1
|
Mashin VV, Belova LA, Kotova EY, Dolgova DR, Statenina AP, Belyaeva YK, Dergacheva AS, Israfilova RR. [Results of a multicenter observational program to evaluate the effectiveness of complex therapy of patients with chronic cerebrovascular pathology with cognitive impairment with Cortexin and Neuromexol (CORNELia study)]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:34-41. [PMID: 38147380 DOI: 10.17116/jnevro202312312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To evaluate the effectiveness of complex therapy with Cortexin and Neuromexol in patients with chronic cerebral ischemia (CCI) and cognitive impairment (CI). MATERIAL AND METHODS We examined 801 patients with CCI on the background of arterial hypertension and atherosclerosis with confirmed CI: 329 (41.1%) men and 472 (58.9%) women aged 30 to 80 years (mean age 64±10 years), who were examined. Cortexin and Neuromexol. Examination - Mini-Mental State Examination (MMSE) scale, hour-long drawing test (HDT) and severity of depressive states (Brief Geriatric Depression Scale, Mini Geriatric Depression Scal, MGDS). In 30 patients receiving Cortexin and Neuromexol (main group, MG) and 30 patients in the comparison group (CG), biomarkers of ischemic brain damage (NSE, antibodies to NR2, VEGFA) were determined. The examination was carried out before the start of treatment and after 30 days. RESULTS During therapy with Cortexin and Neuromexol, characteristic signs of a decrease in the severity of CI were noted (p<0.05). A positive correlation was revealed between the performance indicators of the MMSE and TFC tests, both before and after treatment (r=0.5 and r=0.6, respectively; p<0.05). A positive effect of therapy on the emotional background of patients was noted, in particular, a decrease in the severity of depressive symptoms on the MGDS scale. During therapy, a 2-fold decrease in the NSE level (p<0.05) was detected in the MG, which indicates a decrease in the structural and functional parameters of biomembrane neurons in the brain. The concentration of antibodies to NR2 decreased compared to the baseline level in both groups (p<0.05), and VEGFA decreased only in the MG (p<0.05). CONCLUSION The results of the study allow us to recommend the complex prescription of Cortexin 10 mg/day for 10 days and Neuromexol tablets 125 mg (375-750 mg/day) for 30 days for chronic CVD. Complex therapy with Cortexin and Neuromexol is effective and safe in patients with CCI and CI.
Collapse
Affiliation(s)
- V V Mashin
- Ulyanovsk State University, Ulyanovsk, Russia
| | - L A Belova
- Ulyanovsk State University, Ulyanovsk, Russia
| | - E Y Kotova
- Ulyanovsk State University, Ulyanovsk, Russia
| | - D R Dolgova
- Ulyanovsk State University, Ulyanovsk, Russia
| | | | | | | | | |
Collapse
|
2
|
Cho KO, Kim JY, Jeong KH, Lee MY, Kim SY. Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:281-289. [PMID: 31297012 PMCID: PMC6609264 DOI: 10.4196/kjpp.2019.23.4.281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.
