1
|
Huerta MÁ, Cisneros E, Alique M, Roza C. Strategies for measuring non-evoked pain in preclinical models of neuropathic pain: Systematic review. Neurosci Biobehav Rev 2024; 163:105761. [PMID: 38852847 DOI: 10.1016/j.neubiorev.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain
| | - Elsa Cisneros
- Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain; Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Matilde Alique
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain.
| |
Collapse
|
2
|
Kasai S, Ogawa N, Takagi M, Takahashi Y, Makino K, Arita H, Takahashi H, Yoshizawa K. Fentanyl Analogs Exert Antinociceptive Effects via Sodium Channel Blockade in Mice. Biol Pharm Bull 2024; 47:872-877. [PMID: 38658360 DOI: 10.1248/bpb.b24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.
Collapse
Affiliation(s)
- Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Natsuki Ogawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Miho Takagi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yukino Takahashi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hironobu Arita
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hideyo Takahashi
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
3
|
Barker DJ, Zhang S, Wang H, Estrin DJ, Miranda-Barrientos J, Liu B, Kulkarni RJ, de Deus JL, Morales M. Lateral preoptic area glutamate neurons relay nociceptive information to the ventral tegmental area. Cell Rep 2023; 42:113029. [PMID: 37632750 PMCID: PMC10584074 DOI: 10.1016/j.celrep.2023.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
The ventral tegmental area (VTA) has been proposed to play a role in pain, but the brain structures modulating VTA activity in response to nociceptive stimuli remain unclear. Here, we demonstrate that the lateral preoptic area (LPO) glutamate neurons relay nociceptive information to the VTA. These LPO glutamatergic neurons synapsing on VTA neurons respond to nociceptive stimulation and conditioned stimuli predicting nociceptive stimulation and also mediate aversion. In contrast, LPO GABA neurons synapsing in the VTA mediate reward. By ultrastructural quantitative synaptic analysis, ex vivo electrophysiology, and functional neuroanatomy we identify a complex circuitry between LPO glutamatergic and GABAergic neurons and VTA dopaminergic, GABAergic, and glutamatergic neurons. We conclude that LPO glutamatergic neurons play a causal role in the processing of nociceptive stimuli and in relaying information about nociceptive stimuli. The pathway from LPO glutamatergic neurons to the VTA represents an unpredicted interface between peripheral nociceptive information and the limbic system.
Collapse
Affiliation(s)
- David J Barker
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Huiling Wang
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - David J Estrin
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Bing Liu
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Rucha J Kulkarni
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Junia Lara de Deus
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Müller H, Herzberg D, Chihuailaf R, Strobel P, Werner M, Bustamante H. Changes in Dynamic Thiol/Disulfide Homeostasis, and Substance P, B-Endorphin and α-Tocopherol Concentrations in the Spinal Cord of Chronically Lame Dairy Cows. Animals (Basel) 2023; 13:1620. [PMID: 37238050 PMCID: PMC10215632 DOI: 10.3390/ani13101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Initial lameness inflammation leads to chronic lameness and development of chronic pain due to the release of pro-inflammatory mediators such as reactive oxygen species (ROS), which are implicated in the transition from acute to chronic pain, and free radical scavengers countering thiol, substance P (SP), and β-endorphin (BE). The present study aimed to evaluate the dynamic thiol-disulfide homeostasis, α-tocopherol concentrations and SP and BE concentrations in the spinal cord of chronically lame dairy cows. Ten lame and 10 non-lame cows with a parity range of 2-6 were selected for the study. Lame cows had a history of up to 3 months of lameness. Spinal cord samples were obtained from the L2 to L4 lumbar vertebrae aspect of each animal. A thiol-disulfide homeostasis assay was performed using absorbance, and the α-tocopherol concentration was determined by HPLC. SP and BE concentrations were measured using ELISA kits. The results indicated that SP and BE were significantly higher in the spinal cord of lame cows. In contrast, disulfide levels and α-tocopherol concentrations were significantly lower in the spinal cord of lame cows. In conclusion, disulfide levels and α-tocopherol concentrations indicated a defective antioxidant response in cows with chronic lameness. The results of SP and BE concentrations suggested chronic pain and a defective endogenous analgesic response.
