1
|
Bhatnagar D, Bushman JS, Murthy NS, Merolli A, Kaplan HM, Kohn J. Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:79. [PMID: 28389905 PMCID: PMC5384961 DOI: 10.1007/s10856-017-5889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repair, as a tissue sealant, filler and drug-delivery matrix. Here, we compared the performance of FG to an alternative, hyaluronic acid (HA) as a coating for porous conduits, using uncoated porous conduits and reverse autografts as control groups. The uncoated conduit walls had pores with a diameter of 60 to 70 µm that were uniformly covered by either FG or HA coatings. In vitro, FG coatings degraded twice as fast as HA coatings. In vivo studies in a 1 cm rat sciatic nerve model showed FG coating resulted in poor axonal density (993 ± 854 #/mm2), negligible fascicular area (0.03 ± 0.04 mm2), minimal percent wet muscle mass recovery (16 ± 1 in gastrocnemius and 15 ± 5 in tibialis anterior) and G-ratio (0.73 ± 0.01). Histology of FG-coated conduits showed excessive fibrous tissue infiltration inside the lumen, and fibrin capsule formation around the conduit. Although FG has been shown to promote nerve regeneration in non-porous conduits, we found that as a coating for porous conduits in vivo, FG encourages scar tissue infiltration that impedes nerve regeneration. This is a significant finding considering the widespread use of FG in peripheral nerve repair.
Collapse
Affiliation(s)
- Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jared S Bushman
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
- School of Pharmacy, University of Wyoming, 1000 E University Ave Dept. 3375, Laramie, WY, 82071, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
3
|
Li HF, Wang YR, Huo HP, Wang YX, Tang J. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury. Neural Regen Res 2016; 10:1846-55. [PMID: 26807123 PMCID: PMC4705800 DOI: 10.4103/1673-5374.170315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.
Collapse
Affiliation(s)
- Hong-Fei Li
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yi-Ru Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hui-Ping Huo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yue-Xiang Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
5
|
Jiang CQ, Hu J, Xiang JP, Zhu JK, Liu XL, Luo P. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: similar outcomes to autologous nerve grafts. Neural Regen Res 2016; 11:1845-1850. [PMID: 28123431 PMCID: PMC5204243 DOI: 10.4103/1673-5374.194757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomorphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft.
Collapse
Affiliation(s)
- Chang-Qing Jiang
- Department of Sports Medicine and Rehabilitation, Peking Universtiy Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Hu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Ping Xiang
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-Kai Zhu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peng Luo
- The Sixth People's Hospital of Shenzhen City, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Schaakxs D, Kalbermatten DF, Pralong E, Raffoul W, Wiberg M, Kingham PJ. Poly-3-hydroxybutyrate strips seeded with regenerative cells are effective promoters of peripheral nerve repair. J Tissue Eng Regen Med 2015; 11:812-821. [DOI: 10.1002/term.1980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 08/17/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Dominique Schaakxs
- Department of Integrative Medical Biology; Umeå University; Sweden
- Division of Plastic, Reconstructive and Aesthetic Surgery, CHUV; University Hospital of Lausanne; Switzerland
| | - Daniel F. Kalbermatten
- Department of Plastic, Reconstructive and Aesthetic Surgery; University Hospital of Basel; Switzerland
| | - Etienne Pralong
- Department of Neurosurgery; University Hospital of Lausanne; Switzerland
| | - Wassim Raffoul
- Division of Plastic, Reconstructive and Aesthetic Surgery, CHUV; University Hospital of Lausanne; Switzerland
| | - Mikael Wiberg
- Department of Integrative Medical Biology; Umeå University; Sweden
- Department of Surgical and Perioperative Sciences; Umeå University; Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology; Umeå University; Sweden
| |
Collapse
|
7
|
Hundepool CA, Nijhuis THJ, Mohseny B, Selles RW, Hovius SER. The effect of stem cells in bridging peripheral nerve defects: a meta-analysis. J Neurosurg 2014; 121:195-209. [PMID: 24816327 DOI: 10.3171/2014.4.jns131260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED OBJECT.: For decades the gold standard for reconstructing a large peripheral nerve defect has been, and remains, the nerve autograft. Alternatives to the nerve autograft include biological conduits and vessels. Adding stem cells in the lumen of a nerve conduit has been the subject of multiple studies. The purpose of the present meta-analysis was to summarize animal experimental studies on the effect of stem cells as a luminal additive when reconstructing a peripheral nerve defect with a nerve graft. METHODS A literature search of the MEDLINE and Embase databases was performed from inception to April 2012, searching for animal experiments on peripheral nerve reconstruction models in which a nerve conduit was used with and without the support of 3 different types of stem cells. Stem cells were analyzed according to their origin: bone marrow, adipose tissue, and other origins. Included studies had consistent outcome measurements: walking track analysis, muscle mass ratio, and electrophysiology. RESULTS Forty-four studies were included in the final analysis. Forest plots of the 3 outcome measurements (walking track analysis, muscle mass ratio, and electrophysiology) showed positive effects of stem cells on the regeneration of peripheral nerves at different time points. Almost all comparisons showed significant differences for all 3 stem cells groups compared with a control group in which stem cells were not used. CONCLUSIONS The present report systematically analyzed the different studies that used stem cells as a luminal additive when bridging a large peripheral nerve defect. All 3 different stem cell groups showed a beneficial effect when used in the reconstruction compared with control groups in which stem cells were not used.
