona incerta (ZI). Fiber photometry recording showed that ZI neurons from ISO mice displayed enhanced calcium activity during retrieval of fear memory compared to the control group, while DEX treatment reduced this enhanced calcium activity. Chemogenetic inhibition of ZI neurons effectively rescued the impairments caused by ISO exposure. These findings suggest that the ZI may play a pivotal role in mediating the cognitive effects of anesthetics, offering a potential therapeutic target for preventing anesthesia-related cognitive impairments.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Xiaofei Deng
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhu
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Jianbang Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaowei Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Tang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shanshan Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Meng
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yingjie Zhu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Sa M, Yoo ES, Koh W, Park MG, Jang HJ, Yang YR, Bhalla M, Lee JH, Lim J, Won W, Kwon J, Kwon JH, Seong Y, Kim B, An H, Lee SE, Park KD, Suh PG, Sohn JW, Lee CJ. Hypothalamic GABRA5-positive neurons control obesity via astrocytic GABA. Nat Metab 2023; 5:1506-1525. [PMID: 37653043 DOI: 10.1038/s42255-023-00877-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
The lateral hypothalamic area (LHA) regulates food intake and energy balance. Although LHA neurons innervate adipose tissues, the identity of neurons that regulate fat is undefined. Here we show that GABRA5-positive neurons in LHA (GABRA5LHA) polysynaptically project to brown and white adipose tissues in the periphery. GABRA5LHA are a distinct subpopulation of GABAergic neurons and show decreased pacemaker firing in diet-induced obesity mouse models in males. Chemogenetic inhibition of GABRA5LHA suppresses fat thermogenesis and increases weight gain, whereas gene silencing of GABRA5 in LHA decreases weight gain. In the diet-induced obesity mouse model, GABRA5LHA are tonically inhibited by nearby reactive astrocytes releasing GABA, which is synthesized by monoamine oxidase B (Maob). Gene silencing of astrocytic Maob in LHA facilitates fat thermogenesis and reduces weight gain significantly without affecting food intake, which is recapitulated by administration of a Maob inhibitor, KDS2010. We propose that firing of GABRA5LHA suppresses fat accumulation and selective inhibition of astrocytic GABA is a molecular target for treating obesity.
Collapse
Affiliation(s)
- Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyun-Jun Jang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yong Ryoul Yang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joon-Ho Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yejin Seong
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea.
- IBS School, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2020; 529:1273-1292. [PMID: 32869307 DOI: 10.1002/cne.25020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Collapse
Affiliation(s)
- Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch HWM, Khan AM, Chee MJ. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp Neurol 2020; 528:1833-1855. [PMID: 31950494 DOI: 10.1002/cne.24857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine β-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.
Collapse
Affiliation(s)
- Kenichiro Negishi
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Kayla S Schumacker
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Gabor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Rebecca M Butler
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, Section Cellular Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016; 594:6443-6462. [PMID: 27302606 DOI: 10.1113/jp271946] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep-wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well-described neuropeptides hypocretin/orexin and melanin-concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long-range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto- and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB)-UNI, 1050, Brussels, Belgium
| | - Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
7
|