Collapse
Affiliation(s)
- Heine Müller
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Veterinary Clinical Hospital, School of Agricultural and Veterinary Sciences, Universidad Viña del Mar, Viña del Mar 2571959, Chile
| | - Daniel Herzberg
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Ricardo Chihuailaf
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Pablo Strobel
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Marianne Werner
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hedie Bustamante
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| |
Collapse
|
5
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Dworsky-Fried Z, Faig CA, Vogel HA, Kerr BJ, Taylor AMW. Central amygdala inflammation drives pain hypersensitivity and attenuates morphine analgesia in experimental autoimmune encephalomyelitis. Pain 2022; 163:e49-e61. [PMID: 33863858 DOI: 10.1097/j.pain.0000000000002307] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christian A Faig
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Holly A Vogel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Nazarian A, Negus SS, Martin TJ. Factors mediating pain-related risk for opioid use disorder. Neuropharmacology 2021; 186:108476. [PMID: 33524407 PMCID: PMC7954943 DOI: 10.1016/j.neuropharm.2021.108476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Pain is a complex experience with far-reaching organismal influences ranging from biological factors to those that are psychological and social. Such influences can serve as pain-related risk factors that represent susceptibilities to opioid use disorder. This review evaluates various pain-related risk factors to form a consensus on those that facilitate opioid abuse. Epidemiological findings represent a high degree of co-occurrence between chronic pain and opioid use disorder that is, in part, driven by an increase in the availability of opioid analgesics and the diversion of their use in a non-medical context. Brain imaging studies in individuals with chronic pain that use/abuse opioids suggest abuse-related mechanisms that are rooted within mesocorticolimbic processing. Preclinical studies suggest that pain states have a limited impact on increasing the rewarding effects of opioids. Indeed, many findings indicate a reduction in the rewarding and reinforcing effects of opioids during pain states. An increase in opioid use may be facilitated by an increase in the availability of opioids and a decrease in access to non-opioid reinforcers that require mobility or social interaction. Moreover, chronic pain and substance abuse conditions are known to impair cognitive function, resulting in deficits in attention and decision making that may promote opioid abuse. A better understanding of pain-related risk factors can improve our knowledge in the development of OUD in persons with pain conditions and can help identify appropriate treatment strategies. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
11
|
The Potential Role of Dual Mechanistic Opioids in Combating Opioid Misuse. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Moerke MJ, Negus SS. Interactions between pain states and opioid reward assessed with intracranial self-stimulation in rats. Neuropharmacology 2019; 160:107689. [PMID: 31271771 DOI: 10.1016/j.neuropharm.2019.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Opioids are an essential component of current clinical treatments for pain, but they also produce side effects that include abuse liability. Recent media attention surrounding the use of opioids in the United States has elevated the discussion of their benefits and drawbacks to one of national concern, leading to increased scrutiny of prescribing practices. Regulatory agencies have responded by recommending stricter limits on the amount and duration of opioid prescriptions for pain treatment; however, the relationship between pain states and the abuse-related effects of opioids is still not completely understood. Intracranial self-stimulation (ICSS) is one preclinical procedure that can be used to study the abuse-related effects of opioids in naïve subjects over the course of initial opioid exposure and in the context of inferred pain states. The goal of this review is to provide a summary of evidence from our laboratory using ICSS to study the modulation of opioid reward by pain states and examine these results in the context of related studies from other groups. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Megan J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA, 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Reward Processing under Chronic Pain from the Perspective of "Liking" and "Wanting": A Narrative Review. Pain Res Manag 2019; 2019:6760121. [PMID: 31149319 PMCID: PMC6501242 DOI: 10.1155/2019/6760121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
The therapeutic goals of patients with chronic pain are not only to relieve pain but also to improve the quality of life. Chronic pain negatively affects various aspects of daily life, such as by decreasing the motivation to work and reward sensitivity, which may lead to difficulties in daily life or even unemployment. Human and animal studies have shown that chronic pain damages reward processing; the exploration of associated internal mechanisms may aid the development of treatments to repair this damage. Incentive salience theory, used widely to describe reward processing, divides this processing into “liking” (reward-induced hedonic sensory impact) and “wanting” (reward-induced motivation) components. It has been employed to explain pathological changes in reward processing induced by psychiatric disorders. In this review, we summarize the findings of studies of reward processing under chronic pain and examine the effects of chronic pain on “liking” and “wanting.” Evidence indicates that chronic pain compromises the “wanting” component of reward processing; we also discuss the neural mechanisms that may mediate this effect. We hope that this review aids the development of therapies to improve the quality of life of patients with chronic pain.
Collapse
|
14
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
He Y, Lu Y, Shen Y, Wu F, Xu X, Kong E, Huang Z, Sun Y, Yu W. Transgenic increase in the β-endorphin concentration in cerebrospinal fluid alleviates morphine-primed relapse behavior through the μ opioid receptor in rats. J Med Virol 2019; 91:1158-1167. [PMID: 30701563 PMCID: PMC6593851 DOI: 10.1002/jmv.25415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Opioid-primed relapse is a global burden. Although current strategies have improved, optimal therapy is urgently needed. METHODS A recombinant adenovirus (Ad-NEP) expressing β-endorphin (β-EP) was designed and injected intracerebroventricularly (icv) into the right lateral ventricle in rats. Spatial and temporal β-EP expression in the lateral ventricle wall, subventricular zone and adjacent choroid plexus and the β-EP concentration in the cerebrospinal fluid (CSF) were observed during a 21-day period. A morphine priming-induced conditioned place preference (CPP) rat model was established. The β-EP-ir neuron counts, CSF β-EP concentration, and CPP score, which were used to evaluate morphine-primed reinstatement following extinction, were recorded 7 days after the icv injection. Additionally, the rats were pretreated with the irreversible μ opioid receptor antagonist β-funaltrexamine (β-FNA) and the selective κ opioid receptor antagonist nor-binaltorphimine (nor-BNI) to identify the receptor-dependent mechanism. RESULTS Both peak β-EP expression in target neurons and the peak CSF β-EP concentration occurred 7 to 8 days after Ad-NEP icv injection. The sustainable increase in the CSF β-EP concentration was correlated with a decrease in the CPP score 7 days after the Ad-NEP icv injection. Furthermore, reinstatement was almost reversed by β-FNA pretreatment 24 hours before the behavioral test, but nor-BNI had little effect. CONCLUSION The increasing cerebrospinal fluid β-endorphin concentrations showed that the therapeutic effect on opioid relapse occurred predominantly through a μ opioid receptor-dependent mechanism. The Ad-NEP adenovirus can be considered an alternative therapy for opioid relapse.
