1
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Yu P, Pearson CS, Geller HM. Flexible Roles for Proteoglycan Sulfation and Receptor Signaling. Trends Neurosci 2018; 41:47-61. [PMID: 29150096 PMCID: PMC5748001 DOI: 10.1016/j.tins.2017.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Proteoglycans (PGs) in the extracellular matrix (ECM) play vital roles in axon growth and navigation, plasticity, and regeneration of injured neurons. Different classes of PGs may support or inhibit cell growth, and their functions are determined in part by highly specific structural features. Among these, the pattern of sulfation on the PG sugar chains is a paramount determinant of a diverse and flexible set of outcomes. Recent studies of PG sulfation illustrate the challenges of attributing biological actions to specific sulfation patterns, and suggest ways in which highly similar molecules may exert opposing effects on neurons. The receptors for PGs, which have yet to be fully characterized, display a similarly nuanced spectrum of effects. Different classes of PG function via overlapping families of receptors and signaling pathways. This enables them to control axon growth and guidance with remarkable specificity, but it poses challenges for determining the precise binding interactions and downstream effects of different PGs and their assorted sulfated epitopes. This review examines existing and emerging evidence for the roles of PG sulfation and receptor interactions in determining how these complex molecules influence neuronal development, growth, and function.
Collapse
Affiliation(s)
- Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 2015; 274:115-25. [PMID: 26315937 DOI: 10.1016/j.expneurol.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and mature nervous system, where they guide axons, maintain stable connections, restrict synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of a diverse range of proteins. CSPGs have been found both to promote and inhibit neuronal growth. They can promote neurite outgrowth by binding to various growth factors such as midkine (MK), pleiotrophin (PTN), brain-derived neurotrophic factor (BDNF) and other neurotrophin family members. CSPGs can also inhibit neuronal growth and limit plasticity by interacting with transmembrane receptors such as protein tyrosine phosphatase σ (PTPσ), leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase, and the Nogo receptors 1 and 3 (NgR1 and NgR3). These CS-protein interactions depend on specific sulfation patterns within the CS GAG chains, and accordingly, particular CS sulfation motifs are upregulated during development, in the mature nervous system, and in response to CNS injury. Thus, spatiotemporal regulation of CS GAG biosynthesis may provide an important mechanism to control the functions of CSPGs and to modulate intracellular signaling pathways. Here, we will discuss these sulfation-dependent processes and highlight how the CS sugars on CSPGs contribute to neuronal growth, axon guidance, and plasticity in the nervous system.
Collapse
Affiliation(s)
- Gregory M Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Deng YP, Sun Y, Hu L, Li ZH, Xu QM, Pei YL, Huang ZH, Yang ZG, Chen C. Chondroitin sulfate proteoglycans impede myelination by oligodendrocytes after perinatal white matter injury. Exp Neurol 2015; 269:213-23. [PMID: 25862289 DOI: 10.1016/j.expneurol.2015.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Hypomyelination is the major cause of neurodevelopmental deficits that are associated with perinatal white matter injury. Chondroitin sulfate proteoglycans (CSPGs) are known to exert inhibitory effects on the migration and differentiation of oligodendrocytes (OLs). However, few studies describe the roles of CSPGs in myelination by OLs and the cognitive dysfunction that follows perinatal white matter injury. Here, we examined the alterations in the expression of CSPGs and their functional impact on the maturation of OLs and myelination in a neonatal rat model of hypoxic-ischemic (HI) brain injury. Three-day-old Sprague-Dawley rats underwent a right common carotid artery ligation and were exposed to hypoxia (6% oxygen for 2.5h). Rats were given chondroitinase ABC (cABC) via an intracerebroventricular injection to digest CSPGs. Animals were sacrificed at 7, 14, 28 and 56days after HI injury and the accompanying surgical procedure. We found that the expression of CSPGs was significantly up-regulated in the cortical regions surrounding the white matter after HI injury. cABC successfully degraded CSPGs in the rats that received cABC. Immunostaining showed decreased expression of the pre-oligodendrocyte marker O4 in the cingulum, external capsule and corpus callosum in HI+cABC rats compared to HI rats. However HI+cABC rats exhibited greater maturation of OLs than did HI rats, with increased expression of O1 and myelin basic protein in the white matter. Furthermore, using electron microscopy, we demonstrated that myelin formation was enhanced in HI+cABC rats, which had an increased number of myelinated axons and decreased G-ratios of myelin compared to HI rats. Finally, HI+cABC rats performed better in the Morris water maze task than HI rats, which indicates an improvement in cognitive ability. Our results suggest that CSPGs inhibit both the maturation of OLs and the process of myelination after neonatal HI brain injury. The data also raise the possibility that modifying CSPGs may repair this type of lesion associated with demyelination.
