1
|
Ijezie EC, Miller MJ, Hardy C, Jarvis AR, Czajka TF, D'Brant L, Rugenstein N, Waickman A, Murphy E, Butler DC. HSV-1 Infection Alters MAPT Splicing and Promotes Tau Pathology in Neural Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618683. [PMID: 39464083 PMCID: PMC11507845 DOI: 10.1101/2024.10.16.618683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Herpes simplex virus 1 (HSV-1) infection alters critical markers of Alzheimer's Disease (AD) in neurons. One key marker of AD is the hyperphosphorylation of Tau, accompanied by altered levels of Tau isoforms. However, an imbalance in these Tau splice variants, specifically resulting from altered 3R to 4R MAPT splicing of exon 10, has yet to be directly associated with HSV-1 infection. METHODS To this end, we infected 2D and 3D human neural models with HSV-1 and monitored MAPT splicing and Tau phosphorylation. Further, we transduced SH-SY5Y-neurons with HSV-1 ICP27 which alters RNA splicing to analyze if ICP27 alone is sufficient to induce altered MAPT exon 10 splicing. RESULTS We show that HSV-1 infection induces altered splicing of MAPT exon 10, increasing 4R-Tau protein levels, Tau hyperphosphorylation, and Tau oligomerization. DISCUSSION Our experiments reveal a novel link between HSV-1 infection and the development of cytopathic phenotypes linked with AD progression. HIGHLIGHTS HSV-1 infection in forebrain organoids reduces the neurite length of MAP2-positive neurons.HSV-1 infection increases Tau hyperphosphorylation in both two-month-old and four-month-old forebrain organoids. HSV-1 infection increases Exon 10 containing (4R) MAPT mRNA and 4R-Tau protein expression in both forebrain organoids and human SH-SY5Y-neurons. HSV-1 ICP27 is both necessary and sufficient to induce increased 4R MAPT mRNA and 4R-Tau protein expression in SH-SY5Y-neurons. HSV-1 infection increases Tau oligomerization in both forebrain organoids and SH-SY5Y-neurons.
Collapse
|
2
|
Chauhan P, Wadhwa K, Singh G, Gupta S, Iqbal D, Abomughaid MM, Almutary AG, Mishra PC, Nelson VK, Jha NK. Exploring complexities of Alzheimer's disease: New insights into molecular and cellular mechanisms of neurodegeneration and targeted therapeutic interventions. Ageing Res Rev 2024:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD), the common form of dementia globally, is a complex condition including neurodegeneration; shares incompletely known pathogenesis. Signal transduction and biological activities, including cell metabolism, growth, and death are regulated by different signaling pathways including AKT/MAPK, Wnt, Leptin, mTOR, ubiquitin, Sirt1, and insulin. Absolute evidence linking specific molecular pathways with the genesis and/or progression of AD is still lacking. Changes in gut microbiota and blood-brain barrier also cause amyloid β aggregation in AD. The current review reports significant characteristics of various signaling pathways, their relationship with each other, and how they interact in disease genesis and/or progression. Nevertheless, due to the enormous complexity of the brain and numerous chemical linkages between these pathways, the use of signaling pathways as possible targets for drug development against AD is minimal. Currently, there is no permanent cure for AD, and there is no way to stop brain cell loss. This review also aimed to draw attention to the role of a novel group of signaling pathways, which can be collectively dubbed "anti-AD pathways", in multi-target therapy for AD, where cellular metabolic functions are severely impaired. Thus, different hypotheses have been formulated and elaborated to explain the genesis of AD, which can be further explored for drug development too.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
3
|
Kron NS, Fieber LA, Baker L, Campbell C, Schmale MC. Host response to Aplysia Abyssovirus 1 in nervous system and gill. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105211. [PMID: 38885747 PMCID: PMC11378725 DOI: 10.1016/j.dci.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The California sea hare (Aplysia californica) is a model for age associated cognitive decline. Recent researched identified a novel nidovirus, Aplysia Abyssovirus 1, with broad tropism enriched in the Aplysia nervous system. This virus is ubiquitous in wild and maricultured, young and old animals without obvious pathology. Here we re-evaluated gene expression data from several previous studies to investigate differential expression in the nervous system and gill in response to virus and aging as well as the mutational spectrum observed in the viral sequences obtained from these datasets. Viral load and age were highly correlated, indicating persistent infection. Upregulated genes in response to virus were enriched for immune genes and signatures of ER and proteostatic stress, while downregulated genes were enriched for mitochondrial metabolism. Differential expression with respect to age suggested increased iron accumulation and decreased glycolysis, fatty acid metabolism, and proteasome function. Interaction of gene expression trends associated with viral infection and aging suggest that viral infection likely plays a role in aging in the Aplysia nervous system. Mutation analysis of viral RNA identified signatures suggesting ADAR and AID/APOBEC like deaminase act as part of Aplysia anti-viral defense.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lydia Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | | | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
4
|
Hara H, Chida J, Batchuluun B, Takahashi E, Kido H, Sakaguchi S. Protective role of cytosolic prion protein against virus infection in prion-infected cells. J Virol 2024; 98:e0126224. [PMID: 39194237 PMCID: PMC11406989 DOI: 10.1128/jvi.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Core Research Facility, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
6
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
7
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
8
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
9
|
Zhao M, Ma G, Yan X, Li X, Wang E, Xu XX, Zhao JB, Ma X, Zeng J. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer's disease via modulating γ-secretase. Mol Psychiatry 2024; 29:1491-1500. [PMID: 38273109 DOI: 10.1038/s41380-024-02428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Microbial infection as a type of environmental risk factors is considered to be associated with long-term increased risk of dementia, including Alzheimer's disease (AD). AD is characterized by two neuropathologically molecular hallmarks of hyperphosphorylated tau and amyloid-β (Aβ), the latter generated by several biochemically reactive enzymes, including γ-secretase. However, how infectious risk factors contribute to pathological development of the AD core molecules remains to be addressed. In this work, we utilized a modified herpes simplex virus type 1 (mHSV-1) and found that its hippocampal infection locally promotes Aβ pathology in 5 × FAD mice, the commonly used amyloid model. Mechanistically, we identified HSV-1 membrane glycoprotein US7 (Envelope gI) that interacts with and modulates γ-secretase and consequently facilitates Aβ production. Furthermore, we presented evidence that adenovirus-associated virus-mediated locally hippocampal overexpression of the US7 aggravates Aβ pathology in 5 × FAD mice. Collectively, these findings identify a herpesviral factor regulating γ-secretase in the development and progression of AD and represent a causal molecular link between infectious pathogens and neurodegeneration.
