1
|
Gongwer MW, Qi A, Enos AS, Rueda SA, Klune CB, Shari M, Kashay AQ, Williams OH, Hacking A, Riley JP, Wilke GA, Yang Y, Lu H, Leuchter AF, DeNardo LA, Wilke SA. A cell type-specific mechanism driving the rapid antidepressant effects of transcranial magnetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635537. [PMID: 39975365 PMCID: PMC11838264 DOI: 10.1101/2025.01.29.635537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for brain disorders, but its therapeutic mechanism is unknown. We developed a novel mouse model of rTMS with superior clinical face validity and investigated the neural mechanism by which accelerated intermittent theta burst stimulation (aiTBS) - the first rapid-acting rTMS antidepressant protocol - reversed chronic stress-induced behavioral deficits. Using fiber photometry, we showed that aiTBS drives distinct patterns of neural activity in intratelencephalic (IT) and pyramidal tract (PT) projecting neurons in dorsomedial prefrontal cortex (dmPFC). However, only IT neurons exhibited persistently increased activity during both aiTBS and subsequent depression-related behaviors. Similarly, aiTBS reversed stress-related loss of dendritic spines on IT, but not PT neurons, further demonstrating cell type-specific effects of stimulation. Finally, chemogenetic inhibition of dmPFC IT neurons during rTMS blocked the antidepressant-like behavioral effects of aiTBS. Thus, we demonstrate a prefrontal mechanism linking rapid aiTBS-driven therapeutic effects to cell type-specific circuit plasticity.
Collapse
Affiliation(s)
- Michael W. Gongwer
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alex Qi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander S. Enos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sophia A. Rueda
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Cassandra B. Klune
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Meelan Shari
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Adrienne Q. Kashay
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen H. Williams
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Aliza Hacking
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jack P. Riley
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | | | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew F. Leuchter
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Laura A. DeNardo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Scott A. Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Sundaram P, Dong C, Makaroff S, Okada Y. How conductivity boundaries influence the electric field induced by transcranial magnetic stimulation in in vitro experiments. Brain Stimul 2024; 17:1034-1044. [PMID: 39142380 PMCID: PMC11586064 DOI: 10.1016/j.brs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Although transcranial magnetic stimulation (TMS) has become a valuable method for non-invasive brain stimulation, the cellular basis of TMS activation of neurons is still not fully understood. In vitro preparations have been used to understand the biophysical mechanisms of TMS, but in many cases these studies have encountered substantial difficulties in activating neurons. OBJECTIVE/HYPOTHESIS The hypothesis of this work is that conductivity boundaries can have large effects on the electric field in commonly used in vitro preparations. Our goal was to analyze the resulting difficulties in in vitro TMS using a simulation study, using a charge-based boundary element model. METHODS We decomposed the total electric field into the sum of the primary electric field, which only depends on coil geometry and current, and the secondary electric field arising from conductivity boundaries, which strongly depends on tissue and chamber geometry. We investigated the effect of the conductivity boundaries on the electric field strength for a variety of in vitro experimental settings to determine the sources of difficulty. RESULTS We showed that conductivity boundaries can have large effects on the electric field in in vitro preparations. Depending on the geometry of the air-saline and the saline-tissue interfaces, the secondary electric field can significantly enhance, or attenuate the primary electric field, resulting in a much stronger or weaker total electric field inside the tissue; we showed this using a realistic preparation. Submerged chambers are generally much more efficient than interface chambers since the secondary field due to the thin film of saline covering the tissue in the interface chamber opposes the primary field and significantly reduces the total field in the tissue placed in the interface chamber. The relative dimensions of the chamber and the TMS coil critically determine the total field; the popular setup with a large coil and a small chamber is particularly sub-optimal because the secondary field due to the air-chamber boundary opposes the primary field, thereby attenuating the total field. The form factor (length vs width) of the tissue in the direction of the induced field can be important since a relatively narrow tissue enhances the total field at the saline-tissue boundary. CONCLUSIONS Overall, we found that the total electric field in the tissue is higher in submerged chambers, higher if the chamber size is larger than the coil and if the shorter tissue dimension is in the direction of the electric field. Decomposing the total field into the primary and secondary fields is useful for designing in vitro experiments and interpreting the results.
Collapse
Affiliation(s)
- Padmavathi Sundaram
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Chunling Dong
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergey Makaroff
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Worcester Polytechnic Institute, Worcester, MA, USA
| | - Yoshio Okada
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
4
|
Holl N, Heerdegen M, Zschorlich V, Köhling R, Kirschstein T. Inhibition of Acute mGluR5-Dependent Depression in Hippocampal CA1 by High-Frequency Magnetic Stimulation. Brain Sci 2024; 14:603. [PMID: 38928603 PMCID: PMC11202050 DOI: 10.3390/brainsci14060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
High-frequency magnetic stimulation (HFMS) applied directly to the hippocampal slice preparation in vitro induces activity-dependent synaptic plasticity and metaplasticity. In addition, changes in synaptic transmission following HFMS involve the activation of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluR). Here, we asked whether a short period of HFMS (5 × 10 delta-burst trains, duration of ~1 min) could alter mGluR5-mediated depression at Schaffer collateral-CA1 synapses in the acute brain slice preparation at 30 min after HFMS. To this end, we obtained field excitatory postsynaptic potential (fEPSP) slopes from Schaffer collateral-CA1 synapses after HFMS or control. First, we demonstrated that activity-dependent plasticity following HFMS depends on the slice orientation towards the magnetic coil indicating specific ion fluxes induced by magnetic fields. Second, we found that the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine reduced the field excitatory postsynaptic potential (fEPSP) slopes in control slices but rather enhanced them in HFMS-treated slices. In contrast, the compound (S)-3,5-dihydroxyphenylglycine acting at both mGluR1 and mGluR5 reduced fEPSP slopes in both control and HFMS-treated slices. Importantly, the mGluR-dependent effects were independent from the slice-to-coil orientation indicating that asynchronous glutamate release could play a role. We conclude that a short period of HFMS inhibits subsequently evoked mGluR5-dependent depression at Schaffer collateral-CA1 synapses. This could be relevant for repetitive transcranial magnetic stimulation in psychiatric disorders such as major depression.