Collapse
Affiliation(s)
- Ying-Ping Deng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Hua Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quan-Mei Xu
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi-Ling Pei
- School of Public Health, Fudan University, Shanghai, China
| | - Zhi-Heng Huang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhen-Gang Yang
- Institute of Brain Science, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.
| |
Collapse
|
6
|
Stern S, Knöll B. CNS axon regeneration inhibitors stimulate an immediate early gene response via MAP kinase-SRF signaling. Mol Brain 2014; 7:86. [PMID: 25406759 PMCID: PMC4243276 DOI: 10.1186/s13041-014-0086-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022] Open
Abstract
Background CNS axon regeneration inhibitors such as Nogo and CSPGs (Chondroitin Sulfate Proteoglycans) are major extrinsic factors limiting outgrowth of severed nerve fibers. However, knowledge on intracellular signaling cascades and gene expression programs activated by these inhibitors in neurons is sparse. Herein we studied intracellular signaling cascades activated by total myelin, Nogo and CSPGs in primary mouse CNS neurons. Results Total myelin, Nogo and CSPGs stimulated gene expression activity of the serum response factor (SRF), a central gene regulator of immediate early (IEG) and actin cytoskeletal gene transcription. As demonstrated by pharmacological interference, SRF-mediated IEG activation by myelin, Nogo or CSPGs depended on MAP kinase, to a lesser extent on Rho-GTPase but not on PKA signaling. Stimulation of neurons with all three axon growth inhibitors activated the MAP kinase ERK. In addition to ERK activation, myelin activated the IEG c-Fos, an important checkpoint of neuronal survival vs. apoptosis. Employing Srf deficient neurons revealed that myelin-induced IEG activation requires SRF. This suggests an SRF function in mediating neuronal signaling evoked by axon regeneration associated inhibitors. Besides being a signaling target of axon growth inhibitors, we show that constitutively-active SRF-VP16 can be employed to circumvent neurite growth inhibition imposed by myelin, Nogo and CSPGs. Conclusion In sum, our data demonstrate that axon regeneration inhibitors such as Nogo trigger gene expression programs including an SRF-dependent IEG response via MAP kinases and Rho-GTPases.
Collapse
Affiliation(s)
- Sina Stern
- Department Molecular Biology, Eberhard-Karls-University Tübingen, Interfaculty Institute for Cell Biology, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,Current address: German Centre for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Bernd Knöll
- Department Molecular Biology, Eberhard-Karls-University Tübingen, Interfaculty Institute for Cell Biology, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,Current address: Ulm University, Institute for Physiological Chemistry, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Abstract
Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the injured central nervous system.
Collapse
Affiliation(s)
- Justin A Beller
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| | - Diane M Snow
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
9
|
A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci U S A 2012; 109:4768-73. [PMID: 22411830 DOI: 10.1073/pnas.1121318109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) represent a major barrier to regenerating axons in the central nervous system (CNS), but the structural diversity of their polysaccharides has hampered efforts to dissect the structure-activity relationships underlying their physiological activity. By taking advantage of our ability to chemically synthesize specific oligosaccharides, we demonstrate that a sugar epitope on CSPGs, chondroitin sulfate-E (CS-E), potently inhibits axon growth. Removal of the CS-E motif significantly attenuates the inhibitory activity of CSPGs on axon growth. Furthermore, CS-E functions as a protein recognition element to engage receptors including the transmembrane protein tyrosine phosphatase PTPσ, thereby triggering downstream pathways that inhibit axon growth. Finally, masking the CS-E motif using a CS-E-specific antibody reversed the inhibitory activity of CSPGs and stimulated axon regeneration in vivo. These results demonstrate that a specific sugar epitope within chondroitin sulfate polysaccharides can direct important physiological processes and provide new therapeutic strategies to regenerate axons after CNS injury.