Collapse
|
8
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Choi JS, Oh SH, An HY, Kim YM, Lee JH, Lim JY. Functional regeneration of recurrent laryngeal nerve injury during thyroid surgery using an asymmetrically porous nerve guide conduit in an animal model. Thyroid 2014; 24:52-9. [PMID: 24015805 PMCID: PMC3887462 DOI: 10.1089/thy.2013.0338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Vocal cord paralysis (VCP) caused by recurrent laryngeal nerve (RLN) damage during thyroidectomy commonly results in serious medico-legal problems. The purpose of this study was to evaluate the usefulness of an asymmetrically porous polycaprolactone (PCL)/Pluronic F127 nerve guide conduit (NGC) for functional regeneration in a RLN injury animal model. METHODS A biodegradable, asymmetrically porous PCL/F127 NGC with selective permeability was fabricated for use in this study. A 10-mm segment of left RLN was resected in 28 New Zealand white rabbits, and then an asymmetrically porous NGC or a nonporous silicone tube was interposed between both stumps and securely fixed. Vocal cord mobility was endoscopically evaluated at one, four, and eight weeks postoperatively. Nerve growth through NGCs was assessed by toluidine blue staining, and thyroarytenoid (TA) muscle atrophy was evaluated by hematoxylin and eosin staining. Immunohistochemical stainings for acetylcholinesterase (AchE), anti-neurofilament (NF), and anti-S100 protein were also conducted, and transmission electron microscopy (TEM) was used to evaluate functional nerve regeneration. RESULTS At eight weeks postoperatively, endoscopic evaluations showed significantly better recovery from VCP in the asymmetrically porous PCL/F127 NGC group (6 of 10 rabbits) than in the silicone tube group (1 of 10 rabbits). Continued nerve growth on the damaged nerve endings was observed with time in the asymmetrically porous PCL/F127 NGC-interposed RLNs. TA muscle dimensions and AchE expressions in TA muscle were significantly greater in the asymmetrically porous PCL/F127 NGC group than in the silicone tube group. Furthermore, immunohistochemical staining revealed the expression of NF and S100 protein in the regenerated nerves in the asymmetrically porous PCL/F127 NGC group at eight weeks postoperatively, and at this time, TEM imaging showed myelinated axons in the regenerated RLNs. CONCLUSION The study shows that asymmetrically porous PCL/F127 NGC provides a favorable environment for RLN regeneration and that it has therapeutic potential for the regeneration of RLN damage.
Collapse
Affiliation(s)
- Jeong-Seok Choi
- Department of Otorhinolaryngology–Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan, Republic of Korea
| | - Hye-Young An
- Department of Otorhinolaryngology–Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology–Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology–Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
10
|
Tremp M, Meyer Zu Schwabedissen M, Kappos EA, Engels PE, Fischmann A, Scherberich A, Schaefer DJ, Kalbermatten DF. The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transplant 2013; 24:203-11. [PMID: 24380629 DOI: 10.3727/096368913x676934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Traumatic nerve injuries are a major clinical challenge. Tissue engineering using a combination of nerve conduits and cell-based therapies represents a promising approach to nerve repair. The aim of this study was to examine the regeneration potential of human adipose-derived stem cells (hASCs) after transplantation in a nonautogenous setting and to compare them with autogenous rat ASCs (rASCs) for early peripheral nerve regeneration. Furthermore, the use of MRI to assess the continuous process of nerve regeneration was elaborated. The sciatic nerve injury model in female Sprague-Dawley rats was applied, and a 10-mm gap created by using a fibrin conduit seeded with the following cell types: rASCs, Schwann cell (SC)-like cells from rASC, rat SCs (rSCs), hASCs from the superficial and deep abdominal layer, as well as human stromal vascular fraction (1 × 10(6) cells). As a negative control group, culture medium only was used. After 2 weeks, nerve regeneration was assessed by immunocytochemistry. Furthermore, MRI was performed after 2 and 4 weeks to monitor nerve regeneration. Autogenous ASCs and SC-like cells led to accelerated peripheral nerve regeneration, whereas the human stem cell groups displayed inferior results. Nevertheless, positive trends could be observed for hASCs from the deep abdominal layer. By using a clinical 3T MRI scanner, we were able to visualize the graft as a small black outline and small hyperintensity indicating the regenerating axon front. Furthermore, a strong correlation was found between the length of the regenerating axon front measured by MRI and the length measured by immunocytochemistry (r = 0.74, p = 0.09). We successfully transplanted and compared human and autologous stem cells for peripheral nerve regeneration in a rat sciatic nerve injury model. Furthermore, we were able to implement the clinical 3T MRI scanner to monitor the efficacy of cellular therapy over time.