Collapse
Affiliation(s)
- Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Joo Youn Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyoung Hoon Jeong
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mun-Yong Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
3
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
4
|
Dumont CM, Piselli JM, Kazi N, Bowman E, Li G, Linhardt RJ, Temple S, Dai G, Thompson DM. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage. Stem Cells Dev 2017; 26:1199-1213. [PMID: 28557666 DOI: 10.1089/scd.2016.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Jennifer M Piselli
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Nadeem Kazi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Evan Bowman
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Guoyun Li
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Robert J Linhardt
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Sally Temple
- 4 Neural Stem Cell Institute , Rensselaer, New York
| | - Guohao Dai
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Deanna M Thompson
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
5
|
Shin YJ, Riew TR, Jin X, Choi JH, Lee MY. Increased expression of suppressor of cytokine signaling 2 in the subventricular zone after transient focal cerebral ischemia in adult rats. Brain Res 2016; 1648:163-171. [DOI: 10.1016/j.brainres.2016.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/19/2023]
|
6
|
Developmental expression of vascular endothelial growth factor receptor 3 and vascular endothelial growth factor C in forebrain. Neuroscience 2015; 303:544-57. [PMID: 25943477 DOI: 10.1016/j.neuroscience.2015.04.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Increased understanding of the neurovascular niche suggests that development of the central nervous system (CNS) and its vasculature is coordinated through shared regulatory factors. These include the vascular endothelial growth factor (VEGF) family, reported to promote neuroproliferation and neuroprotection in addition to angiogenesis via its receptors VEGFR1-3. VEGFR3, a mediator of lymphangiogenesis, is expressed in murine and rat brain from early gestation, has been associated with neural progenitors and neurons (Choi et al., 2010) and oligodendroglia (Le Bras et al., 2006) in the developing cortex and is reported to mediate adult neurogenesis in the subventricular zone (SVZ) (Calvo et al., 2011). The early expression pattern of VEGFR3 protein and its cellular associations has not as yet been comprehensively reported. We describe the temporal expression of VEGFR3 protein at a cellular level and its close association with its VEGFC ligand, determined by double-labeling immunohistochemistry in the developing rat brain from embryonic day (E) 13 to postnatal day (P) 23. We found high expression of VEGFR3 in the ventricular zone and along radial glia in early gestation in association with neural stem cells and neuroblasts. Similar expression patterns were seen in the immature olfactory bulb and optic cup. In later development we found less expression by neural progenitors in proliferative regions including the SVZ and dentate gyrus of the hippocampus. In contrast, VEGFR3 expression increased with development in the cortex in neurons and astrocytes, and appeared in the emerging population of oligodendroglial progenitors. High expression in ventricular ependyma, choroid plexus and pigmented retinal epithelium was noted from E18. VEGFC ligand was found in association with VEGFR3 throughout development, with highest expression in embryonic stages. Our findings suggest an important role for VEGFC/VEGFR3 signaling in neuronal proliferation in early forebrain development, and ongoing functions with niche neurogenesis, glial and ependymal function in the maturing postnatal brain.
Collapse
|
7
|
Bhuiyan M, Kim JC, Hwang SN, Lee MY, Kim S. Ischemic tolerance is associated with VEGF-C and VEGFR-3 signaling in the mouse hippocampus. Neuroscience 2015; 290:90-102. [DOI: 10.1016/j.neuroscience.2015.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
8
|
Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors. Transl Stroke Res 2014; 4:158-70. [PMID: 23565129 DOI: 10.1007/s12975-012-0213-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Episodes of neonatal hypoxia-ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitors, which was abolished by blocking the VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that extend VEGF-C production and/or agonists that stimulate the VEGFR-3 will promote oligodendrocyte progenitor cell development to enhance myelination after perinatal brain injury.
Collapse
|
9
|
Li Y, Wu D, Wu C, Qu Z, Zhao Y, Li W, Wang J, Li Z. Changes in neural stem cells in the subventricular zone in a rat model of communicating hydrocephalus. Neurosci Lett 2014; 578:153-8. [PMID: 24996196 DOI: 10.1016/j.neulet.2014.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022]
Abstract
Communicating hydrocephalus is a common type of hydrocephalus. At present, the prevalent treatment is to perform a ventriculo-peritoneal shunt, which, for reasons that are not clear, is sometimes ineffective. The subventricular zone (SVZ) of the lateral ventricles has been established as the primary site of adult neurogenesis. Following cerebral ischemia or brain injury, neural stem cells (NSCs) increase in the SVZ and can both differentiate into neurons and glial cells and respond to the injury. Neural stem cells, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation and integration of newborn cells, continuously generate new neurons. However, only a few systematic studies of the role of NSCs in hydrocephalus have been reported. In a rat model of communicating hydrocephalus, we recently showed that hydrocephalus caused the ventricular system to expand over time. We found that the number of NSCs in the SVZ peaked rapidly after hydrocephalus was established and decreased gradually over time until the cells disappeared. NSCs may be involved in the pathophysiology changes and repair process of hydrocephalus.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dongxue Wu