Collapse
Affiliation(s)
- Meng Zhao
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guanqin Ma
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiaoxu Yan
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaohong Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Erlin Wang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiang-Xiong Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Jie-Bin Zhao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xueling Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Jianxiong Zeng
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
11
|
Biagio P, Isabella DF, Federica C, Elena S, Ivan G. Alzheimer's disease and herpes viruses: Current events and perspectives. Rev Med Virol 2024; 34:e2550. [PMID: 38801246 DOI: 10.1002/rmv.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aβ) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.
Collapse
Affiliation(s)
- Pinchera Biagio
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Di Filippo Isabella
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cuccurullo Federica
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Salvatore Elena
- Division of Neurology, Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Gentile Ivan
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
12
|
Dutton A, Patel CD, Taylor SA, Garland CR, Turnbaugh EM, Alers-Velazquez R, Mehrbach J, Nautiyal KM, Leib DA. Asymptomatic neonatal herpes simplex virus infection in mice leads to long-term cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590596. [PMID: 38712140 PMCID: PMC11071430 DOI: 10.1101/2024.04.22.590596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neonatal herpes simplex virus (nHSV) is a devastating infection impacting approximately 14,000 newborns globally each year. Infection is associated with high neurologic morbidity and mortality, making early intervention and treatment critical. Clinical outcomes of symptomatic nHSV infections are well-studied, but little is known about the frequency of, or outcomes following, sub-clinical or asymptomatic nHSV. Given the ubiquitous nature of HSV infection and frequency of asymptomatic shedding in adults, subclinical infections are underreported, yet could contribute to long-term neurological damage. To assess potential neurological morbidity associated with subclinical nHSV infection, we developed a low-dose (100 PFU) HSV infection protocol in neonatal C57BL/6 mice. At this dose, HSV DNA was detected in the brain by PCR but was not associated with acute clinical symptoms. However, months after initial inoculation with 100 PFU of HSV, we observed impaired mouse performance on a range of cognitive and memory performance tasks. Memory impairment was induced by infection with either HSV-1 or HSV-2 wild-type viruses, but not by a viral mutant lacking the autophagy-modulating Beclin-binding domain of the neurovirulence gene γ34.5. Retroviral expression of wild type γ34.5 gene led to behavioral pathology in mice, suggesting that γ34.5 expression may be sufficient to cause cognitive impairment. Maternal immunization and HSV-specific antibody treatment prevented offspring from developing neurological sequelae following nHSV-1 infection. Altogether, these results support the idea that subclinical neonatal infections may lead to cognitive decline in adulthood, with possible profound implications for research on human neurodegenerative disorders such as Alzheimer's Disease.
Collapse
|
13
|
Cantero JL, Atienza M, Sastre I, Bullido MJ. Human in vivo evidence of associations between herpes simplex virus and cerebral amyloid-beta load in normal aging. Alzheimers Res Ther 2024; 16:68. [PMID: 38570885 PMCID: PMC10988886 DOI: 10.1186/s13195-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of AD, possibly instigating amyloid-beta (Aβ) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging, which may contribute to the elucidation of the role of HSV-1 infection as a potential AD risk factor. METHODS To shed light into this question, serum anti-HSV IgG levels were correlated with 18F-Florbetaben-PET binding to Aβ deposits and blood markers of neurodegeneration (pTau181 and neurofilament light chain) in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers. RESULTS We showed that increased anti-HSV IgG levels are associated with higher Aβ load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aβ load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration. CONCLUSIONS All together, these results suggest that HSV infection is selectively related to cortical Aβ deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.
Collapse
Affiliation(s)
- Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, Seville, 41013, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, Seville, 41013, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Sastre
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jesús Bullido
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
15
|
Aliashrafi M, Nasehi M, Zarrindast MR, Joghataei MT, Zali H, Siadat SD. Intracerebroventricular Cutibacterium acnes Generates Manifestations of Alzheimer's Disease-like Pathology in the Rat Hippocampus. Neuroscience 2024; 540:103-116. [PMID: 38266907 DOI: 10.1016/j.neuroscience.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The infection hypothesis is a new causative explanation for Alzheimer's disease (AD). In recent decades, various species of bacterial pathogens have been distinguished in the autopsy of Alzheimer's patients; however, the mechanism of bacterial contribution to AD pathology is still unknown. To explore the hypothesis, Cutibacterium acnes (C. acnes) was selected, and effects of its intracerebroventricular (ICV) inoculation in rats was evaluated. The results revealed that C. acnes causes memory impairment, which might be a consequence of upregulated Amyloid β (Aβ) deposits in the hippocampus; Aβ aggregates are co-localized with C. acnes colonies. The key point of our hypothesis is that the activation of the innate immune system by C. acnes through the TLR2/NF-κB/NLRP3 signaling pathway, eventually leads to increased neuroinflammation, which might be resulted from microgliosis and astrogliosis. Neuroinflammation increases oxidative stress and cell apoptosis. Overall, the obtained results of this study support our hypothesis that brain exposure to C. acnes prompted neuroinflammation with similar AD-like pathology.