Collapse
Affiliation(s)
- Norman Holl
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Volker Zschorlich
- Institute of Sport Sciences, University of Rostock, Am Waldessaum 23a, 18057 Rostock, Germany;
- Institute of Sport Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| |
Collapse
|
5
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. Front Cell Neurosci 2024; 18:1374555. [PMID: 38638302 PMCID: PMC11025360 DOI: 10.3389/fncel.2024.1374555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Neuhaus
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Dong L, Zhao T, Jin Z, Zheng Y. Effect of music rhythm magnetic field on long-term potentiation of hippocampal Schaffer-CA1 synapse plasticity. Neurosci Lett 2024; 820:137576. [PMID: 38086521 DOI: 10.1016/j.neulet.2023.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Music and magnetic fields both play important regulatory roles in brain learning and memory. The present study aimed to investigate the effects of music rhythmic magnetic fields at different frequencies on long-term potentiation (LTP) in the Schaffer-CA1 region of the hippocampus, with the goal of elucidating the molecular mechanisms underlying the impact of music rhythmic magnetic fields on brain learning and memory. Three different frequency music tracks were selected, including soothing track 1: Courante from the Baroque Suite, medium-frequency track 2: saxophone version of Liang Zhu, and high-frequency track 3: Johann Pachelbel's music track Canon (trumpet version). Using an external sound card, power amplifier, and homemade coils, a time-varying magnetic field with a 2-mT music rhythm was produced to assess the effects of this magnetic field on LTP in the Schaffer-CA1 synapses of isolated rat hippocampal brain slices. The experimental results demonstrated that as the music frequency increased, the enhancing effect of the music rhythmic magnetic field on hippocampal synaptic plasticity LTP gradually intensified. Thus, high-frequency music rhythmic magnetic fields may offer a more effective means of enhancing LTP.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, PR China; Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, PR China
| | - Tong Zhao
- School of Life Sciences, Tiangong University, Tianjin, PR China
| | - Zijia Jin
- School of Life Sciences, Tiangong University, Tianjin, PR China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, PR China.
| |
Collapse
|
7
|
Zschorlich V, Yamaguchi T, Schneider C. Editorial: The use of repetitive peripheral magnetic stimulation (rPMS) in neurological disorders and neurorehabilitation. Front Neurol 2023; 14:1324882. [PMID: 38053798 PMCID: PMC10694437 DOI: 10.3389/fneur.2023.1324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Volker Zschorlich
- Department of Movement Science, Faculty of Philosophy, Institute of Sport Science, University of Rostock, Rostock, Germany
- Faculty of Human and Social Sciences, Institute of Sport Science, University of Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Cyril Schneider
- School of Rehabilitation Science, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
9
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559399. [PMID: 37808716 PMCID: PMC10557586 DOI: 10.1101/2023.09.25.559399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength and direction, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitating the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. However, axon morphologies of individual cells played a significant role in determining activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10 % higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
|
10
|
Tian L, Zhao T, Dong L, Liu Q, Zheng Y. Passive array micro-magnetic stimulation device based on multi-carrier wireless flexible control for magnetic neuromodulation. J Neural Eng 2023; 20:056020. [PMID: 37714145 DOI: 10.1088/1741-2552/acfa23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Objective.The passive micro-magnetic stimulation (µMS) devices typically consist of an external transmitting coil and a single internal micro-coil, which enables a point-to-point energy supply from the external coil to the internal coil and the realization of magnetic neuromodulation via wireless energy transmission. The internal array of micro coils can achieve multi-target stimulation without movement, which improves the focus and effectiveness of magnetic stimulations. However, achieving a free selection of an appropriate external coil to deliver energy to a particular internal array of micro-coils for multiple stimulation targets has been challenging. To address this challenge, this study uses a multi-carrier modulation technique to transmit the energy of the external coil.Approach.In this study, a theoretical model of a multi-carrier resonant compensation network for the arrayµMS is established based on the principle of magnetically coupled resonance. The resonant frequency coupling parameter corresponding to each micro-coil of the arrayµMS is determined, and the magnetic field interference between the external coil and its non-resonant micro-coils is eliminated. Therefore, an effective magnetic stimulation threshold for a micro-coil corresponding to the target is determined, and wireless free control of the internal micro-coil array is achieved by using an external transmitting coil.Main results.The passiveµMS array model is designed using a multi-carrier wireless modulation method, and its synergistic modulation of the magnetic stimulation of synaptic plasticity long-term potentiation in multiple hippocampal regions is investigated using hippocampal isolated brain slices.Significance.The results presented in this study could provide theoretical and experimental bases for implantable micro-magnetic device-targeted therapy, introducing an efficient method for diagnosis and treatment of neurological diseases and providing innovative ideas for in-depth application of micro-magnetic stimulation in the neuroscience field.
Collapse
Affiliation(s)
- Lei Tian
- Department of Biomedical Engineering, Tiangong University, Tian Jin, People's Republic of China
| | - Tong Zhao
- Department of Biomedical Engineering, Tiangong University, Tian Jin, People's Republic of China
| | - Lei Dong
- Department of Biomedical Engineering, Tiangong University, Tian Jin, People's Republic of China
| | - Qiwen Liu
- Department of Biomedical Engineering, Tiangong University, Tian Jin, People's Republic of China
| | - Yu Zheng
- Department of Biomedical Engineering, Tiangong University, Tian Jin, People's Republic of China
| |
Collapse
|
11
|
Arrington CN, Ossowski AE, Baig H, Persichetti E, Morris R. The Impact of Transcranial Magnetic Stimulation on Reading Processes: A Systematic Review. Neuropsychol Rev 2023; 33:255-277. [PMID: 35119625 PMCID: PMC9349478 DOI: 10.1007/s11065-022-09534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/14/2021] [Indexed: 01/26/2023]
Abstract
The current systematic review examines the behavioral effects of TMS on reading. Transcranial magnetic stimulation (TMS) to targeted nodes of the brain's reading network has been shown to impact reading. Extracted data included (a) study characteristics, (b) methodology, (c) targeted nodes, (d) control paradigm, (e) type of reading task, (f) adverse effects, and (g) main findings. Data was classified by type of reading task: 1) phonological processing, 2) semantic judgment, 3) lexical decision, 4) whole word reading, and 5) visual or text characteristics. Seventy records from 46 studies (n = 844) were identified. Results indicate that TMS modulates semantic judgments when focused in the anterior aspects of the reading circuit, phonological processes after stimulation within the dorsal circuit, and impacts single word recognition and contextual reading when administered to the ventral circuit. Findings suggest that changes in specific behavioral aspects of reading following TMS may contribute to identification of foci for use as part of reading interventions.
Collapse
Affiliation(s)
- C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA. .,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA.
| | | | - Humza Baig
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA.,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA
| | - Eileen Persichetti
- GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA.,School of Social Work, Boston University, Boston, MA, 02215, USA
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA.,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA
| |
Collapse
|
12
|
Ye H, Hendee J, Ruan J, Zhirova A, Ye J, Dima M. Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities. J Neuroeng Rehabil 2022; 19:116. [PMID: 36329492 PMCID: PMC9632094 DOI: 10.1186/s12984-022-01094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Neuromodulation with electromagnetic stimulation is widely used for the control of abnormal neural activity, and has been proven to be a valuable alternative to pharmacological tools for the treatment of many neurological diseases. Tremendous efforts have been focused on the design of the stimulation apparatus (i.e., electrodes and magnetic coils) that delivers the electric current to the neural tissue, and the optimization of the stimulation parameters. Less attention has been given to the complicated, dynamic properties of the neurons, and their context-dependent impact on the stimulation effects. This review focuses on the neuronal factors that influence the outcomes of electromagnetic stimulation in neuromodulation. Evidence from multiple levels (tissue, cellular, and single ion channel) are reviewed. Properties of the neural elements and their dynamic changes play a significant role in the outcome of electromagnetic stimulation. This angle of understanding yields a comprehensive perspective of neural activity during electrical neuromodulation, and provides insights in the design and development of novel stimulation technology.