Collapse
Affiliation(s)
- Yan He
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.,Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, Fujian, China
| | - Yugang Lu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Shen
- Drug and Equipment Section, 442 Clinic Department of Fuzhous General Hospital of PLA, Ningde, Fujian, China
| | - Feixiang Wu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Xuewu Xu
- Department of Anesthesiology, 306 Hospital of PLA, Beijing, China
| | - Erliang Kong
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Zhangxiang Huang
- Pain Clinic of First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuming Sun
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
|
17
|
Maldonado R, Baños JE, Cabañero D. Usefulness of knockout mice to clarify the role of the opioid system in chronic pain. Br J Pharmacol 2018; 175:2791-2808. [PMID: 29124744 DOI: 10.1111/bph.14088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Several lines of knockout mice deficient in the genes encoding each component of the endogenous opioid system have been used for decades to clarify the specific role of the different opioid receptors and peptide precursors in many physiopathological conditions. The use of these genetically modified mice has improved our knowledge of the specific involvement of each endogenous opioid component in nociceptive transmission during acute and chronic pain conditions. The present review summarizes the recent advances obtained using these genetic tools in understanding the role of the opioid system in the pathophysiological mechanisms underlying chronic pain. Behavioural data obtained in these chronic pain models are discussed considering the peculiarities of the behavioural phenotype of each line of knockout mice. These studies have identified the crucial role of specific components of the opioid system in different manifestations of chronic pain and have also opened new possible therapeutic approaches, such as the development of opioid compounds simultaneously targeting several opioid receptors. However, several questions still remain open and require further experimental effort to be clarified. The novel genetic tools now available to manipulate specific neuronal populations and precise genome editing in mice will facilitate in a near future the elucidation of the role of each component of the endogenous opioid system in chronic pain. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep Eladi Baños
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
18
|
Watanabe M, Narita M, Hamada Y, Yamashita A, Tamura H, Ikegami D, Kondo T, Shinzato T, Shimizu T, Fukuchi Y, Muto A, Okano H, Yamanaka A, Tawfik VL, Kuzumaki N, Navratilova E, Porreca F, Narita M. Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain 2018; 14:1744806918756406. [PMID: 29357732 PMCID: PMC5802605 DOI: 10.1177/1744806918756406] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic pain induced by nerve damage due to trauma or invasion of cancer to the bone elicits severe ongoing pain as well as hyperalgesia and allodynia likely reflecting adaptive changes within central circuits that amplify nociceptive signals. The present study explored the possible contribution of the mesolimbic dopaminergic circuit in promoting allodynia related to neuropathic and cancer pain. Mice with ligation of the sciatic nerve or treated with intrafemoral osteosarcoma cells showed allodynia to a thermal stimulus applied to the paw on the injured side. Patch clamp electrophysiology revealed that the intrinsic neuronal excitability of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (N.Acc.) was significantly reduced in those mice. We used tyrosine hydroxylase (TH)-cre mice that were microinjected with adeno-associated virus (AAV) to express channelrhodopsin-2 (ChR2) to allow optogenetic stimulation of VTA dopaminergic neurons in the VTA or in their N.Acc. terminals. Optogenetic activation of these cells produced a significant but transient anti-allodynic effect in nerve injured or tumor-bearing mice without increasing response thresholds to thermal stimulation in sham-operated animals. Suppressed activity of mesolimbic dopaminergic neurons is likely to contribute to decreased inhibition of N.Acc. output neurons and to neuropathic or cancer pain-induced allodynia suggesting strategies for modulation of pathological pain states.
Collapse
Affiliation(s)
- Moe Watanabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Michiko Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Akira Yamashita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Hideki Tamura
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Daigo Ikegami
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Takashige Kondo
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Tatsuto Shinzato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Yumi Fukuchi
- Department of Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Akihiro Muto
- Department of Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Hideyuki Okano
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
19
|
Hedonic and motivational responses to food reward are unchanged in rats with neuropathic pain. Pain 2017; 157:2731-2738. [PMID: 27548047 DOI: 10.1097/j.pain.0000000000000695] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rewards influence responses to acute painful stimuli, but the relationship of chronic pain to hedonic or motivational aspects of reward is not well understood. We independently evaluated hedonic qualities of sweet or bitter tastants and motivation to seek food reward in rats with experimental neuropathic pain induced by L5/6 spinal nerve ligation. Hedonic response was measured by implantation of intraoral catheters to allow passive delivery of liquid solutions, and "liking/disliking" responses were scored according to a facial reactivity scale. Spinal nerve ligation rats did not differ from controls in either "liking" or "disliking" reactions to intraoral sucrose or quinine, respectively, at postsurgery day 21, suggesting no differences in perceived hedonic value of sweet or bitter tastants. To assess possible motivational deficits during acute and chronic pain, we used fixed- and progressive-ratio response paradigms of sucrose pellet presentation in rats with transient inflammatory or chronic neuropathic pain. Assessment of response acquisition and break points under the progressive ratio schedule revealed no differences between sham and spinal nerve ligation rats for up to 120 days after injury. However, rats with inflammation showed decrements in lever pressing and break points on days 1 and 2 after complete Freund adjuvant injection that normalized by day 4, consistent with transient ongoing pain. Thus, although acute ongoing inflammatory pain may transiently reduce reward motivation, we did not detect influences of chronic neuropathic pain on hedonic or motivational responses to food rewards. Adaptations that allow normal reward responding to food regardless of chronic pain may be of evolutionary benefit to promote survival.