Collapse
Affiliation(s)
- Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Shahid Beheshti University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Taghi Joghataei
- Cellular and Molecular Research Center, Department of Neuroscience, Iran University of Medical Science, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
17
|
Tan S, Kelty E, Page A, Etherton-Beer C, Sanfilippo F, Almeida OP. Cross-Sectional and Longitudinal Associations Between Treatment for Herpes Virus Infection and the Dispensing of Antidementia Medicines: An Analysis of the Australian Pharmaceutical Benefits Scheme Database. J Alzheimers Dis 2024; 100:791-797. [PMID: 38905050 DOI: 10.3233/jad-240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Background Evidence from previous observational studies suggest that infection by herpes simplex virus (HSV) and varicella zoster virus (VZV) increase the risk of dementia. Objective To investigate if older adults exposed to HSV treatment have lower risk of dementia than the rest of the population. Methods We used the 10% Australian Pharmaceutical Benefits Scheme (PBS) database from 2013 to 2022 to ascertain the cross-sectional, time-series and longitudinal association between exposure to HSV treatment and the dispensing of antidementia medicines. Participants were men and women aged 60 years or older. We used Anatomical Therapeutic Chemical (ATC) codes to identify medicines dispensed for the treatment of HSV and dementia. Results During the year 2022 6,868 (1.2%) of 559,561 of participants aged 60 years or over were dispensed antidementia agent. The odds ratio (OR) of being dispensed an antidementia agent among individuals dispensed treatment for HSV was 0.73 (99% CI = 0.56-0.95). Multilevel logistic regression for the 2013-2022 period for those dispensed HSV treatment was 0.87 (99% CI = 0.75-1.00). Split-time span series from 2013 was associated with hazard ratio of 0.98 (99% CI = 0.89-1.07) for individuals dispensed relative to those not dispensed HSV treatment. All analyses were adjusted for age, sex, and the dispensing of medicines for the treatment of diabetes, hyperlipidemia, hypertension, and ischemic heart disease. Conclusions The dispensing of antiviral medicines for the treatment of HSV and VZV is consistently, but not conclusively, associated with decreased dispensing of antidementia medicines. This suggests that treatment of HSV and VZV infections may contribute to reduce the risk of dementia.
Collapse
Affiliation(s)
- Stephanie Tan
- School of Population and Global Health, University of Western Australia, Perth, Australia
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Amy Page
- School of Population and Global Health, University of Western Australia, Perth, Australia
- School of Allied Health, University of Western Australia, Perth, Australia
| | | | - Frank Sanfilippo
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia
- Institute for Health Research, University of Notre Dame, Fremantle, Australia
| |
Collapse
|
18
|
Webber CJ, Murphy CN, Rondón-Ortiz AN, van der Spek SJF, Kelly EX, Lampl NM, Chiesa G, Khalil AS, Emili A, Wolozin B. Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Hum Mol Genet 2023; 32:2966-2980. [PMID: 37522762 PMCID: PMC10549787 DOI: 10.1093/hmg/ddad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.
Collapse
Affiliation(s)
- Chelsea J Webber
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Caroline N Murphy
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alejandro N Rondón-Ortiz
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sophie J F van der Spek
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Elena X Kelly
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Noah M Lampl
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
| |
Collapse
|
19
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Mahmoud N, Hammad EM, Reyad SM, Mohamed MS, Shah J. Herpes simplex virus infection and the risk of dementia: a systematic review and meta-analysis. Ann Med Surg (Lond) 2023; 85:5060-5074. [PMID: 37811098 PMCID: PMC10552998 DOI: 10.1097/ms9.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/02/2023] [Indexed: 10/10/2023] Open
Abstract
Aim The authors aimed to perform a meta-analysis to evaluate the association between herpes simplex virus (HSV) infection and the risk of developing dementia. Methods The authors searched the following databases: PubMed, Scopus, Cochrane Library, and Web of Science. The authors included any randomized control trials and controlled observational studies that investigated the prevalence of dementia in HSV-infected patients and HSV-free control group. Also, if the studies measured the levels of HSV antibodies and incidence of these antibodies in patients with dementia compared with a healthy control group. Results After a comprehensive literature search, 19 studies were included in the meta-analysis with 342 535 patients included in the analysis. The pooled analysis showed a statistically significant association between Alzheimer's disease (AD), mild cognitive impairment (MCI), and increased levels of IgG titer group [mean difference (MD) = 0.99, 95% confidence interval (CI) = 0.36-1.63, P-value = 0.002], (MD = 0.80, 95% CI = 0.26-1.35, P-value = 0.004), respectively. Additionally, the generic inverse variance showed a statistically significant association between the HSV group and increased incidence of dementia compared with the no HSV control group [risk ratio (RR) = 2.23, 95% CI = 1.18-2.29, P-value <0.00001]. Moreover, this analysis showed no statistically significant difference between the AD group and the control group in anti-HSV IgM titer n (%) outcome (RR = 1.35, 95% CI = 0.91-2.01, P-value = 0.14), respectively. Conclusion This study revealed that AD and MCI patients have increased levels of IgG antibodies titer against HSV infection. The study showed a significant association between HSV infection and increased incidence of dementia. Thus, regular follow-up of HSV patients' IgG titer levels could be useful in the prevention of dementia in these patients.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada Mahmoud
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Sarraa M. Reyad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai S. Mohamed
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
20
|
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer's disease. Front Aging Neurosci 2023; 15:1245904. [PMID: 37744399 PMCID: PMC10512732 DOI: 10.3389/fnagi.2023.1245904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.
Collapse
Affiliation(s)
- Shu Feng
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhenfeng Shu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhuxi Cheng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- International Department, Beijing Bayi School, Beijing, China
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
21
|
Liu C, Nikain C, Li YM. γ-Secretase fanning the fire of innate immunity. Biochem Soc Trans 2023; 51:1597-1610. [PMID: 37449907 PMCID: PMC11212119 DOI: 10.1042/bst20221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Innate immunity is the first line of defense against pathogens, alerting the individual cell and surrounding area to respond to this potential invasion. γ-secretase is a transmembrane protease complex that plays an intricate role in nearly every stage of this innate immune response. Through regulation of pattern recognition receptors (PRR) such as TREM2 and RAGE γ-secretase can modulate pathogen recognition. γ-secretase can act on cytokine receptors such as IFNαR2 and CSF1R to dampen their signaling capacity. While γ-secretase-mediated regulated intramembrane proteolysis (RIP) can further moderate innate immune responses through downstream signaling pathways. Furthermore, γ-secretase has also been shown to be regulated by the innate immune system through cytokine signaling and γ-secretase modulatory proteins such as IFITM3 and Hif-1α. This review article gives an overview of how γ-secretase is implicated in innate immunity and the maintenance of its responses through potentially positive and negative feedback loops.
