1
|
Ma X, Zhang M, Yan R, Wu H, Yang B, Miao Z. β2SP/TET2 complex regulates gene 5hmC modification after cerebral ischemia. J Cell Mol Med 2021; 25:11300-11309. [PMID: 34799994 PMCID: PMC8650033 DOI: 10.1111/jcmm.17060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
βII spectrin (β2SP) is encoded by Sptbn1 and is involved in the regulation of various cell functions. β2SP contributes to the formation of the myelin sheath, which may be related to the mechanism of neuropathy caused by demyelination. As one of the main features of cerebral ischemia, demyelination plays a key role in the mechanism of cerebral ischemia injury. Here, we showed that β2SP levels were increased, and this molecule interacted with TET2 after ischemic injury. Furthermore, we found that the level of TET2 was decreased in the nucleus when β2SP was knocked out after oxygen and glucose deprivation (OGD), and the level of 5hmC was reduced in the OGD+β2SP KO group. In contrast, the expression of β2SP did not change in TET2 KO mice. In addition, the 5hmC sequencing results revealed that β2SP can affect the level of 5hmC, the differentially hydroxymethylated region (DhMR) mainly related with the Calcium signalling pathway, cGMP‐PKG signalling pathway, Wnt signalling pathway and Hippo signalling pathway. In summary, our results suggest that β2SP could regulate the gene 5hmC by interacted with TET2 and will become a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaohua Ma
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Hainan Wu
- College of Forestry, Nanjing Forestry University, Nanjing City, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|
2
|
Powell MA, Black RT, Smith TL, Reeves TM, Phillips LL. Mild Fluid Percussion Injury Induces Diffuse Axonal Damage and Reactive Synaptic Plasticity in the Mouse Olfactory Bulb. Neuroscience 2018; 371:106-118. [PMID: 29203228 PMCID: PMC5809206 DOI: 10.1016/j.neuroscience.2017.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Despite the regenerative capacity of the olfactory bulb (OB), head trauma causes olfactory disturbances in up to 30% of patients. While models of olfactory nerve transection, olfactory receptor neuron (ORN) ablation, or direct OB impact have been used to examine OB recovery, these models are severe and not ideal for study of OB synaptic repair. We posited that a mild fluid percussion brain injury (mFPI), delivered over mid-dorsal cortex, would produce diffuse OB deafferentation without confounding pathology. Wild type FVB/NJ mice were subjected to mFPI and OB probed for ORN axon degeneration and onset of reactive synaptogenesis. OB extracts revealed 3 d postinjury elevation of calpain-cleaved 150-kDa αII-spectrin, an indicator of axon damage, in tandem with reduced olfactory marker protein (OMP), a protein specific to intact ORN axons. Moreover, mFPI also produced a 3-d peak in GFAP+ astrocyte and IBA1+ microglial reactivity, consistent with postinjury inflammation. OB glomeruli showed disorganized ORN axons, presynaptic degeneration, and glial phagocytosis at 3 and 7 d postinjury, all indicative of deafferentation. At 21 d after mFPI, normal synaptic structure re-emerged along with OMP recovery, supporting ORN afferent reinnervation. Robust 21 d postinjury upregulation of GAP-43 was consistent with the time course of ORN axon sprouting and synapse regeneration reported after more severe olfactory insult. Together, these findings define a cycle of synaptic degeneration and recovery at a site remote to non-contusive brain injury. We show that mFPI models diffuse ORN axon damage, useful for the study of time-dependent reactive synaptogenesis in the deafferented OB.
Collapse
Affiliation(s)
- Melissa A Powell
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Raiford T Black
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Terry L Smith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| |
Collapse
|
3
|
Kim JH, Kwon SJ, Stankewich MC, Huh GY, Glantz SB, Morrow JS. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp Mol Pathol 2015; 100:1-7. [PMID: 26551084 DOI: 10.1016/j.yexmp.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from resting protoplasmic astrocytes to reactive fibrous astrocytes.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA.
| | - Soojung J Kwon
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Michael C Stankewich
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Gi-Yeong Huh
- Department of Forensic Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Susan B Glantz
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Jon S Morrow
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| |
Collapse
|
4
|
Age-related intraneuronal accumulation of αII-spectrin breakdown product SBDP120 in the human cerebrum is enhanced in Alzheimer's disease. Exp Gerontol 2015; 69:43-52. [DOI: 10.1016/j.exger.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
|
5
|
Cai Y, Zhu HX, Li JM, Luo XG, Patrylo PR, Rose GM, Streeter J, Hayes R, Wang KKW, Yan XX, Jeromin A. Age-related intraneuronal elevation of αII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3×Tg-AD mice. PLoS One 2012; 7:e37599. [PMID: 22723836 PMCID: PMC3377681 DOI: 10.1371/journal.pone.0037599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/23/2012] [Indexed: 11/24/2022] Open
Abstract
Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer’s disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice.
Collapse
Affiliation(s)
- Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Hai-Xia Zhu
- Department of Neurology, The Third Xiangya Hospital, Changsha, Hunan, China
| | - Jian-Ming Li
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Peter R. Patrylo
- Departments of Anatomy & Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Gregory M. Rose
- Departments of Anatomy & Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | | | - Ron Hayes
- Banyan Biomarkers, Alachua, Florida, United States of America
| | | | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail: (XXY); (AJ)
| | - Andreas Jeromin
- Banyan Biomarkers, Alachua, Florida, United States of America
- * E-mail: (XXY); (AJ)
| |
Collapse
|
6
|
Spectrin Breakdown Products (SBDPs) as Potential Biomarkers for Neurodegenerative Diseases. ACTA ACUST UNITED AC 2012; 1:85-93. [PMID: 23710421 DOI: 10.1007/s13670-012-0009-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The world's human population ages rapidly thanks to the great advance in modern medicine. While more and more body system diseases become treatable and curable, age-related neurodegenerative diseases remain poorly understood mechanistically, and are desperately in need of preventive and therapeutic interventions. Biomarker development consists of a key part of concerted effort in combating neurodegenerative diseases. In many chronic neurodegenerative conditions, neuronal damage/death occurs long before the onset of disease symptoms, and abnormal proteolysis may either play an active role or be a companying event of neuronal injury. Increased spectrin cleavage yielding elevated spectrin breakdown products (SBDPs) by calcium-sensitive proteases such as calpain and caspases has been established in conditions associated with acute neuronal damage such as traumatic brain injury (TBI). Here we review literature regarding spectrin expression and metabolism in the brain, and propose a potential use of SBDPs as biomarkers for neurodegenerative diseases such as Alzheimer's diseases.
Collapse
|