1
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Santana MAD, Medeiros HHA, Leite MD, Barros MAS, de Góis Morais PLA, Soares JG, Ladd FVL, Cavalcante JS, Cavalcante JC, Costa MSMO, Nascimento Jr. ES. Retinofugal Projections Into Visual Brain Structures in the Bat Artibeus planirostris: A CTb Study. Front Neuroanat 2018; 12:66. [PMID: 30135648 PMCID: PMC6092499 DOI: 10.3389/fnana.2018.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
A well-developed visual system can provide significant sensory information to guide motor behavior, especially in fruit-eating bats, which usually use echolocation to navigate at high speed through cluttered environments during foraging. Relatively few studies have been performed to elucidate the organization of the visual system in bats. The present work provides an extensive morphological description of the retinal projections in the subcortical visual nuclei in the flat-faced fruit-eating bat (Artibeus planirostris) using anterograde transport of the eye-injected cholera toxin B subunit (CTb), followed by morphometrical and stereological analyses. Regarding the cytoarchitecture, the dorsal lateral geniculate nucleus (dLGN) was homogeneous, with no evident lamination. However, the retinal projection contained two layers that had significantly different marking intensities and a massive contralateral input. The superior colliculus (SC) was identified as a laminar structure composed of seven layers, and the retinal input was only observed on the contralateral side, targeting two most superficial layers. The medial pretectal nucleus (MPT), olivary pretectal nucleus (OPT), anterior pretectal nucleus (APT), posterior pretectal nucleus (PPT) and nucleus of the optic tract (NOT) were comprised the pretectal nuclear complex (PNT). Only the APT lacked a retinal input, which was predominantly contralateral in all other nuclei. Our results showed the morphometrical and stereological features of a bat species for the first time.
Collapse
Affiliation(s)
- Melquisedec A. D. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder H. A. Medeiros
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mariana D. Leite
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Joacil Germano Soares
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Judney C. Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
3
|
Reis MEMD, Araújo LTFD, de Andrade WMG, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide synthase in the rock cavy (Kerodon rupestris) brain I: The diencephalon. Brain Res 2018; 1685:60-78. [DOI: 10.1016/j.brainres.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
4
|
Oliveira FG, Nascimento-Júnior ESD, Cavalcante JC, Guzen FP, Cavalcante JDS, Soares JG, Cavalcanti JRLDP, Freitas LMD, Costa MSMDO, Andrade-da-Costa BLDS. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina. J Chem Neuroanat 2017; 90:57-69. [PMID: 29277705 DOI: 10.1016/j.jchemneu.2017.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023]
Abstract
The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements.
Collapse
Affiliation(s)
- Francisco Gilberto Oliveira
- Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri - URCA, Crato, CE, Brazil; Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Expedito Silva do Nascimento-Júnior
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Judney Cley Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Fausto Pierdoná Guzen
- Faculdade de Ciências da Saúde, Departamento de Ciências Biomédicas, Universidade do Estado do Rio Grande do Norte - UERN, Mossoró, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil; Departamento de Fisiologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Joacil Germano Soares
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | - Leandro Moura de Freitas
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Miriam Stela Maris de Oliveira Costa
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | |
Collapse
|
5
|
Retinal projections into the Zona Incerta of the rock cavy (Kerodon rupestris): A CTb study. Neurosci Res 2014; 89:75-80. [DOI: 10.1016/j.neures.2014.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
|
6
|
de Medeiros Silva A, de Santana MAD, de Góis Morais PLA, de Sousa TB, Januário Engelberth RCG, de Souza Lucena EE, Campêlo CLDC, Sousa Cavalcante J, Cavalcante JC, de Oliveira Costa MSM, Nascimento ESD. Serotonergic fibers distribution in the midline and intralaminar thalamic nuclei in the rock cavy (Kerodon rupestris). Brain Res 2014; 1586:99-108. [DOI: 10.1016/j.brainres.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 12/19/2022]
|
7
|