Collapse
Affiliation(s)
- Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Cyrus Nikain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| |
Collapse
|
22
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
23
|
Gu F, Boisjoli M, Naghavi MH. HIV-1 promotes ubiquitination of the amyloidogenic C-terminal fragment of APP to support viral replication. Nat Commun 2023; 14:4227. [PMID: 37454116 PMCID: PMC10349857 DOI: 10.1038/s41467-023-40000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
HIV-1 replication in macrophages and microglia involves intracellular assembly and budding into modified subsets of multivesicular bodies (MVBs), which support both viral persistence and spread. However, the cellular factors that regulate HIV-1's vesicular replication remain poorly understood. Recently, amyloid precursor protein (APP) was identified as an inhibitor of HIV-1 replication in macrophages and microglia via an unknown mechanism. Here, we show that entry of HIV-1 Gag into MVBs is blocked by the amyloidogenic C-terminal fragment of APP, "C99", but not by the non-amyloidogenic product, "C83". To counter this, Gag promotes multi-site ubiquitination of C99 which controls both exocytic sorting of MVBs and further processing of C99 into toxic amyloids. Processing of C99, entry of Gag into MVBs and release of infectious virus could be suppressed by expressing ubiquitination-defective C99 or by γ-secretase inhibitor treatment, suggesting that APP's amyloidogenic pathway functions to sense and suppress HIV-1 replication in macrophages and microglia.
Collapse
Affiliation(s)
- Feng Gu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Boisjoli
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Fulop T, Ramassamy C, Lévesque S, Frost EH, Laurent B, Lacombe G, Khalil A, Larbi A, Hirokawa K, Desroches M, Rodrigues S, Bourgade K, Cohen AA, Witkowski JM. Viruses - a major cause of amyloid deposition in the brain. Expert Rev Neurother 2023; 23:775-790. [PMID: 37551672 DOI: 10.1080/14737175.2023.2244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon Lévesque
- CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abedelouahed Khalil
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo Medical Dental University, Tokyo and Nito-Memory Nakanosogo Hospital, Tokyo, Japan
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Biot, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, BCAM, the Basque Foundation for Science and BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Karine Bourgade
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
25
|
Weidung B, Josefsson M, Lyttkens P, Olsson J, Elgh F, Lind L, Kilander L, Lövheim H. Longitudinal Effects of Herpesviruses on Multiple Cognitive Outcomes in Healthy Elderly Adults. J Alzheimers Dis 2023:JAD221116. [PMID: 37334589 PMCID: PMC10357165 DOI: 10.3233/jad-221116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Herpesviruses have been proposed to be involved in Alzheimer's disease development as potentially modifiable pathology triggers. OBJECTIVE To investigate associations of serum antibodies for herpes simplex virus (HSV)-1 and cytomegalovirus (CMV) and anti-herpesvirus treatment with cognitive outcomes in relation to interactions with APOE ɛ4. METHODS The study included 849 participants in the population-based Prospective Investigation of the Vasculature in Uppsala Seniors study. Cognitive performance at the ages of 75 and 80 years was assessed using the Mini-Mental State Examination (MMSE), trail-making test (TMT) A and B, and 7-minute screening test (7MS). RESULTS Anti- HSV-1 IgG positivity was associated cross-sectionally with worse performance on the MMSE, TMT-A, TMT-B, 7MS, enhanced free recall, and verbal fluency tests (p = 0.016, p = 0.016, p < 0.001, p = 0.001, p = 0.033, and p < 0.001, respectively), but not orientation or clock drawing. Cognitive scores did not decline over time and longitudinal changes did not differ according to HSV-1 positivity. Anti- CMV IgG positivity was not associated cross-sectionally with cognition, but TMT-B scores declined more in anti- CMV IgG carriers. Anti- HSV-1 IgG interacted with APOE ɛ4 in association with worse TMT-A and better enhanced cued recall. Anti- HSV IgM interacted with APOE ɛ4 and anti-herpesvirus treatment in association with worse TMT-A and clock drawing, respectively. CONCLUSION These findings indicate that HSV-1 is linked to poorer cognition in cognitively healthy elderly adults, including impairments in executive function, memory, and expressive language. Cognitive performance did not decline over time, nor was longitudinal decline associated with HSV-1.
Collapse
Affiliation(s)
- Bodil Weidung
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Maria Josefsson
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Peter Lyttkens
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Lars Lind
- Department of Medical Sciences, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Division of Geriatic Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå university, Umeå, Sweden
| |
Collapse
|
26
|
Patra P, Rani A, Sharma N, Mukherjee C, Jha HC. Unraveling the Connection of Epstein-Barr Virus and Its Glycoprotein M 146-157 Peptide with Neurological Ailments. ACS Chem Neurosci 2023. [PMID: 37290090 DOI: 10.1021/acschemneuro.3c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Epstein-Barr virus (EBV) is known to be associated with several cancers along with neurological modalities like Alzheimer's disease (AD) and multiple sclerosis (MS). Previous study from our group revealed that a 12 amino acid peptide fragment (146SYKHVFLSAFVY157) of EBV glycoprotein M (gM) exhibits amyloid-like self-aggregative properties. In the current study, we have investigated its effect on Aβ42 aggregation along with its effect on neural cell immunology and disease markers. EBV virion was also considered for the above-mentioned investigation. An increase in the aggregation of Aβ42 peptide was observed upon incubation with gM146-157. Further, the exposure of EBV and gM146-157 onto neuronal cells indicated the upregulation of inflammatory molecules like IL-1β, IL-6, TNF-α, and TGF-β that suggested neuroinflammation. Besides, host cell factors like mitochondrial potential and calcium ion signaling play a crucial role in cellular homeostasis and alterations in these factors aid in neurodegeneration. Changes in mitochondrial membrane potential manifested a decrease while elevation in the level of total Ca2+ ions was observed. Amelioration of Ca2+ ions triggers excitotoxicity in neurons. Subsequently, neurological disease-associated genes APP, ApoE4, and MBP were found to be increased at the protein level. Additionally, demyelination of neurons is a hallmark of MS and the myelin sheath consists of ∼70% of lipid/cholesterol-associated moieties. Hereby, genes associated with cholesterol metabolism indicated changes at the mRNA level. Enhanced expression of neurotropic factors like NGF and BDNF was discerned postexposure to EBV and gM146-157. Altogether, this study delineates a direct connection of EBV and its peptide gM146-157 with neurological illnesses.