Wang L, Ennis M, Szabó G, Armstrong WE. Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus. J Neurophysiol 2014; 113:754-67. [PMID: 25376783 DOI: 10.1152/jn.00561.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perinuclear zone (PNZ) of the supraoptic nucleus (SON) contains some GABAergic and cholinergic neurons thought to innervate the SON proper. In mice expressing enhanced green fluorescent protein (eGFP) in association with glutamate decarboxylase (GAD)65 we found an abundance of GAD65-eGFP neurons in the PNZ, whereas in mice expressing GAD67-eGFP, there were few labeled PNZ neurons. In mice expressing choline acetyltransferase (ChAT)-eGFP, large, brightly fluorescent and small, dimly fluorescent ChAT-eGFP neurons were present in the PNZ. The small ChAT-eGFP and GAD65-eGFP neurons exhibited a low-threshold depolarizing potential consistent with a low-threshold spike, with little transient outward rectification. Large ChAT-eGFP neurons exhibited strong transient outward rectification and a large hyperpolarizing spike afterpotential, very similar to that of magnocellular vasopressin and oxytocin neurons. Thus the large soma and transient outward rectification of large ChAT-eGFP neurons suggest that these neurons would be difficult to distinguish from magnocellular SON neurons in dissociated preparations by these criteria. Large, but not small, ChAT-eGFP neurons were immunostained with ChAT antibody (AB144p). Reconstructed neurons revealed a few processes encroaching near and passing through the SON from all types but no clear evidence of a terminal axon arbor. Large ChAT-eGFP neurons were usually oriented vertically and had four or five dendrites with multiple branches and an axon with many collaterals and local arborizations. Small ChAT-eGFP neurons had a more restricted dendritic tree compared with parvocellular GAD65 neurons, the latter of which had long thin processes oriented mediolaterally. Thus many of the characteristics found previously in unidentified, small PNZ neurons are also found in identified GABAergic neurons and in a population of smaller ChAT-eGFP neurons.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Matthew Ennis
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Gábor Szabó
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
8
|
Karnani MM, Szabó G, Erdélyi F, Burdakov D. Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol 2012. [PMID: 23184514 DOI: 10.1113/jphysiol.2012.243493] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABAergic neurons are vital for brain function. Their neurochemical and electrical features have been classically characterized in the cortex, but in the lateral hypothalamic area (LHA), such knowledge is lacking, despite the emerging roles of LHA GABAergic cells in feeding and sleep. We used GAD65-GFP transgenic mice, developed for studies of cortical GABAergic cells, to determine fundamental properties of LHA GAD65 neurons, and compare them to 'classical' GABAergic cell types of the cortex, and to previously described classes of LHA cells. Whole-cell patch-clamp recordings in acute brain slices revealed that, unlike cortical GABAergic interneurons, LHA GAD65 neurons were intrinsically depolarized and fired action potentials spontaneously. Similar to cortical GABAergic cells, LHA GAD65 cells fell into four major subtypes based on evoked firing: fast spiking, late spiking, low threshold spiking and regular spiking. Three-dimensional reconstructions of biocytin-filled neurons, performed after the patch-clamp analysis, did not reveal striking morphological differences between these electrophysiological subtypes. Peptide transmitters expressed in known classes of LHA projection neurons, namely melanin-concentrating hormone (MCH) and hypocretin/orexin (hcrt/orx), were not detected in LHA GAD65 cells. Approximately 40% of LHA GAD65 cells were directly inhibited by physiological increases in extracellular glucose concentration. Glucose inhibition was most prevalent in the fast spiking subpopulation, although some glucose-responsive neurons were found in each electrophysiological subpopulation. These results suggest that LHA GAD65 neurons are electrically different from 'classical' GABAergic neurons of the cortex, are neurochemically distinct from LHA hcrt/orx and MCH cells, but partly resemble hcrt/orx cells in their glucose responses.