Collapse
Affiliation(s)
- Hui Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jenna Hendee
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Joyce Ruan
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Alena Zhirova
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jayden Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Maria Dima
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| |
Collapse
|
13
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
14
|
Cellular mechanisms underlying state-dependent neural inhibition with magnetic stimulation. Sci Rep 2022; 12:12131. [PMID: 35840656 PMCID: PMC9287388 DOI: 10.1038/s41598-022-16494-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity in a state-dependent manner. It inhibited neurons in slow-firing states, but spared neurons from fast-firing states, when the same magnetic stimuli were applied. Using a multi-compartment NEURON model, we found that dynamics of voltage-dependent sodium and potassium channels were significantly altered by the magnetic stimulation in the slow-firing neurons, but not in the fast-firing neurons. Variability in neural activity should be monitored and explored to optimize the outcome of magnetic stimulation in basic laboratory research and clinical practice. If selective stimulation can be programmed to match the appropriate neural state, prosthetic implants and brain-machine interfaces can be designed based on these concepts to achieve optimal results.
Collapse
|
15
|
Jin Z, Dong L, Tian L, Zhou M, Zheng Y. Regulation of LTP at rat hippocampal Schaffer-CA1 in vitro by musical rhythmic magnetic fields generated by red-pink (soothing) music tracks. Int J Radiat Biol 2022; 99:439-445. [PMID: 35759248 DOI: 10.1080/09553002.2022.2094022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Music therapy, like red-pink (soothing) music, is an important treatment for neurological disorders associated with learning and memory. Magnetic fields have been proved to have a similar regulating effect. However, the effect of magnetic fields with musical rhythm generated by the combination of the two has not been confirmed. This study aimed to investigate the regulation of magnetic stimulation with music rhythm on LTP (long-term potentiation) of Schaffer-CA1. MATERIALS AND METHODS This article selected three sorts of music tracks in different frequencies (music track (1) Turkish March, music track (2) Moonlight Sonata, music track (3) Funeral March) and four sorts of pure sinusoidal tracks of four different harmonic frequency (music track (4) the frequency is 3500 Hz; music track (5) the frequency is 2500 Hz; music track (6) the frequency is 1500 Hz; music track (7) the frequency is 500 Hz). These music tracks are converted into analog signals by the external sound card and power amplifier and fed into a homemade coil that meets the demand for this frequency bandwidth. The coil can generate seven sorts of time-varying magnetic fields with musical rhythm with a mean intensity of about 2 mT. We used multi-electrode array (MEA) to record the LTP signals of Schaffer-CA1 synaptic induced by seven sorts of musical rhythmic magnetic fields and analyze the regulation of them. RESULTS The musical rhythmic magnetic fields generated by track 1 and track 2 have a remarkable enhancing effect on the amplitude of fEPSPs (field excitatory postsynaptic potentials) (p < .05), and these effects intensify with the increase of frequency. Nevertheless, there is no significant enhancing effect on LTP of the rhythmic magnetic field generated by track 3 (p > .05). The sinusoidal magnetic fields generated by track 4 and track 5 have an enhancing effect on the amplitude of fEPSPs (p < .05), and the enhancement is better than track 1 and track 2. The sinusoidal magnetic fields generated by track 6 and track 7 have an inhibiting effect (p < .05). CONCLUSION We found that the enhancing effect of musical rhythmic magnetic fields generated by track 1 was the most significant. The frequency of 1500 Hz could be a turning-point frequency in the regulation of magnetic field on LTP.
Collapse
Affiliation(s)
- Zijia Jin
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
16
|
Somaa FA, de Graaf TA, Sack AT. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front Neurol 2022; 13:793253. [PMID: 35669870 PMCID: PMC9163300 DOI: 10.3389/fneur.2022.793253] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.
Collapse
Affiliation(s)
- Fahad A. Somaa
- Department of Occupational Therapy, Faculty of Medical Rehabilitation, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
17
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
18
|
Shirinpour S, Hananeia N, Rosado J, Tran H, Galanis C, Vlachos A, Jedlicka P, Queisser G, Opitz A. Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation. Brain Stimul 2021; 14:1470-1482. [PMID: 34562659 PMCID: PMC8608742 DOI: 10.1016/j.brs.2021.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) is a widely used non-invasive brain stimulation method. However, its mechanism of action and the neural response to TMS are still poorly understood. Multi-scale modeling can complement experimental research to study the subcellular neural effects of TMS. At the macroscopic level, sophisticated numerical models exist to estimate the induced electric fields. However, multi-scale computational modeling approaches to predict TMS cellular and subcellular responses, crucial to understanding TMS plasticity inducing protocols, are not available so far. OBJECTIVE We develop an open-source multi-scale toolbox Neuron Modeling for TMS (NeMo-TMS) to address this problem. METHODS NeMo-TMS generates accurate neuron models from morphological reconstructions, couples them to the external electric fields induced by TMS, and simulates the cellular and subcellular responses of single-pulse and repetitive TMS. RESULTS We provide examples showing some of the capabilities of the toolbox. CONCLUSION NeMo-TMS toolbox allows researchers a previously not available level of detail and precision in realistically modeling the physical and physiological effects of TMS.
Collapse
Affiliation(s)
- Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| | - Nicholas Hananeia
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - James Rosado
- Department of Mathematics, Temple University, Philadelphia, USA
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany; Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | | | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
19
|
Xia P, Zheng Y, Dong L, Tian C. Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca 2+/Calcineurin Pathway. ACS Chem Neurosci 2021; 12:3550-3557. [PMID: 34498467 DOI: 10.1021/acschemneuro.1c00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigate the intrinsic mechanism by which an extremely low-frequency electromagnetic field (ELF-EMF) influences neurons in the Schaffer collateral-CA1 (SC-CA1) region of rat hippocampus using electrophysiological techniques. ELF-EMF has an interesting effect on synaptic plasticity: it weakens long-term potentiation and enhances long-term depression. Here, the magnetic field effect disappeared after a blockade of voltage-gated calcium channels and calcineurin, which are key components in the Ca2+/calcineurin pathway, with two blockers, cadmium chloride and cyclosporin A. This fully establishes that the effect of ELF-EMF on synaptic plasticity is mediated by the Ca2+/calcineurin pathway and represents a novel technique for studying the specific mechanisms of action of ELF-EMF on learning and memory.