Collapse
Affiliation(s)
- Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Neha Sharma
- Department of Atomic Energy, Optical Coatings Laboratory, High Energy Lasers & Optics Section, Laser Technology Division, Laser Group, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Chandrachur Mukherjee
- Department of Atomic Energy, Optical Coatings Laboratory, High Energy Lasers & Optics Section, Laser Technology Division, Laser Group, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
27
|
Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol 2023; 23:201. [PMID: 37221459 DOI: 10.1186/s12883-023-03239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Multiple Sclerosis Research Center, Neuroscience Institut, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taraneh Rajaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Ecarnot F, Boccardi V, Calcagno A, Franceschi C, Fülop T, Itzhaki RF, Michel JP, Panza F, Rainero I, Solfrizzi V, Ticinesi A, Veronese N, Maggi S. Dementia, infections and vaccines: 30 years of controversy. Aging Clin Exp Res 2023; 35:1145-1160. [PMID: 37160649 PMCID: PMC10169152 DOI: 10.1007/s40520-023-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut-brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present.
Collapse
Affiliation(s)
- Fiona Ecarnot
- EA3920, University of Franche-Comté, 25000, Besancon, France
- Department of Cardiology, University Hospital Besancon, 3-8 Boulevard Fleming, 25000, Besancon, France
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod, Russia
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tamas Fülop
- Department of Medicine, Geriatrics Division, Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Innocenzo Rainero
- Dementia Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Internal Medicine, University of Palermo, Palermo, Italy.
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
29
|
Salgado B, Sastre I, Bullido MJ, Aldudo J. Herpes Simplex Virus Type 1 Induces AD-like Neurodegeneration Markers in Human Progenitor and Differentiated ReNcell VM Cells. Microorganisms 2023; 11:1205. [PMID: 37317179 DOI: 10.3390/microorganisms11051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
An increasing body of evidence strongly suggests that infections or reactivations of herpes simplex virus type 1 (HSV-1) may be closely linked to Alzheimer's disease (AD). Promising results have been obtained using cell and animal models of HSV-1 infection, contributing to the understanding of the molecular mechanisms linking HSV-1 infection and AD neurodegeneration. ReNcell VM is a human neural stem cell line that has been used as a model system to study the impact of various infectious agents on the central nervous system. In this study, we demonstrate the suitability of the ReNcell VM cell line for developing a new in vitro model of HSV-1 infection. By following standard differentiation protocols, we were able to derive various nervous cell types, including neurons, astrocytes, and oligodendrocytes, from neural precursors. Additionally, we demonstrated the susceptibility of ReNcell VM cells, including precursor and differentiated cells, to HSV-1 infection and subsequent viral-induced AD-like neurodegeneration. Our findings support the use of this cell line to generate a new research platform for investigating AD neuropathology and its most significant risk factors, which may lead to important discoveries in the context of this highly impactful disease.
Collapse
Affiliation(s)
- Blanca Salgado
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Sastre
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Maria J Bullido
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Jesus Aldudo
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
30
|
HSV-1 cellular model reveals links between aggresome formation and early step of Alzheimer's disease. Transl Psychiatry 2023; 13:86. [PMID: 36898995 PMCID: PMC10006237 DOI: 10.1038/s41398-023-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Many studies highlight the potential link between the chronic degenerative Alzheimer's disease and the infection by the herpes simplex virus type-1 (HSV-1). However, the molecular mechanisms making possible this HSV-1-dependent process remain to be understood. Using neuronal cells expressing the wild type form of amyloid precursor protein (APP) infected by HSV-1, we characterized a representative cellular model of the early stage of the sporadic form of the disease and unraveled a molecular mechanism sustaining this HSV-1- Alzheimer's disease interplay. Here, we show that HSV-1 induces caspase-dependent production of the 42 amino-acid long amyloid peptide (Aβ42) oligomers followed by their accumulation in neuronal cells. Aβ42 oligomers and activated caspase 3 (casp3A) concentrate into intracytoplasmic structures observed in Alzheimer's disease neuronal cells called aggresomes. This casp3A accumulation in aggresomes during HSV-1 infection limits the execution of apoptosis until its term, similarly to an abortosis-like event occurring in Alzheimer's disease neuronal cells patients. Indeed, this particular HSV-1 driven cellular context, representative of early stages of the disease, sustains a failed apoptosis mechanism that could explain the chronic amplification of Aβ42 production characteristic of Alzheimer's disease patients. Finally, we show that combination of flurbiprofen, a non-steroidal anti-inflammatory drug (NSAID), with caspase inhibitor reduced drastically HSV-1-induced Aβ42 oligomers production. This provided mechanistic insights supporting the conclusion of clinical trials showing that NSAIDs reduced Alzheimer's disease incidence in early stage of the disease. Therefore, from our study we propose that caspase-dependent production of Aβ42 oligomers together with the abortosis-like event represents a vicious circle in early Alzheimer's disease stages leading to a chronic amplification of Aβ42 oligomers that contributes to the establishment of degenerative disorder like Alzheimer's disease in patients infected by HSV-1. Interestingly this process could be targeted by an association of NSAID with caspase inhibitors.