Collapse
|
20
|
Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 2017; 157:1194-1198. [PMID: 26797678 PMCID: PMC4866581 DOI: 10.1097/j.pain.0000000000000494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Nakamoto K, Tokuyama S. [The possibility of a novel pain control system through brain long chain fatty acid receptor GPR40/FFAR1]. Nihon Yakurigaku Zasshi 2016; 146:302-8. [PMID: 26657120 DOI: 10.1254/fpj.146.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
|
23
|
Kao JH, Gao MJ, Yang PP, Law PY, Loh HH, Tao PL. Effect of naltrexone on neuropathic pain in mice locally transfected with the mutant μ-opioid receptor gene in spinal cord. Br J Pharmacol 2015; 172:630-41. [PMID: 24866991 DOI: 10.1111/bph.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioid antagonists, such as naloxone and naltrexone, exhibit agonistic properties at the mutated μ receptor, MOR-S196ACSTA. In our previous study, systemic naloxone (10 mg·kg(-1) , s.c.) elicited antinociceptive effect without the induction of tolerance, dependence or rewarding effect in mice 2 weeks after intrathecal administration of double-stranded adeno-associated virus-MOR-S196ACSTA-eGFP. Here, we have investigated if this antinociceptive paradigm would be effective in a mouse model of neuropathic pain. EXPERIMENTAL APPROACH Spinal nerves were ligated in male C57BL/6 mice 3 or 4 weeks after intrathecal injection of the lentivirus encoding the construct of MOR-S196ACSTA-eGFP (LV-MOR-S196ACSTA). Anti-allodynic effects of daily s.c.injections of saline, naltrexone (10 mg·kg(-1) ) or morphine (10 mg·kg(-1) ) were assessed by the von Frey test. After 14 days of treatment with saline, naltrexone or morphine, signs of natural withdrawal were measured at 22 and 46 h after the last injection. To determine the rewarding effects induced by morphine or naltrexone, the conditioned place preference test was carried out. KEY RESULTS Anti-allodynic effects, as measured by von Frey test, increased after naltrexone or morphine treatment in mice transfected with LV-MOR-S196ACSTA in the spinal cord. Cessation of treatment with morphine, but not naltrexone, induced natural withdrawal and rewarding effects. CONCLUSIONS AND IMPLICATIONS Systemic injection of naltrexone after the expression of a mutant μ opioid receptor, MOR-S196ACSTA, in the spinal cord may have therapeutic potential for chronic neuropathic pain, without the development of dependence or addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Jen-Hsin Kao
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Chronic pain attenuates midbrain dopamine (DA) transmission, as evidenced by a decrease in opioid-evoked DA release in the ventral striatum, suggesting that the occurrence of chronic pain impairs reward-related behaviors. However, mechanisms by which pain modifies DA transmission remain elusive. Using in vivo microdialysis and microinjection of drugs into the mesolimbic DA system, we demonstrate in mice and rats that microglial activation in the VTA compromises not only opioid-evoked release of DA, but also other DA-stimulating drugs, such as cocaine. Our data show that loss of stimulated extracellular DA is due to impaired chloride homeostasis in midbrain GABAergic interneurons. Treatment with minocycline or interfering with BDNF signaling restored chloride transport within these neurons and recovered DA-dependent reward behavior. Our findings demonstrate that a peripheral nerve injury causes activated microglia within reward circuitry that result in disruption of dopaminergic signaling and reward behavior. These results have broad implications that are not restricted to the problem of pain, but are also relevant to affective disorders associated with disruption of reward circuitry. Because chronic pain causes glial activation in areas of the CNS important for mood and affect, our findings may translate to other disorders, including anxiety and depression, that demonstrate high comorbidity with chronic pain.
Collapse
|
25
|
Murphy NP. Dynamic measurement of extracellular opioid activity: status quo, challenges, and significance in rewarded behaviors. ACS Chem Neurosci 2015; 6:94-107. [PMID: 25585132 DOI: 10.1021/cn500295q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Opioid peptides are the endogenous ligands of opioid receptors, which are also the molecular target of naturally occurring and synthetic opiates, such as morphine and heroin. Since their discovery in the 1970s, opioid peptides, which are found widely throughout the central nervous system and the periphery, have been intensely studied because of their involvement in pain and pleasure. Over the years, our understanding of opioid peptides has widened to cover a multitude of functions, including learning and memory, affective state, gastrointestinal transit, feeding, immune function, and metabolism. Unsurprisingly, aberrant opioid activity is implicated in numerous pathologies, including drug addiction, overeating, pain, depression, and obesity. To date, virtually all preclinical and clinical studies aimed at understanding the function of endogenous opioids have relied upon manipulating endogenous opioid fluxes using opioid receptor ligands or genetic manipulations of opioid receptors and endogenous opioids. Difficulties in directly monitoring endogenous opioid fluxes, particularly in the central nervous system, have presented a major obstacle to fully understanding endogenous opioid function. This review summarizes these challenges and offers suggestions for future goals while focusing on the neurobiology of reward, specifically drawing attention to studies that have succeeded in dynamically measuring opioid peptides.