Cavalcanti JR, Soares JG, Oliveira FG, Guzen FP, Pontes AL, Sousa TB, Cavalcante JS, Nascimento ES, Cavalcante JC, Costa MS. A cytoarchitectonic and TH-immunohistochemistry characterization of the dopamine cell groups in the substantia nigra, ventral tegmental area and retrorubral field in the rock cavy (Kerodon rupestris). J Chem Neuroanat 2014; 55:58-66. [DOI: 10.1016/j.jchemneu.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/05/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
|
8
|
Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 2013; 111:34-52. [PMID: 24025745 PMCID: PMC4975011 DOI: 10.1016/j.pneurobio.2013.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 12/17/2022]
Abstract
The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behavior related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioral evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the effects of a stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and behavioral flexibility, in addition to general behavior and aspects of metabolism.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie, Neuropôle de Strasbourg GDR 2905 du CNRS, 12 rue Goethe, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
9
|
de Sousa TB, de Santana MAD, Silva ADM, Guzen FP, Oliveira FG, Cavalcante JC, Cavalcante JDS, Costa MSMO, Nascimento ESD. Mediodorsal thalamic nucleus receives a direct retinal input in marmoset monkey (Callithrix jacchus): a subunit B cholera toxin study. Ann Anat 2012; 195:32-8. [PMID: 22726524 DOI: 10.1016/j.aanat.2012.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/06/2012] [Accepted: 04/04/2012] [Indexed: 01/23/2023]
Abstract
The mediodorsal thalamic nucleus is a prominent nucleus in the thalamus, positioned lateral to the midline nuclei and medial to the intralaminar thalamic complex in the dorsal thalamus. Several studies identify the mediodorsal thalamic nucleus as a key structure in learning and memory, as well as in emotional mechanisms and alertness due to reciprocal connections with the limbic system and prefrontal cortex. Fibers from the retina to the mediodorsal thalamic nucleus have recently been described for the first time in a crepuscular rodent, suggesting a possible regulation of the mediodorsal thalamic nucleus by visual activity. The present study shows retinal afferents in the mediodorsal thalamic nucleus of a new world primate, the marmoset (Callithrix jacchus), using B subunit of cholera toxin (CTb) as an anterograde tracer. A small population of labeled retinofugal axonal arborizations is consistently labeled in small domains of the medial and lateral periphery of the caudal half of the mediodorsal nucleus. Retinal projections in the mediodorsal thalamic nucleus are exclusively contralateral and the morphology of the afferent endings was examined. Although the functional significance of this projection remains unknown, this retina-mediodorsal thalamic nucleus pathway may be involved in a wide possibility of functional implications.
Collapse
Affiliation(s)
- Twyla Barros de Sousa
- Department of Morphology/Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, RN, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Retinal projections and neurochemical characterization of the pregeniculate nucleus of the common marmoset (Callithrix jacchus). J Chem Neuroanat 2012; 44:34-44. [PMID: 22531294 DOI: 10.1016/j.jchemneu.2012.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 04/07/2012] [Indexed: 11/23/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN is the site of the endogenous biological clock that generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity and is responsible for the transmission of non-photic information to the SCN, thus participating in the integration between photic and non-photic stimuli. Both the SCN and IGL receive projections of retinal ganglion cells and the IGL is connected to the SCN through the geniculohypothalamic tract. Little is known about these structures in the primate brain and the pregeniculate nucleus (PGN) has been suggested to be the primate equivalent of the rodent IGL. The aim of this study was to characterize the PGN of a primate, the common marmoset (Callithrix jacchus), and to analyze its retinal afferents. Here, the marmoset PGN was found to be organized into three subsectors based on neuronal size, pattern of retinal projections, and the distribution of neuropeptide Y-, GAD-, serotonin-, enkephalin- and substance P-labeled terminals. This pattern indicates that the marmoset PGN is equivalent to the IGL. This detailed description contributes to the understanding of the circadian timing system in this primate species considering the importance of the IGL within the context of circadian regulation.
Collapse
|