Collapse
|
31
|
Abstract
Wang et al. found that elderly COVID-19 patients were at risk of AD. The following facts suggest a possible explanation: reactivation of herpes simplex virus type 1 (HSV1) and other herpesviruses can occur in SARS-CoV-2 patients; in cell cultures, HSV1 infection causes occurrence of many AD-like features, as does reactivation of latent HSV1 after addition of certain infectious agents; recurrent experimental reactivation of HSV1-infected mice leads to formation of the main features of AD brains, and to cognitive decline. These suggest that COVID-19 results in repeated reactivation of HSV1 in brain, with subsequent accumulation of damage and eventual development of AD.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Anwar MM. The emerging mechanism behind viral infections and extracellular vesicles hypotheses leading to neuroinflammation and Alzheimer's disease pathology. IBRAIN 2023; 9:63-71. [PMID: 37786515 PMCID: PMC10529198 DOI: 10.1002/ibra.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 10/04/2023]
Abstract
Despite decades of repeated and intense research, the etiology of sudden Alzheimer's disease (AD) symptoms is still unclear. AD progressive pathology mainly involves neuron damage, depositions of amyloid-beta (Aβ), and hyperphosphorylated tau protein. All these defects are manifested by exaggerated cytokine storm and neuroinflammation leading to irreversible brain damage in the long term. Despite the numerous risks and drawbacks associated with AD, it is believed that there is a hidden unknown causative and predisposing factors for AD. Extracellular vesicles (EVs) are small vesicles released by cells as a type of intercellular communication. Several pieces of evidence support the inclusion of viral components within EVs facilitating their penetration into the blood-brain barrier leading to neuroinflammation. In light of the SARS-CoV-19 pandemic and its related neurological complications, it is mandatory to highlight the possibility and viability of viral infections such as varicella-zoster virus (VZV) and herpes simplex virus (HSV) on the onset of AD. Herein, the author is investigating the potential role of VZV and HSV along with highlighting the suggested route of pathogenesis entry resulting in AD manifestations. Additionally, this review aims to summarize the role of EVs in mediating the central nervous system viral infections leading to AD.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of BiochemistryNational Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA)CairoEgypt
| |
Collapse
|
33
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
34
|
Goldhardt O, Freiberger R, Dreyer T, Wilner L, Yakushev I, Ortner M, Förstl H, Diehl‐Schmid J, Milz E, Priller J, Ramirez A, Magdolen V, Thaler M, Grimmer T. Herpes simplex virus alters Alzheimer's disease biomarkers ‐ A hypothesis paper. Alzheimers Dement 2022; 19:2117-2134. [PMID: 36396609 DOI: 10.1002/alz.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Human herpes simplex virus 1 (HSV1) is discussed to induce amyloid-β (Aβ) accumulation and neurofibrillary tangles of hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) in cell culture and animal models. Aβ appears to be virostatic. We investigated the association between intrathecal antibodies against HSV or cytomegalovirus (CMV) and cerebrospinal fluid (CSF) AD biomarkers. METHODS Aβ42 /Aβ40 ratio, pTau, and tTau were measured in CSF of 117 patients with early AD positive for amyloid pathology (A+) and 30 healthy controls (A-). CSF-to-serum anti-HSV1/2-IgG antibody indices (AI-IgGHSV1/2 ) and CMV (AI-IgGCMV ) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Exclusively in HSV1-seropositive AD, pTau was positively and significantly predicted by AI-IgGHSV1/2 and negatively by the Aβ42 /Aβ40 ratio in both univariate and multivariate regression analyses. Furthermore, a significant and negative interaction between the AI-IgGHSV1/2 and Aβ42 /Aβ40 ratio on pTau was found. DISCUSSION The results support the hypothesis that HSV infection contributes to AD. HIGHLIGHTS HSV antibody index is positively associated with tau pathology in patients with AD. HSV antibody index is negatively associated with cerebral FDG metabolism. Amyloid modulates the association of HSV antibody index with CSF-pTau. HSV in AD offers a pathophysiological model connecting tau and amyloid.
Collapse
Affiliation(s)
- Oliver Goldhardt
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Robert Freiberger
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Tobias Dreyer
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Luisa Wilner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Janine Diehl‐Schmid
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Esther Milz
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry Medical Faculty University Hospital Bonn Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases San Antonio Texas USA
- Cluster of Excellence Cellular Stress Responses in Aging‐associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Markus Thaler
- Institute for Clinical Chemistry and Pathobiochemistry School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| |
Collapse
|
35
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Abstract
Herpesviruses affect the development of dementia. We investigated the association between herpes infection and subsequent diagnoses of dementia. Data from the National Health Insurance Service of South Korea were used. Patients aged ≥50 years with the relevant diagnostic codes in the reference year 2009 were included and prospectively reviewed from January 2010 to December 2018. All study participants were followed from the index date until the onset of dementia, death, or the study endpoint. The three cohorts comprised 92,095 patients with herpes simplex virus (HSV) infections, 97,323 patients with varicella-zoster virus (VZV) infections, and 183,779 controls. During the follow-up period, 15,831 (17.19%) subjects with HSV infection and 17,082 (17.55%) VZV-infected subjects, compared to 27,028 (14.17%) control subjects, were subsequently diagnosed with dementia (all, P < .001). The adjusted hazard ratio for developing dementia was found to be 1.18 (95% confidence interval [CI]; 1.16-1.20) in HSV and 1.09 (95% CI; 1.07-1.11) in VZV patients (all, P < .001). HSV1 infections such as oral or ocular subtypes, but not HSV2, anogenital subtype, were associated with dementia, including several subtypes such as Alzheimer's disease (AD), vascular dementia, and dementia with Lewy bodies. VZV infection is also associated with AD. In this Korean nationwide population-based cohort study, both HSV and VZV infections were associated with a higher risk of dementia, particularly AD. Among the subtypes of HSV infection, HSV1 is associated with a risk of dementia. Further studies including appropriate public health interventions could evaluate the causality of these relationships.