Collapse
Affiliation(s)
- Niall P. Murphy
- Department of Psychiatry
and Biobehavioral Sciences, Univesity of California, Los Angeles, 2579 MacDonald
Research Laboratories, 675 Charles E. Young Drive
South Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Freet CS, Ballard SM, Alexander DN, Cox TA, Imperio CG, Anosike N, Carter AB, Mahmoud S, Ruiz-Velasco V, Grigson PS. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca²⁺ channel currents in sensory neurons of OPRM1 A118G mice. Physiol Behav 2014; 139:216-23. [PMID: 25449401 DOI: 10.1016/j.physbeh.2014.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023]
Abstract
Several studies have shown that human carriers of the single nucleotide polymorphism of the μ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca(2+) channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca(2+) channels by morphine in sensory neurons.
Collapse
Affiliation(s)
- Christopher S Freet
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Sarah M Ballard
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Taylor A Cox
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Caesar G Imperio
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Nnaemeka Anosike
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Alyssa B Carter
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Saifeldin Mahmoud
- Department of Anesthesiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
27
|
Woller SA, Malik JS, Aceves M, Hook MA. Morphine self-administration following spinal cord injury. J Neurotrauma 2014; 31:1570-83. [PMID: 24827476 DOI: 10.1089/neu.2013.3293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neuropathic pain develops in up to two-thirds of people following spinal cord injury (SCI). Opioids are among the most effective treatments for this pain and are commonly prescribed. There is concern surrounding the use of these analgesics, however, because use is often associated with the development of addiction. Previous data suggests that this concern may not be relevant in the presence of neuropathic pain. Yet, despite the common prescription of opioids for the treatment of SCI-related pain, there has been only one previous study examining the addictive potential of morphine following spinal injury. To address this, the present study used a self-administration paradigm to examine the addictive potential of morphine in a rodent model of SCI. Animals were placed into self-administration chambers 24 h, 14 d, or 35 d following a moderate spinal contusion injury. They were placed into the chambers for seven 12-hour sessions with access to 1.5 mg morphine/lever depression (up to 30 mg/d). In the acute phase of SCI, contused animals self-administered significantly less morphine than their sham counterparts, as previously shown. However, contused animals showing signs of neuropathic pain did not self-administer less morphine than their sham counterparts when administration began 14 or 35 d after injury. Instead, these animals administered nearly the full amount of morphine available each session. This amount of morphine did not affect recovery of locomotor function but did cause significant weight loss. We suggest caution is warranted when prescribing opioids for the treatment of neuropathic pain resulting from SCI, as the addictive potential is not reduced in this model.
Collapse
Affiliation(s)
- Sarah A Woller
- 1 Texas A&M University Institute for Neuroscience , Texas A&M Health Science Center, Bryan, Texas
| | | | | | | |
Collapse
|
28
|
Wade CL, Fairbanks CA. The Self-administration of Analgesic Drugs in Experimentally Induced Chronic Pain. Curr Top Behav Neurosci 2014; 20:217-232. [PMID: 25205326 DOI: 10.1007/7854_2014_344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Systemically and centrally delivered opioids have been comprehensively studied for their effects both in analgesic and addiction models for many decades, primarily in subjects with presumptive normal sensory thresholds. The introduction of disease-based models of persistent hypersensitivity enabled chronic evaluation of opioid analgesic pharmacology under the specific state of chronic pain. These studies have largely (but not uniformly) reported reduced opioid analgesic potency and efficacy under conditions of chronic pain. A comparatively limited set of studies has evaluated the impact of experimentally induced chronic pain on self-administration patterns of opioid and non-opioid analgesics. Similarly, these studies have primarily (but not exclusively) found that responding for opioids is reduced under conditions of chronic pain. Additionally, such experiments have also demonstrated that the condition of chronic pain evokes self-administration or conditioned place preference for non-opioid analgesics. The consensus is that the chronic pain alters responding for opioid and non-opioid analgesics in a manner seemingly related to their respective antiallodynic/antihyperalgesic properties under the specific state of chronic pain.
Collapse
Affiliation(s)
- Carrie L Wade
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | |
Collapse
|
29
|
Wade CL, Krumenacher P, Kitto KF, Peterson CD, Wilcox GL, Fairbanks CA. Effect of chronic pain on fentanyl self-administration in mice. PLoS One 2013; 8:e79239. [PMID: 24260176 PMCID: PMC3829846 DOI: 10.1371/journal.pone.0079239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
The development of opioid addiction in subjects with established chronic pain is an area that is poorly understood. It is critically important to clearly understand the neurobiology associated with propensity toward conversion to addiction under conditions of chronic pain. To pose the question whether the presence of chronic pain influences motivation to self-administer opioids for reward, we applied a combination of rodent models of chronic mechanical hyperalgesia and opioid self-administration. We studied fentanyl self-administration in mice under three conditions that induce chronic mechanical hyperalgesia: inflammation, peripheral nerve injury, and repeated chemotherapeutic injections. Responding for fentanyl was compared among these conditions and their respective standard controls (naïve condition, vehicle injection or sham surgery). Acquisition of fentanyl self-administration behavior was reduced or absent in all three conditions of chronic hyperalgesia relative to control mice with normal sensory thresholds. To control for potential impairment in ability to learn the lever-pressing behavior or perform the associated motor tasks, all three groups were evaluated for acquisition of food-maintained responding. In contrast to the opioid, chronic hyperalgesia did not interfere with the reinforcing effect of food. These studies indicate that the establishment of chronic hyperalgesia is associated with reduced or ablated motivation to seek opioid reward in mice.