Collapse
Affiliation(s)
- Pei Xia
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300387, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
20
|
Moussavi Z, Rutherford G, Lithgow B, Millikin C, Modirrousta M, Mansouri B, Wang X, Omelan C, Fellows L, Fitzgerald P, Koski L. Repeated Transcranial Magnetic Stimulation for Improving Cognition in Patients With Alzheimer Disease: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial. JMIR Res Protoc 2021; 10:e25144. [PMID: 33416500 PMCID: PMC7822717 DOI: 10.2196/25144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Alzheimer disease has no known cure. As existing pharmacologic interventions only modestly slow cognitive decline, there is a need for new treatments. Recent trials of repetitive transcranial magnetic stimulation (rTMS) have reported encouraging results for improving or stabilizing cognition in patients diagnosed with Alzheimer dementia. However, owing to small samples and lack of a well-controlled double-blind design, the results to date are inconclusive. This paper presents the protocol for a large placebo-controlled double-blind study designed with sufficient statistical rigor to measure the efficacy of rTMS treatment in patients with Alzheimer dementia. Objective The objectives are to (1) recruit and enroll up to 200 eligible participants, (2) estimate the difference in treatment effects between active treatment and sham treatment, (3) estimate the difference in treatment effects between two doses of rTMS applications, (4) estimate the duration of treatment effects among responders to active rTMS treatment, and (5) estimate the effect of dementia severity on treatment outcomes among patients receiving active rTMS treatment. Methods We have designed our study to be a double-blind, randomized, placebo-controlled clinical trial investigating the short- and long-term (up to 6 months) benefits of active rTMS treatment at two doses (10 sessions over 2 weeks and 20 sessions over 4 weeks) compared with sham rTMS treatment. The study will include patients aged ≥55 years who are diagnosed with Alzheimer disease at an early to moderate stage and have no history of seizures and no major depression. The primary outcome measure is the change in the Alzheimer Disease Assessment Scale-Cognitive Subscale score from pretreatment to posttreatment. Secondary outcomes are changes in performance on tests of frontal lobe functioning (Stroop test and verbal fluency), changes in neuropsychiatric symptoms (Neuropsychiatric Inventory Questionnaire), and changes in activities of daily living (Alzheimer Disease Co-operative Study-Activities of Daily Living Inventory). Tolerability of the intervention will be assessed using a modification of the Treatment Satisfaction Questionnaire for Medication. We assess participants at baseline and 3, 5, 8, 16, and 24 weeks after the intervention. Results As of November 1, 2020, we have screened 523 individuals, out of which 133 were eligible and have been enrolled. Out of the 133 individuals, 104 have completed the study. Moreover, as of November 1, 2020, there has been no serious adverse event. We anticipate that rTMS will considerably improve cognitive function, with effects lasting up to 3 months. Moreover, we expect rTMS to be a well-tolerated treatment with no serious side effect. Conclusions This protocol design will allow to address both the rTMS active treatment dose and its short- and long-term effects compared with sham treatment in large samples. Trial Registration ClinicalTrials.gov NCT02908815; https://clinicaltrials.gov/ct2/show/NCT02908815 International Registered Report Identifier (IRRID) DERR1-10.2196/25144
Collapse
Affiliation(s)
- Zahra Moussavi
- Biomedical Engineering Program, The University of Manitoba, Winnipeg, MB, Canada
| | - Grant Rutherford
- Biomedical Engineering Program, The University of Manitoba, Winnipeg, MB, Canada
| | - Brian Lithgow
- Biomedical Engineering Program, The University of Manitoba, Winnipeg, MB, Canada
| | - Colleen Millikin
- Department of Clinical Health Psychology, Max Rady College of Medicine, The University of Manitoba, Winnipeg, MB, Canada
| | - Mandana Modirrousta
- Department of Psychiatry, Max Rady College of Medicine, The University of Manitoba, Winnipeg, MB, Canada
| | | | - Xikui Wang
- Warren Centre for Actuarial Studies and Research, I H Asper School of Business, The University of Manitoba, Winnipeg, MB, Canada
| | - Craig Omelan
- Department of Psychiatry, Max Rady College of Medicine, The University of Manitoba, Winnipeg, MB, Canada
| | - Lesley Fellows
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Paul Fitzgerald
- Department of Psychiatry, Monash University, Melbourne, Australia
| | - Lisa Koski
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Lenz M, Eichler A, Kruse P, Strehl A, Rodriguez-Rozada S, Goren I, Yogev N, Frank S, Waisman A, Deller T, Jung S, Maggio N, Vlachos A. Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Front Immunol 2020; 11:614509. [PMID: 33391287 PMCID: PMC7772211 DOI: 10.3389/fimmu.2020.614509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1β, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Pourzitaki C, Dardalas I, Poutoglidou F, Kouvelas D, Kimiskidis VK. The Combination of rTMS and Pharmacotherapy on In Vitro Models: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:220-226. [PMID: 32418533 DOI: 10.2174/1871527319666200518100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique that is being actively explored as a potential therapeutic modality in various neuropsychiatric disorders, such as depression, neuropathic pain, epilepsy, multiple sclerosis, and neurodegenerative disorders, including the Parkinson's and Alzheimer's disease. The Food and Drug Administration (FDA) approved rTMS for the treatment of major depression, migraine-associated headaches, and Obsessive Compulsive Disorder (OCD). The fact that a significant proportion of patients suffering from these disorders fail to respond to current pharmacological interventions indicates the need for alternative therapies like rTMS. OBJECTIVE The objective was to find and summarize all studies combining the use of rTMS and pharmacological interference in vitro, in order to facilitate future studies. METHODS The results of studies combining the use of rTMS with pharmacological interference in vitro were focused on. The PubMed database was searched using the terms "rTMS", "repetitive", "transcranial", "magnetic", "stimulation", "in vitro", "in vivo", "cell cultures" untilMarch 2019 and 7 eligible studies were found. RESULTS Overall results show a synergistic effect of rTMS and pharmacotherapy in vitro with additive effectiveness, better prognosis, and superior potential management. CONCLUSION The limited amount of knowledge denotes the need for additional in vitro studies on the combination of rTMS and pharmacotherapy, which could be extended to in vivo studies and ultimately help design clinical trials so as to improve the therapeutic management of patients with a wide array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece
| |
Collapse
|
23
|
Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field. Neuroscience 2020; 432:1-14. [PMID: 32105740 DOI: 10.1016/j.neuroscience.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Electric current has been used for epilepsy treatment by targeting specific neural circuitries. Despite its success, direct contact between the electrode and tissue could cause side effects including pain, inflammation, and adverse biological reactions. Magnetic stimulation overcomes these limitations by offering advantages over biocompatibility and operational feasibility. However, the underlying neurological mechanisms of its action are largely unknown. In this work, a magnetic generating system was assembled that included a miniature coil. The coil was positioned above the CA3 area of mouse hippocampal slices. Epileptiform activity (EFA) was induced with low Mg2+/high K+ perfusion or with 100 µM 4-aminopyridine (4-AP). The miniature coil generated a sizable electric field that suppressed the local EFA in the hippocampus in the low-Mg2+/high-K+ model. The inhibition effect was dependent on the frequency and duration of the magnetic stimulus, with high frequency being more effective in suppressing EFA. EFA suppression by the magnetic field was also observed in the 4-AP model, in a frequency and duration - dependent manner. The study provides a platform for further investigation of cellular and molecular mechanisms underlying epilepsy treatment with time varying magnetic fields.
