1
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
2
|
Burtscher J, Schwarzer C. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Front Mol Neurosci 2017; 10:245. [PMID: 28824375 PMCID: PMC5545604 DOI: 10.3389/fnmol.2017.00245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The discovery of DOPr-agonists without proconvulsant potential stimulates the research on the therapeutic use of neuroprotective potential of the enkephalin/DOPr system.
Collapse
Affiliation(s)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
3
|
Wong JE, Cao J, Dorris DM, Meitzen J. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review. Brain Struct Funct 2015; 221:4257-4267. [PMID: 26666530 DOI: 10.1007/s00429-015-1158-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.
Collapse
Affiliation(s)
- Jordan E Wong
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA. .,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA. .,Center for Human Health and the Environment, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Marin C, Bonastre M, Mengod G, Cortés R, Rodríguez-Oroz M. From unilateral to bilateral parkinsonism: Effects of lateralization on dyskinesias and associated molecular mechanisms. Neuropharmacology 2015; 97:365-75. [DOI: 10.1016/j.neuropharm.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
|
5
|
Tsoi SC, Aiya UV, Wasner KD, Phan ML, Pytte CL, Vicario DS. Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory. PLoS One 2014; 9:e108929. [PMID: 25251077 PMCID: PMC4177556 DOI: 10.1371/journal.pone.0108929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Utsav V. Aiya
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kobi D. Wasner
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - Mimi L. Phan
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
6
|
Capper-Loup C, Frey CM, Rebell D, Kaelin-Lang A. Adaptive gene expression changes on the healthy side of parkinsonian rats. Neuroscience 2012; 233:157-65. [PMID: 23270858 DOI: 10.1016/j.neuroscience.2012.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is an asymmetric neurodegenerative disorder, and secondary adaptive mechanisms of the less-affected side could potentially compensate for parkinsonian symptoms. Here, we analyzed gene expression changes on the healthy side of a unilateral PD rat model and correlated these changes with locomotor velocity, which is known to be decreased in PD. Four weeks after a unilateral 6-hydroxydopamine lesion, the spontaneous locomotor velocity of rats was recorded just prior to brain extraction. We then analyzed the gene expression levels of markers of the direct (dynorphin and D1-class dopamine receptors) and indirect (enkephalin and D2-class dopamine receptors) pathways in the contralateral healthy striatum by in situ hybridization histochemistry. In addition, we analyzed the expression of several striatal and cortical glutamatergic markers, as well as nigral tyrosine hydroxylase (TH) and nigral dopamine transporter (DAT). We found a significant positive correlation between the mRNA expression levels of contralateral D1-class dopamine receptors and the mean locomotor velocity, at 4 weeks after surgery in parkinsonian rats but not in controls. Moreover, we observed a significant increase in the level of dynorphin mRNA in the lateral part of the contralateral striatum of parkinsonian rats compared to the controls. In contrast, no contralateral changes were observed in the striatal indirect pathway. We also did not find any significant contralateral modifications of TH, DAT or glutamatergic markers in PD animals, indicating that changes in direct pathway genes are not due to nigrostriatal dopaminergic or corticostriatal glutamatergic innervation. In conclusion, our results suggest a role of the healthy striatal direct pathway in counteracting dopaminergic denervation effects on motor symptoms.
Collapse
Affiliation(s)
- C Capper-Loup
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, Switzerland
| | | | | | | |
Collapse
|
7
|
Meitzen J, Pflepsen KR, Stern CM, Meisel RL, Mermelstein PG. Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: differences between striatal region and brain hemisphere, but not sex. Neurosci Lett 2010; 487:177-81. [PMID: 20951763 DOI: 10.1016/j.neulet.2010.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/27/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Capper-Loup C, Rebell D, Kaelin-Lang A. Hemispheric lateralization of the corticostriatal glutamatergic system in the rat. J Neural Transm (Vienna) 2009; 116:1053-7. [PMID: 19626270 DOI: 10.1007/s00702-009-0265-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Little is known about hemispheric lateralization of subcortical structures. Here, we show a higher expression of the subunit NR2A of the NMDA receptor mRNA in the striatum and of vGluT1 mRNA in the cingulate cortex, in the left hemisphere compared to the right one. This suggests a lateralization of the glutamatergic cortico-subcortical system, at the level of postsynaptic receptors as well as at the level of corticostriatal projections. Such lateralization could play a role in asymmetric diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Christine Capper-Loup
- Department of Neurology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
10
|
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123:353-70. [PMID: 19481570 DOI: 10.1016/j.pharmthera.2009.05.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
Since the first description of their opioid properties three decades ago, dynorphins have increasingly been thought to play a regulatory role in numerous functional pathways of the brain. Dynorphins are members of the opioid peptide family and preferentially bind to kappa opioid receptors. In line with their localization in the hippocampus, amygdala, hypothalamus, striatum and spinal cord, their functions are related to learning and memory, emotional control, stress response and pain. Pathophysiological mechanisms that may involve dynorphins/kappa opioid receptors include epilepsy, addiction, depression and schizophrenia. Most of these functions were proposed in the 1980s and 1990s following histochemical, pharmacological and electrophysiological experiments using kappa receptor-specific or general opioid receptor agonists and antagonists in animal models. However, at that time, we had little information on the functional relevance of endogenous dynorphins. This was mainly due to the complexity of the opioid system. Besides actions of peptides from all three classical opioid precursors (proenkephalin, prodynorphin, proopiomelanocortin) on the three classical opioid receptors (delta, mu and kappa), dynorphins were also shown to exert non-opioid effects mainly through direct effects on NMDA receptors. Moreover, discrepancies between the distribution of opioid receptor binding sites and dynorphin immunoreactivity contributed to the difficulties in interpretation. In recent years, the generation of prodynorphin- and opioid receptor-deficient mice has provided the tools to investigate open questions on network effects of endogenous dynorphins. This article examines the physiological, pathophysiological and pharmacological implications of dynorphins in the light of new insights in part obtained from genetically modified animals.
Collapse
Affiliation(s)
- Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|