Collapse
Affiliation(s)
- Carrie L. Wade
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Perry Krumenacher
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cristina D. Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - George L. Wilcox
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carolyn A. Fairbanks
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Pain Research, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
In addition to sensory disturbances, neuropathic pain is associated with an ongoing and persistent negative affective state. This condition may be reflected as altered sensitivity to rewarding stimuli. We examined this hypothesis by testing whether the rewarding properties of morphine are altered in a rat model of neuropathic pain. Neuropathic pain was induced by chronic constriction of the common sciatic nerve. Drug reward was assessed using an unbiased, three-compartment conditioned place preference (CPP) paradigm. The rats underwent two habituation sessions beginning 6 days after surgery. Over the next 8 days, they were injected with drug or vehicle and were confined to one CPP compartment for 30 min. On the following test day, the rats had access to all three compartments for 30 min. Consistent with the literature, systemic administration of morphine dose-dependently increased the CPP in pain-naive animals. In rats with neuropathic pain, however, the dose-dependent effects of morphine were in a bell-shaped curve, with a low dose of morphine (2 mg/kg) producing a greater CPP than a higher dose of morphine (8 mg/kg). In a separate group of animals, acute administration of morphine reversed mechanical allodynia in animals with neuropathic pain at the same doses that produced a CPP. The increased potency of systemic morphine to produce a CPP in animals with neuropathic pain suggests that the motivation for opioid-induced reward is different in the two states.
Collapse
|
31
|
Yoshizawa K, Narita M, Suzuki T. [Psychological dependence on opioid analgesics]. Nihon Yakurigaku Zasshi 2013; 142:22-27. [PMID: 23842224 DOI: 10.1254/fpj.142.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
32
|
Narita M, Imai S, Nakamura A, Ozeki A, Asato M, Rahmadi M, Sudo Y, Hojo M, Uezono Y, Devi LA, Kuzumaki N, Suzuki T. Possible involvement of prolonging spinal µ-opioid receptor desensitization in the development of antihyperalgesic tolerance to µ-opioids under a neuropathic pain-like state. Addict Biol 2013; 18:614-22. [PMID: 21812868 DOI: 10.1111/j.1369-1600.2011.00354.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, we investigated the possible development of tolerance to the antihyperalgesic effect of µ-opioid receptor (MOR) agonists under a neuropathic pain-like state. Repeated treatment with fentanyl, but not morphine or oxycodone, produced a rapid development of tolerance to its antihyperalgesic effect in mice with sciatic nerve ligation. Like the behavioral study, G-protein activation induced by fentanyl was significantly reduced in membranes obtained from the spinal cord of nerve-ligated mice with in vivo repeated injection of fentanyl. In β-endorphin-knockout mice with nerve ligation, developed tolerance to the antihyperalgesic effect of fentanyl was abolished, and reduced G-protein activation by fentanyl after nerve ligation with fentanyl was reversed to the normal level. The present findings indicate that released β-endorphin within the spinal cord may be implicated in the rapid development of tolerance to fentanyl under a neuropathic pain-like state.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tétreault P, Beaudet N, Perron A, Belleville K, René A, Cavelier F, Martinez J, Stroh T, Jacobi AM, Rose SD, Behlke MA, Sarret P. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J 2013; 27:3741-52. [DOI: 10.1096/fj.12-225540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Tétreault
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Nicolas Beaudet
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amélie Perron
- Institute for Integrated Cell‐Material SciencesKyoto UniversityKyotoJapan
| | - Karine Belleville
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Adeline René
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Florine Cavelier
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Jean Martinez
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Thomas Stroh
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
| | | | | | | | - Philippe Sarret
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
34
|
The application of conditioning paradigms in the measurement of pain. Eur J Pharmacol 2013; 716:158-68. [PMID: 23500202 DOI: 10.1016/j.ejphar.2013.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 02/25/2013] [Accepted: 03/03/2013] [Indexed: 12/13/2022]
Abstract
Pain is a private experience that involves both sensory and emotional components. Animal studies of pain can only be inferred by their responses, and therefore the measurement of reflexive responses dominates the pain literature for nearly a century. It has been argued that although reflexive responses are important to unveil the sensory nature of pain in organisms, pain affect is equally important but largely ignored in pain studies primarily due to the lack of validated animal models. One strategy to begin to understand pain affect is to use conditioning principles to indirectly reveal the affective condition of pain. This review critically analyzed several procedures that are thought to measure affective learning of pain. The procedures regarding the current knowledge, the applications, and their advantages and disadvantages in pain research are discussed. It is proposed that these procedures should be combined with traditional reflex-based pain measurements in future studies of pain, which could greatly benefit both the understanding of neural underpinnings of pain and preclinical assessment of novel analgesics.