Collapse
|
24
|
Weiler M, Stieger KC, Long JM, Rapp PR. Transcranial Magnetic Stimulation in Alzheimer's Disease: Are We Ready? eNeuro 2020; 7:ENEURO.0235-19.2019. [PMID: 31848209 PMCID: PMC6948923 DOI: 10.1523/eneuro.0235-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is among a growing family of noninvasive brain stimulation techniques being developed to treat multiple neurocognitive disorders, including Alzheimer's disease (AD). Although small clinical trials in AD have reported positive effects on cognitive outcome measures, significant knowledge gaps remain, and little attention has been directed at examining the potential influence of TMS on AD pathogenesis. Our review briefly outlines some of the proposed neurobiological mechanisms of TMS benefits in AD, with particular emphasis on the modulatory effects on excitatory/inhibitory balance. On the basis of converging evidence from multiple fields, we caution that TMS therapeutic protocols established in young adults may have unexpected detrimental effects in older individuals or in the brain compromised by AD pathology. Our review surveys clinical studies of TMS in AD alongside basic research as a guide for moving this important area of work forward toward effective treatment development.
Collapse
Affiliation(s)
- Marina Weiler
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Kevin C Stieger
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Jeffrey M Long
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| |
Collapse
|
25
|
Zheng Y, Ma XX, Dong L, Ma W, Cheng JH. Effects of uninterrupted sinusoidal LF-EMF stimulation on LTP induced by different combinations of TBS/HFS at the Schaffer collateral-CA1 of synapses. Brain Res 2019; 1725:146487. [PMID: 31580873 DOI: 10.1016/j.brainres.2019.146487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Long-term potentiation (LTP) is an important aspect of synaptic plasticity and is one of the main mechanisms involved in memory. Low-frequency electromagnetic fields (LF-EMFs) such as transcranial magnetic stimulation are emerging neuromodulation tools for the regulation of LTP. However, whether LF-EMFs have different effects on different types of LTP has not yet been verified. Herein, we studied the regulatory effects of 15 Hz/2 mT sinusoidal magnetic field as pre-magnetic stimulation on several types of LTP, which were induced by theta-burst(TBS) or high-frequency stimulation (HFS) or some combination of them, and applied N-methyl-D-aspartate receptor(NMDAR) antagonists to observe the relationship between the regulation of LTP by LF-EMFs and NMDAR in the Schaffer collateral pathway of rat brain slices in vitro. The results presented in this paper are the performance of TBS and HFS was not exactly the same and the recovery speed of TBS-LTP was faster than HFS-LTP after receiving the regulation of LF-EMFs; moreover, the LTP level was affected by the order of combination and the effect of pre-magnetic stimulation could maintain the entire process of the combined induction experiment, while NMDAR antagonists could not completely offset the influence of LF-EMFs. The memory patterns are diverse, and this study has shown LF-EMFs can regulate LTP such as TBS-LTP and HFS-LTP and can continuously affect multiple LTP induction processes. However, different memory processes may have different performance in the face of LF-EMFs regulation. In terms of the mechanism of LF-EMFs-induced LTP regulation, NMDARs may be involved in the process of LF-EMF regulation of LTP, but are not the only factor.
Collapse
Affiliation(s)
- Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiao-Xu Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jian-Hao Cheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
26
|
Zheng Y, Cheng J, Dong L, Ma X, Kong Q. Effects of exposure to extremely low frequency electromagnetic fields on hippocampal long-term potentiation in hippocampal CA1 region. Biochem Biophys Res Commun 2019; 517:513-519. [PMID: 31376941 DOI: 10.1016/j.bbrc.2019.07.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
Exposure to environmental electromagnetic fields, especially to the extremely low-frequency (ELF < 300 Hz) electromagnetic fields (EMFs) might produce modulation effects on neuronal activity. Long-term changes in synaptic plasticity such as long-term potentiation (LTP) involved in learning and memory may have contributions to a number of neurological diseases. However, the modulation effects of ELF-EMFs on LTP are not yet fully understood. In our present study, we aimed to evaluate the effects of exposure to ELF-EMFs on LTP in hippocampal CA1 region in rats. Hippocampal slices were exposed to magnetic fields generated by sXcELF system with different frequencies (15, 50, and 100 Hz [Hz]), intensities (0.5, 1, and 2 mT [mT]), and duration (10 s [s], 20 s, 40 s, 60 s, and 5 min), then the baseline signal recordings for 20 min and the evoked field excitatory postsynaptic potentials (fEPSPs) were recorded. We found that the LTP amplitudes decreased after magnetic field exposure, and the LTP amplitudes decreased in proportion to exposure doses and durations, suggesting ELF-EMFs may have dose and duration-dependent inhibition effects. Among multiple exposure duration and doses combinations, upon 5 min magnetic field exposure, 15 Hz/2 mT maximally inhibited LTP. Under 15 Hz/2 mT ELF-EMFs, LTP amplitude decreases in proportion to the length of exposure durations within 5 min time frame. Our findings illustrated the potential effects of ELF-EMFs on synaptic plasticity and will lead to better understanding of the influence on learning and memory.
Collapse
Affiliation(s)
- Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Jianhao Cheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xiaoxu Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Qingyao Kong
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Ye H, Kaszuba S. Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil. IBRO Rep 2019; 7:26-33. [PMID: 31360792 PMCID: PMC6639724 DOI: 10.1016/j.ibror.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable advantages over that with an implanted electrode, in altering neural activities under pathological situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment of epilepsy, and the safety issues related to this practice. Animal models have been developed to foster understanding of the cellular/molecular mechanisms underlying magnetic control of epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and cellular synchronization. Clinical translation of this technology could be improved through the advancement of magnetic design, optimization of stimulation protocols, and evaluation of the long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic stimulation are of great value in facilitating this translation.