Collapse
Affiliation(s)
- Mahesh M Karnani
- University of Cambridge, Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | |
Collapse
|
9
|
Jo YH. Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus. J Neurophysiol 2011; 107:42-9. [PMID: 21994261 DOI: 10.1152/jn.00353.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Output from steroidogenic factor-1 (SF-1) neurons in the ventromedial nucleus of the hypothalamus (VMH) is anorexigenic. SF-1 neurons express brain-derived neurotrophic factor (BDNF) that contributes to the regulation of food intake and body weight. Here I show that regulation of GABAergic inputs onto SF-1 neurons by endogenous BDNF determines the anorexigenic outcome from the VMH. Single-cell RT-PCR analysis reveals that one-third of SF-1 neurons express BDNF and that only a subset of BDNF-expressing SF-1 neurons coexpresses the melanocortin receptor type 4. Whole cell patch-clamp analysis of SF-1 neurons in the VMH shows that exogenous BDNF significantly increases the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs). This enhancement of GABA drive readily decreases the excitability of SF-1 neurons. However, treatment with BDNF has no significant effect on the frequency of TTX-independent GABAergic IPSCs. Moreover, TrkB receptors are not localized at the postsynaptic sites of GABAergic synapses on SF-1 neurons as there is no change in the amplitude of miniature IPSCs in the presence of BDNF. Dual patch-clamp recordings in mouse hypothalamic slices reveal that stimulation of one SF-1 neuron induces an increase in sIPSC frequency onto the neighboring SF-1 neuron. More importantly, this effect is blocked by a tyrosine kinase inhibitor. Hence, this increased GABA drive onto SF-1 neurons may, in part, explain the cellular mechanisms that mediate the anorexigenic effects of BDNF.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Albert Einstein College of Medicine, Dept. of Medicine, Division of Endocrinology, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Shin SY, Han TH, Lee SY, Han SK, Park JB, Erdelyi F, Szabo G, Ryu PD. Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:163-9. [PMID: 21860595 DOI: 10.4196/kjpp.2011.15.3.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p< 0.01 by χ(2)-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.
Collapse
Affiliation(s)
- Seung Yub Shin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Han TH, Lee K, Park JB, Ahn D, Park JH, Kim DY, Stern JE, Lee SY, Ryu PD. Reduction in synaptic GABA release contributes to target-selective elevation of PVN neuronal activity in rats with myocardial infarction. Am J Physiol Regul Integr Comp Physiol 2010; 299:R129-39. [PMID: 20164200 PMCID: PMC2904143 DOI: 10.1152/ajpregu.00391.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 02/10/2010] [Indexed: 01/09/2023]
Abstract
Neuronal activity in the paraventricular nucleus (PVN) is known to be elevated in rats with heart failure. However, the type of neurons involved and the underlying synaptic mechanisms remain unknown. Here we examined spontaneous firing activity and synaptic currents in presympathetic PVN neurons in rats with myocardial infarction (MI), using slice patch clamp combined with the retrograde labeling technique. In PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM), MI induced a significant increase in basal firing rate (1.79 to 3.02 Hz, P < 0.05) and a reduction in the frequency of spontaneous (P < 0.05) and miniature (P < 0.01) inhibitory postsynaptic currents (IPSCs). In addition, MI induced an increase in the paired-pulse ratio of evoked IPSCs (P < 0.05). Bicuculline, a GABA(A) receptor antagonist, increased the firing rate of PVN-RVLM neurons in sham-operated (1.21 to 2.74 Hz, P < 0.05) but not MI (P > 0.05) rats. In contrast, in PVN neurons projecting to the intermediolateral horn of the spinal cord (PVN-IML), MI did not induce any significant changes in the basal firing rate and the properties of spontaneous and miniature IPSCs. The properties of spontaneous excitatory postsynaptic currents (EPSCs) were not altered in either neuron group. In conclusion, our results indicate that MI induces an elevation of firing activity in PVN-RVLM but not in PVN-IML neurons and that the elevated firing rate is largely due to a decrease in GABA release. These results provide evidence for a novel target-selective synaptic plasticity in the PVN that is associated with the sympathetic hyperactivity commonly seen in heart failure.