Collapse
Affiliation(s)
- YongSoo Shim
- Department of Neurology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * Correspondence: YongSoo Shim, Department of Neurology, College of Medicine, The Catholic University of Korea, Eunpyeong St. Mary’s Hospital, 1021, Tongil-ro, Eunpyeong-gu, Seoul 03312, Korea (e-mail: )
| | - Minae Park
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Korea
| | - JaeYoung Kim
- Department of Statistics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
37
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
38
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
39
|
Ganz T, Fainstein N, Ben-Hur T. When the infectious environment meets the AD brain. Mol Neurodegener 2022; 17:53. [PMID: 35986296 PMCID: PMC9388962 DOI: 10.1186/s13024-022-00559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Amyloid theory of Alzheimer’s disease (AD) suggests that the deposition of Amyloid β (Aβ) in the brain triggers a chain of events, involving the deposition of phosphorylated Tau and other misfolded proteins, leading to neurodegeneration via neuroinflammation, oxidative stress, and neurovascular factors. The infectious theory linked various infectious agents with the development of AD, raising the possibility that they serve as etiological causes of the disease. Are these theories mutually exclusive, or do they coincide? Main body In this review, we will discuss how the two theories converge. We present a model by which (1) the systemic infectious burden accelerates the development of AD brain pathology via bacterial Amyloids and other pathogen-associated molecular patterns (PAMPs), and (2) the developing AD brain pathology increases its susceptibility to the neurotoxicity of infectious agents -derived PAMPs, which drive neurodegeneration via activated microglia. Conclusions The reciprocal effects of amyloid deposition and systemic infectious burden may lead to a vicious cycle fueling Alzheimer’s disease pathogenesis.
Collapse
|
40
|
New Insights into the Molecular Interplay between Human Herpesviruses and Alzheimer’s Disease—A Narrative Review. Brain Sci 2022; 12:brainsci12081010. [PMID: 36009073 PMCID: PMC9406069 DOI: 10.3390/brainsci12081010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses (HHVs) have been implicated as possible risk factors in Alzheimer’s disease (AD) pathogenesis. Persistent lifelong HHVs infections may directly or indirectly contribute to the generation of AD hallmarks: amyloid beta (Aβ) plaques, neurofibrillary tangles composed of hyperphosphorylated tau proteins, and synaptic loss. The present review focuses on summarizing current knowledge on the molecular mechanistic links between HHVs and AD that include processes involved in Aβ accumulation, tau protein hyperphosphorylation, autophagy, oxidative stress, and neuroinflammation. A PubMed search was performed to collect all the available research data regarding the above mentioned mechanistic links between HHVs and AD pathology. The vast majority of research articles referred to the different pathways exploited by Herpes Simplex Virus 1 that could lead to AD pathology, while a few studies highlighted the emerging role of HHV 6, cytomegalovirus, and Epstein–Barr Virus. The elucidation of such potential links may guide the development of novel diagnostics and therapeutics to counter this devastating neurological disorder that until now remains incurable.
Collapse
|
41
|
Cairns DM, Itzhaki RF, Kaplan DL. Potential Involvement of Varicella Zoster Virus in Alzheimer's Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. J Alzheimers Dis 2022; 88:1189-1200. [PMID: 35754275 DOI: 10.3233/jad-220287] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Varicella zoster virus (VZV) has been implicated in Alzheimer's disease (AD), and vaccination against shingles, caused by VZV, has been found to decrease the risk of AD/dementia. VZV might reside latently in brain, and on reactivation might cause direct damage leading to AD, as proposed for herpes simplex virus type 1 (HSV-1), a virus strongly implicated in AD. Alternatively, shingles could induce neuroinflammation and thence, reactivation of HSV-1 in brain. OBJECTIVE To investigate these possibilities by comparing the effects of VZV and HSV-1 infection of cultured cells, and the action of VZV infection on cells quiescently infected with HSV-1. METHODS We infected human-induced neural stem cell (hiNSC) cultures with HSV-1 and/or VZV and sought the presence of AD-related phenotypes such as amyloid-β (Aβ) and P-tau accumulation, gliosis, and neuroinflammation. RESULTS Cells infected with VZV did not show the main AD characteristics, Aβ and P-tau accumulation, which HSV-1 does cause, but did show gliosis and increased levels of pro-inflammatory cytokines, suggesting that VZV's action relating to AD/dementia is indirect. Strikingly, we found that VZV infection of cells quiescently infected with HSV-1 causes reactivation of HSV-1 and consequent AD-like changes, including Aβ and P-tau accumulation. CONCLUSION Our results are consistent with the suggestion that shingles causes reactivation of HSV1 in brain and with the protective effects against AD of various vaccines, as well as the decrease in herpes labialis reported after certain types of vaccination. They support an indirect role for VZV in AD/dementia via reactivation of HSV-1 in brain.
Collapse
Affiliation(s)
- Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
42
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
43
|
Gallego Villarejo L, Bachmann L, Marks D, Brachthäuser M, Geidies A, Müller T. Role of Intracellular Amyloid β as Pathway Modulator, Biomarker, and Therapy Target. Int J Mol Sci 2022; 23:ijms23094656. [PMID: 35563046 PMCID: PMC9103247 DOI: 10.3390/ijms23094656] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The β- and γ-secretase-driven cleavage of the amyloid precursor protein (APP) gives rise to the amyloid β peptide, which is believed to be the main driver of neurodegeneration in Alzheimer’s disease (AD). As it is prominently detectable in extracellular plaques in post-mortem AD brain samples, research in recent decades focused on the pathological role of extracellular amyloid β aggregation, widely neglecting the potential meaning of very early generation of amyloid β inside the cell. In the last few years, the importance of intracellular amyloid β (iAβ) as a strong player in neurodegeneration has been indicated by a rising number of studies. In this review, iAβ is highlighted as a crucial APP cleavage fragment, able to manipulate intracellular pathways and foster neurodegeneration. We demonstrate its relevance as a pathological marker and shed light on initial studies aiming to modulate iAβ through pharmacological treatment, which has been shown to have beneficial effects on cognitive properties in animal models. Finally, we display the relevance of viral infections on iAβ generation and point out future directions urgently needed to manifest the potential relevance of iAβ in Alzheimer’s disease.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - David Marks
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Maite Brachthäuser
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Alexander Geidies
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Thorsten Müller
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
44
|
Weidung B, Hemmingsson E, Olsson J, Sundström T, Blennow K, Zetterberg H, Ingelsson M, Elgh F, Lövheim H. VALZ-Pilot: High-dose valacyclovir treatment in patients with early-stage Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12264. [PMID: 35310522 PMCID: PMC8919248 DOI: 10.1002/trc2.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
Introduction Herpes simplex virus (HSV) may be involved in Alzheimer's disease (AD) pathophysiology. The antiviral valacyclovir inhibits HSV replication. Methods This phase-II pilot trial involved valacyclovir administration (thrice daily, 500 mg week 1, 1000 mg weeks 2-4) to persons aged ≥ 65 years with early-stage AD, anti-HSV immunoglobulin G, and apolipoprotein E ε4. Intervention safety, tolerability, feasibility, and effects on Mini-Mental State Examination (MMSE) scores and cerebrospinal fluid (CSF) biomarkers were evaluated. Results Thirty-two of 33 subjects completed the trial on full dosage. Eighteen percent experienced likely intervention-related mild, temporary adverse events. CSF acyclovir concentrations were mean 5.29 ± 2.31 μmol/L. CSF total tau and neurofilament light concentrations were unchanged; MMSE score and CSF soluble triggering receptor expressed on myeloid cells 2 concentrations increased (P = .02 and .03). Discussion Four weeks of high-dose valacyclovir treatment was safe, tolerable, and feasible in early-stage AD. Our findings may guide future trial design.