Collapse
Key Words
- 4-AP, 4-aminopyridine
- Animal models
- CD50, convulsant dose
- Cellular mechanisms
- DBS, deep brain stimulation
- EEG, electroencephalography
- ELF-MF, extremely low frequency magnetic fields
- EcoG, electrocorticography
- Epilepsy
- GABA, gamma-aminobutyric acid
- HFS, high frequency stimulation
- KA, kainic acid
- LD50, lethal dose
- LTD, long-term depression
- LTP, long-term potential
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Magnetic stimulation
- NMDAR, N-methyl-d-aspartate receptor
- PTZ, pentylenetetrazol
- REM, rapid eye movement
- SMF, static magnetic field
- TES, transcranial electrical stimulation
- TLE, temporal lobe epilepsy
- TMS, transcranial magnetic stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tDCS, transcranial direct-current stimulation
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, 1032 W. Sheridan Rd., IL, 60660, United States
| | - Stephanie Kaszuba
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL, 60064, United States
| |
Collapse
|
28
|
Zheng Y, Ma XX, Dong L, Gao Y, Tian L. Effects of single- and hybrid-frequency extremely low-frequency electromagnetic field stimulations on long-term potentiation in the hippocampal Schaffer collateral pathway. Int J Radiat Biol 2019; 95:1319-1325. [PMID: 31140893 DOI: 10.1080/09553002.2019.1625463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Purpose: To study the different effects of single- and hybrid-frequency magnetic fields on long-term potentiation (LTP) in synaptic plasticity. Materials and methods: Based on the online electromagnetic field stimulation system and field excitatory postsynaptic potentials (fEPSPs) recording system, we applied four different single- and hybrid-frequency magnetic fields with an intensity of 1 mT to the Schaffer collateral (CA1) pathway of rat hippocampal slices in vitro. Results: The amplitude of fEPSPs decreased significantly under both single- and hybrid-frequency magnetic stimulation. Lower single-frequency magnetic stimulation on LTP had a greater regulating effect, while the regulating effect among four different hybrid-frequency extremely low-frequency electromagnetic fields (ELF-EMFs) stimulations on LTP showed no significant differences. Conclusion: Single-frequency magnetic stimulation produces more significant regulatory effects, and the lower the frequency, the more significant the regulatory effect. The effect of hybrid-frequency magnetic stimulation in each group was similar, and there was no significant difference between each group. The 15-Hz single-frequency magnetic stimulation group showed the most significant regulatory effect, but once it was mixed with other higher frequency magnetic stimulation, its regulation effect was significantly weakened.
Collapse
Affiliation(s)
- Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin , China
| | - Xiao-Xu Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin , China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University , Tianjin , China
| | - Yang Gao
- The School of Information Technology and Electrical Engineering, The University of Queensland , Brisbane , Australia
| | - Lei Tian
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin , China
| |
Collapse
|
29
|
Park HJ, Kang H, Jo J, Chung E, Kim S. Planar coil-based contact-mode magnetic stimulation: synaptic responses in hippocampal slices and thermal considerations. Sci Rep 2018; 8:13423. [PMID: 30194395 PMCID: PMC6128857 DOI: 10.1038/s41598-018-31536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
Implantable magnetic stimulation is an emerging type of neuromodulation using coils that are small enough to be implanted in the brain. A major advantage of this method is that stimulation performance could be sustained even though the coil is encapsulated by gliosis due to foreign body reactions. Magnetic fields can induce indirect electric fields and currents in neurons. Compared to transcranial magnetic stimulation, the coil size used in implantable magnetic stimulation can be greatly reduced. However, the size reduction is accompanied by an increase in coil resistance. Hence, the coil could potentially damage neurons from the excess heat generated. Therefore, it is necessary to study the stimulation performance and possible thermal damage by implantable magnetic stimulation. Here, we devised contact-mode magnetic stimulation (CMS), wherein magnetic stimulation was applied to hippocampal slices through a customized planar-type coil underneath the slice in the contact mode. With acute hippocampal slices, we investigated the synaptic responses to examine the field excitatory postsynaptic responses of CMS and the temperature rise during CMS. A long-lasting synaptic depression was exhibited in the CA1 stratum radiatum after CMS, while the temperature remained in a safe range so as not to seriously affect the neural responses.
Collapse
Affiliation(s)
- Hee-Jin Park
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heekyung Kang
- Department of Biomedical Science and Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jihoon Jo
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Euiheon Chung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
30
|
Dong L, Zheng Y, Li ZY, Li G, Lin L. Modulating effects of on-line low frequency electromagnetic fields on hippocampal long-term potentiation in young male Sprague-Dawley rat. J Neurosci Res 2018; 96:1775-1785. [DOI: 10.1002/jnr.24276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| | - Yu Zheng
- School of Electronics and Information Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Ze-Yan Li
- Viterbi School of Engineering; University of Southern California; Los Angeles 90007
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| |
Collapse
|
31
|
Park HJ, Kang HK, Wang M, Jo J, Chung E, Kim S. A pilot study of planar coil based magnetic stimulation using acute hippocampal slice in mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1118-1121. [PMID: 29060071 DOI: 10.1109/embc.2017.8037025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micromagnetic stimulation using small-sized implantable coils has recently been studied. The main advantage of this method is that it can provide sustainable stimulation performance even if a fibrotic encapsulation layer is formed around the implanted coil by inflammation response, because indirectly induced currents are used to induce neural responses. In previous research, we optimized the geometrical and control parameters used in implantable magnetic stimulation. Based on those results, we fabricated the planar coil and studied the LTP effect in the hippocampal slice by two different magnetic stimulation protocols using the quadripulse stimulation (QPS) pattern. We found that direct magnetic stimulation (DMS) induced insignificant LTP effect and priming magnetic stimulation (PMS) occluded LTP effect after tetanic stimulation, when QPS patterned magnetic stimulation with 1 A current pulse was applied to the planar coil.
Collapse
|
32
|
Lenz M, Vlachos A. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission. Front Neural Circuits 2016; 10:96. [PMID: 27965542 PMCID: PMC5124712 DOI: 10.3389/fncir.2016.00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique which modulates cortical excitability beyond the stimulation period. However, despite its clinical use rTMS-based therapies which prevent or reduce disabilities in a functionally significant and sustained manner are scarce. It remains unclear how rTMS-mediated changes in cortical excitability, which are not task- or input-specific, exert beneficial effects in some healthy subjects and patients. While experimental evidence exists that repetitive magnetic stimulation (rMS) is linked to the induction of long-term potentiation (LTP) of excitatory neurotransmission, less attention has been dedicated to rTMS-induced structural, functional and molecular adaptations at inhibitory synapses. In this review article we provide a concise overview on basic neuroscience research, which reveals an important role of local disinhibitory networks in promoting associative learning and memory. These studies suggest that a reduction in inhibitory neurotransmission facilitates the expression of associative plasticity in cortical networks under physiological conditions. Hence, it is interesting to speculate that rTMS may act by decreasing GABAergic neurotransmission onto cortical principal neurons. Indeed, evidence has been provided that rTMS is capable of modulating inhibitory networks. Consistent with this suggestion recent basic science work discloses that a 10 Hz rTMS protocol reduces GABAergic synaptic strength on principal neurons. These findings support a model in which rTMS-induced long-term depression (LTD) of GABAergic synaptic strength mediates changes in excitation/inhibition-balance of cortical networks, which may in turn facilitate (or restore) the ability of stimulated networks to express input- and task-specific associative synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
33
|
Shang Y, Wang X, Shang X, Zhang H, Liu Z, Yin T, Zhang T. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem 2016; 134 Pt B:369-78. [PMID: 27555233 DOI: 10.1016/j.nlm.2016.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. The aim of this study was to investigate if the facilitation of spatial cognition and synaptic plasticity, induced by rTMS, is regulated by enhancing pre- and postsynaptic proteins in normal rats. Morris water maze (MWM) test was performed to examine the spatial cognition. The synaptic plasticity, including long-term potentiation (LTP) and depotentiation (DEP), presynaptic plasticity paired-pulse facilitation (PPF), from the hippocampal Schaffer collaterals to CA1 region was subsequently measured using in vivo electrophysiological techniques. The expressions of brain-derived neurotrophic factor (BDNF), presynaptic protein synaptophysin (SYP) and postsynaptic protein NR2B were measured by Western blot. Our data show that the spatial learning/memory and reversal learning/memory in rTMS rats were remarkably enhanced compared to that in the Sham group. Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals.