- Department of Radiologists, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunming Wu
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Zhenyun Qu
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yongshun Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Weihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhongmin Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan M, Guttman BW, Zivadinov R, Tsunoda I, Alexander JS. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature. J Neuroinflammation 2013; 10:125. [PMID: 24124909 PMCID: PMC3854084 DOI: 10.1186/1742-2094-10-125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023] Open
Abstract
Background Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. Methods We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler’s murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. Results and conclusions Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Department of Molecular & Cellular Physiology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Induction of vascular endothelial growth factor receptor-3 expression in perivascular cells of the ischemic core following focal cerebral ischemia in rats. Acta Histochem 2013; 115:170-7. [PMID: 22771250 DOI: 10.1016/j.acthis.2012.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been reported to be induced within vessel-like structures in the ischemic brain. The purpose of the present study was to characterize and define further the cellular phenotypes of vascular-associated cells that manifest induced VEGFR-3 expression in a rat model of ischemic stroke. Vessel-associated cells expressing VEGFR-3 were found to be perivascular astrocytes in the peri-infarct region, whereas in the ischemic core, where astrocytes had virtually disappeared, induction of VEGFR-3 mRNA and protein was still prominent in vascular structures 3-7 days after reperfusion. VEGFR-3 and nestin expression were colocated in almost all cells associated with the vasculature in the ischemic core, and most (~82%) of the VEGFR-3/nestin double-labeled cells were proliferative. A subpopulation of these VEGFR-3-expressing cells appeared to be included in two immunophenotypically distinct perivascular cells: NG2-positive pericytes and ED2- or OX6-perivascular macrophages. However, most of these cells did not show markers for vasculature-associated cell types such as endothelial cells, microglia/macrophages, and smooth muscle cells. Thus, our data indicated that vasculature-associated VEGFR-3-expressing cells in the ischemic core may represent a heterogeneous population of cells with functional diversity, rather than a uniform cell type.
Collapse
|
12
|
Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin 2013; 34:78-90. [PMID: 23064725 PMCID: PMC4086492 DOI: 10.1038/aps.2012.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.
Collapse
Affiliation(s)
- Pooya Dibajnia
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Porlan E, Perez-Villalba A, Delgado AC, Ferrón SR. Paracrine regulation of neural stem cells in the subependymal zone. Arch Biochem Biophys 2012; 534:11-9. [PMID: 23073070 DOI: 10.1016/j.abb.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial subtypes. Here we review current knowledge regarding the paracrine regulation provided by the components of the niche and its function, focusing on the main germinal region of the adult central nervous system (CNS), the subependymal zone (SEZ).
Collapse
Affiliation(s)
- Eva Porlan
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | | | | | | |
Collapse
|
14
|
Effect of semax and its C-terminal fragment Pro-Gly-Pro on the expression of VEGF family genes and their receptors in experimental focal ischemia of the rat brain. J Mol Neurosci 2012; 49:328-33. [PMID: 22772900 DOI: 10.1007/s12031-012-9853-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022]
Abstract
The synthetic peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is used successfully in acute stroke therapy. In spite of numerous studies on the subject, many aspects of the neuroprotective effects of the peptide remain unknown. We studied the action of Semax and its C-terminal tripeptide Pro-Gly-Pro on the expression of the VEGF gene family (Vegf-a, Vegf-b, Vegf-c, Vegf-d, and Plgf) and their receptors (Vegfr-1, Vegfr-2, and Vegfr-3) in the frontoparietal cortex region of the rat brain at 3, 24, and 72 h after permanent left middle cerebral artery occlusion (pMCAO). The relative mRNA level of the genes studied was assessed using real-time reverse transcription-PCR. The Vegf-b and Vegf-d genes were most affected by the peptides, which resulted in their most noticeable activation at 3 h after pMCAO. The level of Vegf-d transcripts decreased considerably, whereas the mRNA level of the Vegf-b gene was significantly increased after 72 h of treatment with each of the peptides. In addition, the effects of the peptides on the expression of the Vegf-b and Vegf-d genes were the opposite of the action of ischemia. It is suggested that the identified effects of the peptides diminish the effects of ischemia, thus participating in the positive therapeutic effect of Semax on ischemic stroke.