Collapse
|
35
|
Proopiomelanocortin (POMC) expression and conditioned place aversion during protracted withdrawal from chronic intermittent escalating-dose heroin in POMC-EGFP promoter transgenic mice. Neuroscience 2013; 236:220-32. [PMID: 23337531 DOI: 10.1016/j.neuroscience.2012.12.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/07/2012] [Accepted: 12/27/2012] [Indexed: 01/31/2023]
Abstract
In heroin-dependent individuals, the drive to avoid or ameliorate the negative affective/emotional state associated with the discontinuation of heroin contributes to the chronic relapsing nature of the disease. Here, we investigate changes in proopiomelanocortin (POMC) expression at three time points across an extended period of heroin withdrawal in a clinically relevant rodent model of addiction using conditioned place aversion (CPA) in POMC-EGFP (POMC-enhanced green fluorescent protein) bacterial artificial chromosome (BAC) transgenic mice. Neurons expressing POMC-EGFP were found in the medial nucleus of the amygdala (MeA), basomedial amygdala (BMA) and dentate gyrus of hippocampus (DG), as well as the arcuate nucleus of hypothalamus (ARC). Heroin-treated mice displayed robust CPA after acute spontaneous withdrawal (12h), which persisted across the extended (14days) withdrawal period. After 12-h withdrawal, heroin-treated mice showed lower signal intensity of POMC-EGFP-positive cells in the ARC, higher levels of POMC mRNA in the amygdala but lower levels in the hippocampus than saline controls. After 7-d withdrawal, heroin-treated mice showed fewer POMC-EGFP-positive cells in the MeA and lower POMC mRNA in the amygdala than saline controls. After extended (14days) withdrawal, heroin-treated mice showed more POMC-EGFP-positive cells in BMA and DG, increased intensity of POMC-EGFP signal in DG, and higher POMC mRNA levels in the hippocampus compared to controls. Our results show dynamic changes in POMC in hypothalamic and extra-hypothalamic regions that may contribute to the negative affective/emotional state of heroin withdrawal shown by CPA from acute to extended periods of heroin withdrawal.
Collapse
|
36
|
Yamaguchi T, Narita M, Morita T, Kizawa Y, Matoba M. Recent Developments in the Management of Cancer Pain in Japan: Education, Clinical Guidelines and Basic Research. Jpn J Clin Oncol 2012; 42:1120-7. [DOI: 10.1093/jjco/hys155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Maruyama K, Shimoju R, Ohkubo M, Maruyama H, Kurosawa M. Tactile skin stimulation increases dopamine release in the nucleus accumbens in rats. J Physiol Sci 2012; 62:259-66. [PMID: 22411566 PMCID: PMC10717409 DOI: 10.1007/s12576-012-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 02/28/2012] [Indexed: 12/17/2022]
Abstract
We investigated the effect of mild (non-noxious) tactile stimulation (stroking) of skin on dopamine (DA) release in the nucleus accumbens (NAc) of rats. A coaxial microdialysis probe was stereotaxically implanted in the NAc and perfused with modified Ringer's solution. Dialysate output from consecutive 5-min periods was injected into a high-performance liquid chromatograph and DA was measured using an electrochemical detector. Bilateral tactile stimulation of the back for 5 min significantly increased DA release in conscious and anesthetized animals. Increased DA release was observed by stimulation of the contralateral, but not ipsilateral, back. DA secretion was also increased with stimulation of the forelimb, hindlimb, and abdomen. These effects were abolished after lesioning the ventral tegmental area (VTA). In contrast, noxious stimulation (pinching) of these areas had no effect on DA secretion. In conclusion, innocuous mechanical stimulation of the skin increases DA release in the contralateral NAc via the VTA.
Collapse
Affiliation(s)
- Kimiko Maruyama
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501 Japan
- Present Address: Department of Rehabilitation, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763 Japan
| | - Rie Shimoju
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501 Japan
- Department of Physical Therapy, International University of Health and Welfare, Otawara, Tochigi 324-8501 Japan
| | - Masato Ohkubo
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501 Japan
- Department of Tokyo Judo Therapy, Teikyo University of Science, Tokyo, 120-0045 Japan
| | - Hitoshi Maruyama
- Department of Physical Therapy, International University of Health and Welfare, Otawara, Tochigi 324-8501 Japan
| | - Mieko Kurosawa
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501 Japan
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Otawara, Tochigi 324-8501 Japan
| |
Collapse
|
38
|
Rewarding electrical brain stimulation in rats after peripheral nerve injury: decreased facilitation by commonly abused prescription opioids. Anesthesiology 2012; 115:1271-80. [PMID: 21946150 DOI: 10.1097/aln.0b013e3182330448] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prescription opioid abuse is a significant concern in treating chronic pain, yet few studies examine how neuropathic pain alters the abuse liability of commonly abused prescription opioids. METHODS Normal and spinal nerve ligated (SNL) rats were implanted with electrodes into the left ventral tegmental area (VTA). Rats were trained to lever press for intracranial electrical stimulation (VTA ICSS), and the effects of methadone, fentanyl, hydromorphone, and oxycodone on facilitation of VTA ICSS were assessed. A second group of neuropathic rats were implanted with intrathecal catheters, and the effects of intrathecal clonidine, adenosine, and gabapentin on facilitation of VTA ICSS were assessed. The effects of electrical stimulation of the VTA on mechanical allodynia were assessed in SNL rats. RESULTS Responding for VTA ICSS was similar in control and SNL rats. Methadone, fentanyl, and hydromorphone were less potent in facilitating VTA ICSS in SNL rats. Oxycodone produced a significant facilitation of VTA ICSS in control (maximum shift 24.10 ± 6.19 Hz) but not SNL rats (maximum shift 16.32 ± 7.49 Hz), but also reduced maximal response rates in SNL rats. Intrathecal administration of clonidine, adenosine, and gabapentin failed to facilitate VTA ICSS in SNL rats, and electrical stimulation of the VTA did not alter mechanical allodynia following nerve injury. CONCLUSIONS The present data suggests that the positive reinforcing effects of commonly abused prescription opioids are diminished following nerve injury. In addition, alleviation of mechanical allodynia with nonopioid analgesics does not appear to stimulate limbic dopamine pathways originating from the VTA in SNL rats.