Collapse
Affiliation(s)
- Yingchun Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xueliang Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Hui Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Tao Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
34
|
Tang A, Thickbroom G, Rodger J. Repetitive Transcranial Magnetic Stimulation of the Brain: Mechanisms from Animal and Experimental Models. Neuroscientist 2016; 23:82-94. [PMID: 26643579 DOI: 10.1177/1073858415618897] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the development of transcranial magnetic stimulation (TMS) in the early 1980s, a range of repetitive TMS (rTMS) protocols are now available to modulate neuronal plasticity in clinical and non-clinical populations. However, despite the wide application of rTMS in humans, the mechanisms underlying rTMS-induced plasticity remain uncertain. Animal and in vitro models provide an adjunct method of investigating potential synaptic and non-synaptic mechanisms of rTMS-induced plasticity. This review summarizes in vitro experimental studies, in vivo studies with intact rodents, and preclinical models of selected neurological disorders-Parkinson's disease, depression, and stroke. We suggest that these basic research findings can contribute to the understanding of how rTMS-induced plasticity can be modulated, including novel mechanisms such as neuroprotection and neurogenesis that have significant therapeutic potential.
Collapse
Affiliation(s)
- Alexander Tang
- 1 Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia
| | | | - Jennifer Rodger
- 1 Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
35
|
Behrendt F, de Lussanet MHE, Zentgraf K, Zschorlich VR. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight. PLoS One 2016; 11:e0157811. [PMID: 27336751 PMCID: PMC4919087 DOI: 10.1371/journal.pone.0157811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 12/04/2022] Open
Abstract
Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer’s motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.
Collapse
Affiliation(s)
- Frank Behrendt
- University Children’s Hospital Basle, Basle, Switzerland
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- * E-mail: (FB); (KZ)
| | | | - Karen Zentgraf
- Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
- * E-mail: (FB); (KZ)
| | - Volker R. Zschorlich
- Institute of Sport Science, Department of Kinesiology, University of Rostock, Rostock, Germany
| |
Collapse
|
36
|
Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Neurol 2015; 12:57-64. [PMID: 26365021 PMCID: PMC4712287 DOI: 10.3988/jcn.2016.12.1.57] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) has been examined as a potential treatment for many neurological disorders. High-frequency rTMS in particular improves cognitive functions such as verbal fluency and memory. This study explored the effect of rTMS combined with cognitive training (rTMS-COG) on patients with Alzheimer's disease (AD). METHODS A prospective, randomized, double-blind, placebo-controlled study was performed with 27 AD patients (18 and 8 in the treatment and sham groups, respectively, and 1 drop-out). The participants were categorized into mild [Mini-Mental State Examination (MMSE) score=21-26] and moderate (MMSE score=18-20) AD groups. The rTMS protocols were configured for six cortical areas (both dorsolateral prefrontal and parietal somatosensory associated cortices and Broca's and Wernicke's areas; 10 Hz, 90-110% intensity, and 5 days/week for 6 weeks). Neuropsychological assessments were performed using the AD Assessment Scale-cognitive subscale (ADAS-cog), Clinical Global Impression of Change (CGIC), and MMSE before, immediately after, and 6 weeks after the end of rTMS-COG treatment. RESULTS Data from 26 AD patients were analyzed in this study. There was no significant interactive effect of time between the groups. The ADAS-cog score in the treatment group was significantly improved compared to the sham group (4.28 and 5.39 in the treatment group vs. 1.75 and 2.88 in the sham group at immediately and 6 weeks after treatment, respectively). The MMSE and CGIC scores were also improved in the treatment group. Based on subgroup analysis, the effect of rTMS-COG was superior for the mild group compared to the total patients, especially in the domains of memory and language. CONCLUSIONS The present results suggest that rTMS-COG represents a useful adjuvant therapy with cholinesterase inhibitors, particularly during the mild stage of AD. The effect of rTMS-COG was remarkable in the memory and language domains, which are severely affected by AD.
Collapse
Affiliation(s)
- Juyoun Lee
- Department of Neurology, Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea
| | - Byong Hee Choi
- Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea
| | - Eungseok Oh
- Department of Neurology, Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Hee Sohn
- Department of Neurology, Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea
| | - Ae Young Lee
- Department of Neurology, Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea.,Cognitive Neuroscience Section, Chungnam National University Hospital, Daejeon, Korea.
| |
Collapse
|
37
|
Bates KA, Rodger J. Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope? Restor Neurol Neurosci 2015; 33:557-69. [DOI: 10.3233/rnn-130359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Moradi Chameh H, Janahmadi M, Semnanian S, Shojaei A, Mirnajafi-Zadeh J. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons. Brain Res 2015; 1606:34-43. [DOI: 10.1016/j.brainres.2015.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/29/2022]
|
39
|
Ahmed Z, Wieraszko A. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics 2015; 36:386-97. [DOI: 10.1002/bem.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy; The Program for Developmental Neuroscience; The College of Staten Island, Staten Island, and Graduate Center/The City University of New York; New York NY
| | - Andrzej Wieraszko
- The Department of Biology; The Program for Developmental Neuroscience; The College of Staten Island, Staten Island, and Graduate Center/The City University of New York; New York NY
| |
Collapse
|
40
|
Shojaei A, Semnanian S, Janahmadi M, Moradi-Chameh H, Firoozabadi S, Mirnajafi-Zadeh J. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. Neuroscience 2014; 280:181-92. [DOI: 10.1016/j.neuroscience.2014.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
|
41
|
NMDA receptor-dependent metaplasticity by high-frequency magnetic stimulation. Neural Plast 2014; 2014:684238. [PMID: 25405036 PMCID: PMC4227354 DOI: 10.1155/2014/684238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/17/2022] Open
Abstract
High-frequency magnetic stimulation (HFMS) can elicit N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal cell synapses. Here, we investigated the priming effect of HFMS on the subsequent magnitude of electrically induced LTP in the CA1 region of rat hippocampal slices using field excitatory postsynaptic potential (fEPSP) recordings. In control slices, electrical high-frequency conditioning stimulation (CS) could reliably induce LTP. In contrast, the same CS protocol resulted in long-term depression when HFMS was delivered to the slice 30 min prior to the electrical stimulation. HFMS-priming was diminished when applied in the presence of the metabotropic glutamate receptor antagonists (RS)-α-methylserine-O-phosphate (MSOP) and (RS)-α-methyl-4-carboxyphenylglycine (MCPG). Moreover, when HFMS was delivered in the presence of the NMDA receptor-antagonist D-2-amino-5-phosphonovalerate (50 µM), CS-induced electrical LTP was again as high as under control conditions in slices without priming. These results demonstrate that HFMS significantly reduced the propensity of subsequent electrical LTP and show that both metabotropic glutamate and NMDA receptor activation were involved in this form of HFMS-induced metaplasticity.