Collapse
|
15
|
Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 2012; 90:1873-82. [DOI: 10.1002/jnr.23088] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/03/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
|
16
|
Shin YJ, Kim HL, Park JM, Cho JM, Kim CY, Choi KJ, Kweon HS, Cha JH, Lee MY. Overlapping distribution of osteopontin and calcium in the ischemic core of rat brain after transient focal ischemia. J Neurotrauma 2012; 29:1530-8. [PMID: 22087764 DOI: 10.1089/neu.2011.2078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Osteopontin (OPN), an adhesive glycoprotein, has recently been proposed to act as an opsonin that facilitates phagocytosis of neuronal debris by macrophages in the ischemic brain. The present study was designed to elucidate the process whereby OPN binds to neuronal cell debris in a rat model of ischemic stroke. Significant co-localization of the OPN protein and calcium deposits in the ischemic core were observed by combining alizarin red staining and OPN immunohistochemistry. In addition, electron microscopy (EM) using the osmium/potassium dichromate method revealed that electron-dense precipitates, typical of calcium deposits, were localized mainly along the periphery of putative degenerating neurites. This topical pattern of calcium precipitates resembled the distribution of OPN as detected by immunogold-silver EM. Combining immunogold-silver EM and electron probe microanalysis further demonstrated that the OPN protein was localized at the periphery of cell debris or degenerating neurites, corresponding with locally higher concentrations of calcium and phosphorus, and that the relative magnitude of OPN accumulation was comparable to that of calcium and phosphorus. These data suggest that calcium precipitation provides a matrix for the binding of the OPN protein within the debris or degenerating neurites induced by ischemic injury. Therefore, OPN binding to calcium deposits may be involved in phagocytosis of such debris, and may participate in the regulation of ectopic calcification in the ischemic brain.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, Integrative Research Support Center, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang CQ, Shu HF, Yin Q, An N, Xu SL, Yin JB, Song YC, Liu SY, Yang H. Expression and cellular distribution of vascular endothelial growth factor-C system in cortical tubers of the tuberous sclerosis complex. Brain Pathol 2011; 22:205-18. [PMID: 21767323 DOI: 10.1111/j.1750-3639.2011.00519.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cortical tubers are malformations of cortical development in patients with tuberous sclerosis complex (TSC), and highly associated with pediatric intractable epilepsy. Recent evidence has shown that signaling mediated through vascular endothelial growth factor-C (VEGF-C) and its receptors, VEGFR-2 and VEGFR-3, has direct effects on both neurons and glial cells. To understand the potential role of VEGF-C system in the pathogenesis of cortical tubers, we investigated the expression patterns of VEGF-C signaling in cortical tubers compared with age-matched normal control cortex (CTX). We found that VEGF-C, VEGFR-2 and VEGFR-3 were clearly upregulated in tubers at both the mRNA and protein levels, compared with CTX. The in situ hybridization and immunostaining results demonstrated that VEGF-C, VEGFR-2 and VEGFR-3 were highly expressed in dysplastic neurons (DNs), giant cells (GCs) and reactive astrocytes within tubers. Most DNs/GCs expressing VEGF-C and its receptors co-labeled with neuronal rather than astrocytic markers, suggesting a neuronal lineage. In addition, protein levels of Akt-1, p-Bad and ERK1/2, the important downstream factors of the VEGF-C pathway, were significantly increased in cortical tubers, indicating involvement of VEGF-C-dependent prosurvival signaling in cortical tubers. Taken together, our results suggest a putative role for the VEGF-C signaling pathway in the pathogenesis of cortical tubers.