Collapse
Affiliation(s)
- Tae Hee Han
- Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leptin-sensitive neurons in mouse preoptic area express alpha 1A- and alpha 2A-adrenergic receptor isoforms. Neurosci Lett 2010; 471:83-8. [PMID: 20080149 DOI: 10.1016/j.neulet.2010.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/22/2009] [Accepted: 01/08/2010] [Indexed: 01/08/2023]
Abstract
Leptin binding to its functional receptor stimulates the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway, finally resulting in nuclear translocation of the phosphorylated STAT3 (P-STAT3). Systemic treatment with leptin (3mg/kg; intraperitoneal injection) induced the appearance of P-STAT3-immunoreactive cells in adult mouse preoptic area (POA). Here we show that the vast majority of leptin-responsive cells were located in medial POA (mPOA), followed by the median preoptic nucleus. Rare, scattered and weakly stained cells were found in ventromedial preoptic nucleus and lateral preoptic area. Co-localization studies disclosed that mPOA leptin-responsive cells were neurons, and that a large proportion expressed the alpha(1A)- and/or alpha(2A)-adrenergic receptor (AR) isoforms. Although understanding the functional relevance of leptin-responsive POA neurons requires further investigation, the finding that they bear alpha-ARs suggests that they may be targeted by the ascending noradrenergic system, which densely innervates the mPOA, and thus be involved in thermoregulation, arousal and/or the sleep-wake cycle.
Collapse
|
13
|
Lee S, Han TH, Sonner PM, Stern JE, Ryu PD, Lee SY. Molecular characterization of T-type Ca(2+) channels responsible for low threshold spikes in hypothalamic paraventricular nucleus neurons. Neuroscience 2008; 155:1195-203. [PMID: 18657597 DOI: 10.1016/j.neuroscience.2008.06.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is composed of functionally heterogeneous cell groups, possessing distinct electrophysiological properties depending on their functional roles. Previously, T-type Ca(2+) dependent low-threshold spikes (LTS) have been demonstrated in various PVN neuronal types, including preautonomic cells. However, the molecular composition and functional properties of the underlying T-type Ca(2+) channels have not been characterized. In the present study, we combined single cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry and patch-clamp recordings to identify subtypes of T-type Ca(2+) channels expressed in PVN cells displaying LTS (PVN-LTS), including identified preautonomic neurons. LTS appeared at the end of hyperpolarizing pulses either as long-lasting plateaus or as short-lasting depolarizing humps. LTS were mediated by rapidly activating and inactivating T-type Ca(2+) currents and were blocked by Ni(2+). Single cell RT-PCR and immunohistochemical studies revealed Cav3.1 (voltage-gated Ca(2+) channel) as the main channel subunit detected in PVN-LTS neurons. In conclusion, these data indicate that Cav3.1 is the major subtype of T-type Ca(2+) channel subunit that mediates T-type Ca(2+) dependent LTS in PVN neurons.
Collapse
Affiliation(s)
- S Lee
- Laboratory of Veterinary Pharmacology, Seoul National University, Kwanak-Gu, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
14
|
Hwang IK, Li H, Yoo KY, Choi JH, Lee CH, Chung DW, Kim DW, Seong JK, Yoon YS, Lee IS, Won MH. Comparison of glutamic acid decarboxylase 67 immunoreactive neurons in the hippocampal CA1 region at various age stages in dogs. Neurosci Lett 2007; 431:251-5. [PMID: 18166269 DOI: 10.1016/j.neulet.2007.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The hippocampus is a main brain region concerning learning and memory processes. It is imperative to determine the extent of alterations in number and function of inhibitory GABAergic interneurons in the hippocampus as a function of age. We examined changes in GABAergic neurons in the hippocampal CA1 region at various ages of dogs using glutamic acid decarboxylase 67 (GAD67), which is a rate-limiting enzyme for GABA synthesis. We found only one band in the brain homogenates in dogs as well as mice and rats. GAD67 immunoreactive neurons in 1-year-old dogs were mainly detected in the stratum oriens. In the 6-year-old group, GAD67 immunoreactive neurons were evenly distributed in the CA1 region, and numbers of the neurons were highest among all experimental groups. Thereafter, GAD67 immunoreactive neurons were significantly decreased region with age: GAD67 immunoreactive neurons were scarcely found in the CA1 region in 10-year-old dogs. The reduction of GAD67 immunoreactive neurons in the hippocampal CA1 region may be closely related to highly susceptibility to memory loss in old aged dogs.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|