Collapse
|
42
|
Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F, Jedlicka P, Vlachos A. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3323-37. [DOI: 10.1007/s00429-014-0859-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
43
|
Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat. Brain Res 2014; 1564:1-8. [DOI: 10.1016/j.brainres.2014.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
|
44
|
Andrade DC, Borges I, Bravo GL, Bolognini N, Fregni F. Therapeutic time window of noninvasive brain stimulation for pain treatment: inhibition of maladaptive plasticity with early intervention. Expert Rev Med Devices 2014; 10:339-52. [PMID: 23668706 DOI: 10.1586/erd.12.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuromodulatory effects of noninvasive brain stimulation (NIBS) have been extensively studied in chronic disorders such as major depression, chronic pain and stroke. However, few studies have explored the use of these techniques in acute conditions. A possible use of NIBS in acute disorders is to prevent or reverse ongoing maladaptive plastic alterations, seemingly responsible for treatment refractoriness and detrimental behavioral changes. In this review, the authors discuss the potential role of NIBS in blocking maladaptive plasticity using the transition of acute to chronic pain in conditions such as postsurgical pain, central poststroke pain, pain after spinal cord injury and pain after traumatic brain injury as a model. The authors also present suggestions for clinical trial design using NIBS in the acute stage of illnesses.
Collapse
Affiliation(s)
- Dafne C Andrade
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, 125 Nashua Street 727, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
45
|
Müller-Dahlhaus F, Vlachos A. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Front Mol Neurosci 2013; 6:50. [PMID: 24381540 PMCID: PMC3865432 DOI: 10.3389/fnmol.2013.00050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/29/2013] [Indexed: 11/13/2022] Open
Abstract
Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases) provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i) which neural structures are activated during TMS, (ii) how does rTMS induce Hebbian plasticity, and (iii) are other forms of plasticity (e.g., metaplasticity, structural plasticity) induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.
Collapse
Affiliation(s)
- Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen Tübingen, Germany
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
46
|
Sykes M, Makowiecki K, Rodger J. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons. F1000Res 2013; 2:180. [PMID: 24627788 PMCID: PMC3938248 DOI: 10.12688/f1000research.2-180.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2 (-/-) and wildtype (C57BI/6j) mice (n=10 per genotype) undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.
Collapse
Affiliation(s)
- Matthew Sykes
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Kalina Makowiecki
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| |
Collapse
|
47
|
Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ1–42-mediated memory deficits in rats. Exp Gerontol 2013; 48:786-94. [PMID: 23665072 DOI: 10.1016/j.exger.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/10/2023]
|
48
|
Tan T, Xie J, Tong Z, Liu T, Chen X, Tian X. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res 2013; 1520:23-35. [PMID: 23651978 DOI: 10.1016/j.brainres.2013.04.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is able to induce alteration in cortical activity and excitability that outlast the period of stimulation, which is long-term depre-ssion (LTD) or long-term potentiation (LTP)-like. Accumulating evidence shows that Na(+), Ca(2+) and K(+) channels are important for the regulation of neuronal excitability. To investigate the possible mechanisms of rTMS on regulation of intrinsic excitability in hippocampal neurons, the male or female Sprague-Dawley rats aged 2-3 d or 7-8 d were treated with 14 or 7-d's low frequency (1 Hz) rTMS (400 stimuli/d), respectively. After that, the effects of rTMS on ion channels such as Na(+)-channel, A-type K(+)-channel and Ca(2+)-channel in rat hippocampal CA1 pyramidal neurons were performed by standard whole-cell patch-clamp technique. The results showed that the peak amplitude and maximal rise slope of evoked single action potential (AP) were significantly increased after 14-d's rTMS treatment. Meanwhile, the AP threshold was significantly more depolarized in neurons after 14-d's rTMS treatment than neurons in control group that without rTMS treatment. The spontaneous excitatory post-synaptic currents (sEPSCs) frequency and amplitude of CA1 pyramidal neurons in groups with rTMS treatment (both 7 d and 14 d) were obviously increased compared with the age-matched control group. Furthermore, we found that electrophysiological properties of Na(+)-channel were markedly changed after rTMS treatment, including negative-shifted activation and inactivation curves, as well as fasten recovery rate. After rTMS application, the IA amplitude of K(+)-channel was reduced; the activation and inactivation curves of K(+)-channel were significantly shifted to right. Time constant of recovery from inactivation was also more rapid. Moreover, rTMS induced an obvious increment in the maximal current peak amplitude of Ca(2+)-channel. At the same time, there was a significant rightward shift in the activation curve and inactivation curves of Ca(2+)-channel. These data suggest that rTMS can enhance the AP and sEPSCs of hippocampal CA1 neurons. Altered electrophysiological properties of Na(+)-channel, A-type K(+) channels and Ca(2+) channels contribute to the underling mechanisms of rTMS-induced up-regulation of neural excitability.
Collapse
Affiliation(s)
- Tao Tan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China.
| | | | | | | | | | | |
Collapse
|
49
|
Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 2012; 64:566-78. [PMID: 22749945 DOI: 10.1016/j.neuropharm.2012.06.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient's quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer's disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Asli Demirtas-Tatlidede
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.
| | | | | |
Collapse
|
50
|
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology 2012; 64:579-87. [PMID: 22687520 DOI: 10.1016/j.neuropharm.2012.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/30/2022]
Abstract
Non-invasive brain stimulation has shown its potential to modulate brain plasticity in humans. Endeavour has been made to utilize brain stimulation in neurological diseases to enhance adaptive processes and prevent potential maladaptive ones. In stroke for instance both sensorimotor and higher cognitive impairment, such as aphasia and neglect, has been addressed to facilitate functional recovery. In Parkinson's disease, brain stimulation has been evaluated to improve motor and non-motor symptoms. In the present review we provide an update of the field of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as non-invasive brain stimulation techniques to improve motor and higher cognitive functions in patients suffering from stroke and Parkinson's disease. Rather than attempting to be comprehensive in regard of the reviewed scientific field, this article may be considered as a present day's framework of the application of non-invasive brain stimulation on selected examples of common neurological diseases. At the end we will briefly discuss open controversies and future directions of the field which has to be addressed in upcoming studies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Robert Schulz
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | |
Collapse
|