Collapse
Affiliation(s)
- Chun-Qing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Distribution of vascular endothelial growth factor receptor-3/Flt4 mRNA in adult rat central nervous system. J Chem Neuroanat 2011; 42:56-64. [DOI: 10.1016/j.jchemneu.2011.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/21/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
|
19
|
Guan W, Somanath PR, Kozak A, Goc A, El-Remessy AB, Ergul A, Johnson MH, Alhusban A, Soliman S, Fagan SC. Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS One 2011; 6:e24551. [PMID: 21912702 PMCID: PMC3164729 DOI: 10.1371/journal.pone.0024551] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
We identified that the angiotensin receptor antagonist, candesartan, has profound neurovascular protective properties when administered after ischemic stroke and was associated with a proangiogenic state at least partly explained by vascular endothelial growth factor A (VEGFA). However, the spatial distribution of vascular endothelial growth factor (VEGF) isoforms and their receptors remained unknown. Protein analysis identified a significant increase in vascular endothelial grow factor B (VEGFB) in the cerebrospinal fluid (CSF) and the ischemic hemispheres (with increased VEGF receptor 1 activation) of treated animals (p<0.05) which was co-occurring with an increase in protein kinase B (Akt) phosphorylation (p<0.05). An increase in VEGFA protein in the contralesional hemisphere corresponded to a significant increase in vascular density at seven days (p<0.01) after stroke onset. Vascular restoration by candesartan after stroke maybe related to differential regional upregulation of VEGFB and VEGFA, promoting a “prosurvival state” in the ischemic hemisphere and angiogenesis in the contralesional side, respectively. These vascular changes in both hemispheres after effective treatment are likely to contribute to enhanced recovery after stroke.
Collapse
Affiliation(s)
- Weihua Guan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Anna Kozak
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Anna Goc
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Azza B. El-Remessy
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Departments of Physiology, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Department of Biostatistics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Sahar Soliman
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikkä J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 2011; 25:831-44. [PMID: 21498572 DOI: 10.1101/gad.615311] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Charles-Félix Calvo
- University Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, UMR S975, Paris 75651, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ma Y, Qu Y, Fei Z. Vascular endothelial growth factor in cerebral ischemia. J Neurosci Res 2011; 89:969-78. [DOI: 10.1002/jnr.22628] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 12/28/2022]
|
22
|
Hou Y, Choi JS, Shin YJ, Cha JH, Choi JY, Chun MH, Lee MY. Expression of vascular endothelial growth factor receptor-3 mRNA in the developing rat cerebellum. Cell Mol Neurobiol 2011; 31:7-16. [PMID: 21072582 DOI: 10.1007/s10571-010-9530-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/08/2010] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been suggested to play an important role during neuronal development. To characterize its potential role in CNS ontogenesis, we investigated the spatiotemporal and cellular expression of VEGFR-3 in developing and mature rat cerebellum using in situ hybridization. VEGFR-3 expression appeared as early as E15, and was restricted to the ventricular zone of the cerebellar primordium, the germinative neuroepithelium, but was absent by E20. Instead, the expression area of VEGFR-3 in the cerebellum grew in parallel with cerebellar development. From E20 on, two populations of VEGFR-3-expressing cells can be clearly distinguished in the developing cerebellum: a population of differentiating and postmitotic neurons and the Bergmann glia. VEGFR-3 expression in neurons occurred during the period of neuronal differentiation, and increased with maturation. In particular, the expression of VEGFR-3 mRNA revealed different temporal patterns in different neuronal populations. Neurons generated early, Purkinje cells, and deep nuclear neurons expressed VEGFR-3 mRNA during late embryonic stages, whereas VEGFR-3 transcription in local interneurons appeared by P14 with weaker expression. In addition, Bergmann glia expressed VEGFR-3 throughout cerebellar maturation into adulthood. However, receptor expression was absent in the progenitors in the external granular layer and during further migration. The results of this study suggest that VEGFR-3 has even broader functions than previously thought, regulating both developmental processes and adult neuronal function in the cerebellum.
Collapse
Affiliation(s)
- Yun Hou
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Shin YJ, Lim Kim H, Choi JS, Choi JY, Cha JH, Lee MY. Osteopontin: Correlation with phagocytosis by brain macrophages in a rat model of stroke. Glia 2010; 59:413-23. [DOI: 10.1002/glia.21110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/21/2010] [Indexed: 11/12/2022]
|