Collapse
Affiliation(s)
- Bodil Weidung
- Section of GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
| | - Eva‐Stina Hemmingsson
- Department of Community Medicine and RehabilitationGeriatric MedicineUmeå UniversityUmeåSweden
| | - Jan Olsson
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
| | - Torbjörn Sundström
- Diagnostic RadiologyDepartment of Radiation SciencesUmeå UniversityUmeåSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Martin Ingelsson
- Section of GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
- Krembil Brain InstituteUniversity Health NetworkTorontoCanada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
| | - Fredrik Elgh
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
| | - Hugo Lövheim
- Department of Community Medicine and RehabilitationGeriatric MedicineUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicinUmeåSweden
| |
Collapse
|
45
|
Role of HSV-1 in Alzheimer's disease pathogenesis: A challenge for novel preventive/therapeutic strategies. Curr Opin Pharmacol 2022; 63:102200. [PMID: 35276497 DOI: 10.1016/j.coph.2022.102200] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/03/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is a ubiquitous DNA virus able to establish a life-long latent infection in host sensory ganglia. Following periodic reactivations, the neovirions usually target the site of primary infection causing recurrent diseases in susceptible individuals. However, reactivated HSV-1 may also reach the brain resulting in severe herpetic encephalitis or in asymptomatic infections. These have been reportedly linked to neurodegenerative disorders, such as Alzheimer's disease (AD), suggesting antiviral preventive or/therapeutic treatments as possible strategies to counteract AD onset and progression. Here, we provide an overview of the AD-like mechanisms driven by HSV-1-infection in neurons and discuss the ongoing trials repurposing anti-herpetic drugs to treat AD as well as preventive strategies aimed at blocking virus infection.
Collapse
|
46
|
Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang DK. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol Res 2022; 179:106189. [DOI: 10.1016/j.phrs.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
|
47
|
Wang HC, Zhang QX, Zhao J, Wei NN. Molecular docking and molecular dynamics simulations studies on the protective and pathogenic roles of the amyloid-β peptide between herpesvirus infection and Alzheimer's disease. J Mol Graph Model 2022; 113:108143. [DOI: 10.1016/j.jmgm.2022.108143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
|
48
|
Sakaguchi S, Hara H. The first non-prion pathogen identified: neurotropic influenza virus. Prion 2022; 16:1-6. [PMID: 34978525 PMCID: PMC8741280 DOI: 10.1080/19336896.2021.2015224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cellular isoform of prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in the brain, particularly by neurons, and its conformational conversion into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying mechanism in the pathogenesis of prion diseases, a group of neurodegenerative disorders in humans and animals. Most cases of these diseases are sporadic and their aetiologies are unknown. We recently found that a neurotropic strain of influenza A virus (IAV/WSN) caused the conversion of PrPC into PrPSc and the subsequent formation of infectious prions in mouse neuroblastoma cells after infection. These results show that IAV/WSN is the first non-prion pathogen capable of inducing the conversion of PrPC into PrPSc and propagating infectious prions in cultured neuronal cells, and also provide the intriguing possibility that IAV infection in neurons might be a cause of or be associated with sporadic prion diseases. Here, we present our findings of the IAV/WSN-induced conversion of PrPC into PrPSc and subsequent propagation of infectious prions, and also discuss the biological significance of the conversion of PrPC into PrPSc in virus infections.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima 770-8503, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
49
|
Litvinenko IV, Lobzin VY. On a New Paradigm of the Development of Neurodegenerative Diseases by the Example of Alzheimer’s Disease and Parkinson’s Disease. ADVANCES IN GERONTOLOGY 2022; 12. [PMCID: PMC9774074 DOI: 10.1134/s2079057022040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of neuronal inflammation developing during the formation of amyloid plaques and Lewy bodies is investigated. The influence of various exogenous and endogenous factors on the development of neuroinflammation is established, but the role of various infectious agents in the development of this process is much less studied. Today, the existence of a universal trigger mechanism of the neurodegenerative process is obvious: a specific pathogen of a bacterial or viral nature (including long-term persistent in nervous tissue in a latent state), reactivating, penetrates into certain cerebral structures, where it is influenced by either Aβ or resident macrophages of the central nervous system, which, in turn, are activated and induce the release of proinflammatory cytokines, leading to the development of neuronal inflammation, autophagy and neurodegeneration. The reactivation of latent infection, such as herpes, in APOE4 carriers significantly increases the risk of development of Alzheimer’s disease. Class-II genes of the HLA locus (HLA II) may be related to the progression of neurodegenerative diseases. An increase in iron levels in the glia is induced by inflammation, which leads to neurodegeneration. Disruption of the homeostasis of redox-active metals, iron and copper, is an integral part of the pathogenesis of Alzheimer’s disease and Parkinson’s disease. The developing neuroinflammation leads to intensification of the processes of peroxidation, oxidation of metals and the development of ferroptosis.
Collapse
Affiliation(s)
| | - V. Yu. Lobzin
- Kirov Military Medical Academy, 194044 St. Petersburg, Russia ,Mechnikov North-Western State Medical University, 191015 St. Petersburg, Russia ,Children’s Research and Clinical Center of Infectious Diseases, 197022 St. Petersburg, Russia
| |
Collapse
|
50
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|