Collapse
|
39
|
Hoot MR, Sim-Selley LJ, Selley DE, Scoggins KL, Dewey WL. Chronic neuropathic pain in mice reduces μ-opioid receptor-mediated G-protein activity in the thalamus. Brain Res 2011; 1406:1-7. [PMID: 21762883 DOI: 10.1016/j.brainres.2011.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4,Gly5-OH] enkephalin (DAMGO)-stimulated [(35)S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [(35)S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC(50) values. In PAG, however, DAMGO E(max) values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [(3)H]Naloxone binding in membranes of the thalamus showed no significant differences in B(max) values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Michelle R Hoot
- Virginia Commonwealth University, Department of Pharmacology and Toxicology, Richmond, USA
| | | | | | | | | |
Collapse
|
40
|
Umberg EN, Pothos EN. Neurobiology of aversive states. Physiol Behav 2011; 104:69-75. [PMID: 21549137 DOI: 10.1016/j.physbeh.2011.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 12/01/2022]
Abstract
Hoebel and colleagues are often known as students of reward and how it is coded in the CNS. This article, however, attempts to focus on the significant advances by Hoebel and others in dissecting out behavioral components of distinct aversive states and in understanding the neurobiology of aversion and the link between aversive states and addictive behaviors. Reward and aversion are not necessarily dichotomous and may reflect an affective continuum contingent upon environmental conditions. Descriptive and mechanistic studies pioneered by Bart Hoebel have demonstrated that the shift in the reward-aversion spectrum may be, in part, a result of changes in central dopamine/acetylcholine ratio, particularly in the nucleus accumbens. The path to aversion appears to include a specific neurochemical signature: reduced dopamine release and increased acetylcholine release in "reward centers" of the brain. Opioid receptors may have a neuromodulatory role on both of these neurotransmitters.
Collapse
Affiliation(s)
- Erin N Umberg
- Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, United States
| | | |
Collapse
|
41
|
Imai S, Sudo Y, Nakamura A, Ozeki A, Asato M, Hojo M, Devi LA, Kuzumaki N, Suzuki T, Uezono Y, Narita M. Possible involvement of β-endorphin in a loss of the coordinated balance of μ-opioid receptors trafficking processes by fentanyl. Synapse 2011; 65:962-6. [PMID: 21437993 DOI: 10.1002/syn.20930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 01/01/2023]
Affiliation(s)
- Satoshi Imai
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T. Neuropathic and chronic pain stimuli downregulate central μ -opioid and dopaminergic transmission. Trends Pharmacol Sci 2010; 31:299-305. [DOI: 10.1016/j.tips.2010.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/25/2023]
|
43
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
44
|
Savage SR. Management of opioid medications in patients with chronic pain and risk of substance misuse. Curr Psychiatry Rep 2009; 11:377-84. [PMID: 19785979 DOI: 10.1007/s11920-009-0057-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
When prescribed appropriately and used as prescribed, opioid medications can safely and effectively treat pain. Best practices with respect to their use in chronic non-cancer-related pain (CNCP) are evolving. Opioids may be subject to misuse for a variety of purposes, including self-medication, use for reward, compulsive use because of addiction, and diversion for profit. Individuals with chronic pain and co-occurring substance use, mental health disorders, and other conditions may be at increased risk for misuse of prescribed opioids. Interdisciplinary pain management, the use of universal precautions in all patients, and special attention to the structure of care in those at higher risk for opioid misuse may improve outcomes in opioid treatment of CNCP. This article discusses evolving research and clinical literature related to the care of individuals with CNCP at a higher risk for opioid misuse.
Collapse
Affiliation(s)
- Seddon R Savage
- Dartmouth College, 7764 Parker House, Hanover, NH 03755, USA.
| |
Collapse
|
45
|
Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 2009; 12:1364-6. [PMID: 19783992 DOI: 10.1038/nn.2407] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 08/31/2009] [Indexed: 11/08/2022]
Abstract
Tonic pain has been difficult to demonstrate in animals. Because relief of pain is rewarding, analgesic agents that are not rewarding in the absence of pain should become rewarding only when there is ongoing pain. We used conditioned place preference to concomitantly determine the presence of tonic pain in rats and the efficacy of agents that relieve it. This provides a new approach for investigating tonic pain in animals and for evaluating the analgesic effects of drugs.
Collapse
|