Collapse
|
10
|
Tham M, Ramasamy S, Gan HT, Ramachandran A, Poonepalli A, Yu YH, Ahmed S. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One 2010; 5:e15341. [PMID: 21179491 PMCID: PMC3001889 DOI: 10.1371/journal.pone.0015341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Ashray Ramachandran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Anuradha Poonepalli
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
11
|
Martinez R, Eller C, Viana NB, Gomes FCA. Thyroid hormone induces cerebellar neuronal migration and Bergmann glia differentiation through epidermal growth factor/mitogen-activated protein kinase pathway. Eur J Neurosci 2010; 33:26-35. [PMID: 21070391 DOI: 10.1111/j.1460-9568.2010.07490.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebellar development in the postnatal period is mainly characterized by an intense cellular proliferation in the external granular layer, followed by migration of granular cells in the molecular layer along the Bergmann glia (BG) fibers. Cerebellar ontogenesis undergoes dramatic modulation by thyroid hormones (THs), although their mechanism of action in this organ is still largely unknown. We previously demonstrated that THs induce astrocytes to secrete epidermal growth factor (EGF), which thus promotes cerebellar neuronal proliferation and extracellular matrix remodeling in vitro. In the present study, we investigated the effect of the TH/EGF pathway on granule neuronal migration. By taking advantage of rat explant and dissociated culture assays, we showed that cerebellar astrocytes treated with TH promote granule cell migration. The addition of neutralizing antibodies against EGF or the pharmacological inhibitor of EGF signaling, bis-tyrphostin, completely inhibited TH-astrocyte-induced migration. Likewise, the addition of EGF itself greatly increased neuronal migration. Treatment of BG-dissociated cultures by EGF dramatically induced an alteration in cell morphology, characterized by an elongation in the glial process. Both neuronal migration and BG elongation were inhibited by the mitogen-activated protein kinase pathway inhibitor PD98059, suggesting that these events might be associated. Together, our results suggest that, by inducing EGF secretion, THs promote neuronal migration through BG elongation. Our data provide new clues to the molecular mechanism of THs in cerebellar development, and may contribute to a better understanding of some neuroendocrine disorders associated with migration deficits.
Collapse
Affiliation(s)
- Rodrigo Martinez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
12
|
Ito Z, Sakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu K. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 2010; 30:5937-47. [PMID: 20427653 PMCID: PMC6632605 DOI: 10.1523/jneurosci.2570-09.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/15/2009] [Accepted: 03/08/2010] [Indexed: 01/16/2023] Open
Abstract
Neurons in the adult CNS do not spontaneously regenerate after injuries. The glycosaminoglycan keratan sulfate is induced after spinal cord injury, but its biological significance is not well understood. Here we investigated the role of keratan sulfate in functional recovery after spinal cord injury, using mice deficient in N-acetylglucosamine 6-O-sulfotransferase-1 that lack 5D4-reactive keratan sulfate in the CNS. We made contusion injuries at the 10th thoracic level. Expressions of N-acetylglucosamine 6-O-sulfotransferase-1 and keratan sulfate were induced after injury in wild-type mice, but not in the deficient mice. The wild-type and deficient mice showed similar degrees of chondroitin sulfate induction and of CD11b-positive inflammatory cell recruitment. However, motor function recovery, as assessed by the footfall test, footprint test, and Basso mouse scale locomotor scoring, was significantly better in the deficient mice. Moreover, the deficient mice showed a restoration of neuromuscular system function below the lesion after electrical stimulation at the occipito-cervical area. In addition, axonal regrowth of both the corticospinal and raphespinal tracts was promoted in the deficient mice. In vitro assays using primary cerebellar granule neurons demonstrated that keratan sulfate proteoglycans were required for the proteoglycan-mediated inhibition of neurite outgrowth. These data collectively indicate that keratan sulfate expression is closely associated with functional disturbance after spinal cord injury. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice are a good model to investigate the roles of keratan sulfate in the CNS.
Collapse
Affiliation(s)
- Zenya Ito
- Departments of Biochemistry and
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | - Shiro Imagama
- Departments of Biochemistry and
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukihiro Matsuyama
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | - Kenichi Hirano
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kei Ando
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan, and
| | - Naoki Ishiguro
- Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Departments of Biochemistry and
- Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Leach JB, Achyuta AKH, Murthy SK. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology. FRONTIERS IN NEUROENGINEERING 2010; 2:18. [PMID: 20161810 PMCID: PMC2821180 DOI: 10.3389/neuro.16.018.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.
Collapse
Affiliation(s)
- Jennie B. Leach
- Department of Chemical and Biochemical Engineering, University of MarylandBaltimore, MD, USA
| | | | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
14
|
Xia Y, Zhao T, Li J, Li L, Hu R, Hu S, Feng H, Lin J. Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats. Biochem Biophys Res Commun 2008; 377:562-566. [DOI: 10.1016/j.bbrc.2008.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/04/2008] [Indexed: 11/15/2022]
|