Collapse
Affiliation(s)
- Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Handsurgery, University of Basel Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li G, Zhang L, Wang C, Zhao X, Zhu C, Zheng Y, Wang Y, Zhao Y, Yang Y. Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydr Polym 2013; 101:718-26. [PMID: 24299831 DOI: 10.1016/j.carbpol.2013.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the feasibility of using 3-aminopropyltriethoxysilane (APTE) silanization treatment for modification and biocompatibility of lyophilized chitosan porous scaffolds. The process is beneficial for biomaterial development due to its low toxicity and simplicity. The silanization treatment with low APTE concentration showed no significant influence on the morphology of chitosan scaffolds, while a skin-like surface was observed for the silanized scaffolds treated with high APTE concentration. The porosity and surface amino densities were increased after silanization whereas the swelling ratio was reduced, and the degradation ratio in PBS and anti-acid degradation properties of the silanized chitosan scaffolds were significantly improved. The in vitro Schwann cells culture demonstrated that the silanized scaffolds with 8% APTE could obviously facilitate the attachment and proliferation of Schwann cells, indicating great potential for the application in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Guicai Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 2013; 544:125-30. [DOI: 10.1016/j.neulet.2013.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/09/2023]
|
13
|
Wang H, Zhao Q, Zhao W, Liu Q, Gu X, Yang Y. Repairing rat sciatic nerve injury by a nerve-growth-factor-loaded, chitosan-based nerve conduit. Biotechnol Appl Biochem 2012; 59:388-94. [PMID: 23586915 DOI: 10.1002/bab.1031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 01/19/2023]
Abstract
We have developed a nerve conduit made up of chitosan, on which nerve growth factor (NGF) was immobilized via genipin cross-linking. The nerve conduit was used to bridge a 10-mm-long sciatic nerve gap in rats. At 24 weeks after surgery, electrophysiological assessment, behavioral analysis, and histological examination were conducted to evaluate the outcomes of peripheral nerve repair. The nerve conduit allowed nerve reconstruction between two stumps and reinnervation of the target gastrocnemius muscle. For two groups of rats repaired respectively by the nerve conduit and autologous nerve graft, the density of regenerated axons was 3.55 ± 0.51 and 3.91 ± 0.14 (P = 0.712), and the cross-sectional area of target muscles was 1,159.68 ± 305.85 and 1,307.06 ± 301.25 (P = 0.922), respectively, without significant differences between the two groups. Our data suggest the feasibility of using chitosan-based, NGF-loaded nerve conduits for peripheral nerve repair.
Collapse
Affiliation(s)
- Hongkui Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Frattini F, Lopes FRP, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, Baptista AF, Melo PA, Martinez AMB. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng Part A 2012; 18:2030-9. [PMID: 22646222 DOI: 10.1089/ten.tea.2011.0496] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell marker. Our findings suggest that using a PCL tube filled with MSCs is a good strategy to improve nerve regeneration after a nerve transection in mice.
Collapse
Affiliation(s)
- Flávia Frattini
- Programa de Pesquisa em Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 2012; 519:103-14. [DOI: 10.1016/j.neulet.2012.02.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/22/2022]
|
16
|
Bell JHA, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:116-28. [PMID: 22010760 DOI: 10.1089/ten.teb.2011.0498] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve guides are increasingly being used surgically to repair acute peripheral nerve injuries. This is not only due to an increase in the number of commercially available devices, but also clinical acceptance. However, regeneration distance is typically limited to 20-25 mm, in part due to the basic tubular design. A number of experimental studies have shown improvements in nerve regeneration distance when conduits incorporate coatings, internal scaffolds, topographical cues, or the delivery of support cells. Current studies on designing nerve guides for maximizing nerve regeneration focus both on cell-containing and cell-free devices, the latter being clinically attractive as "off the shelf" products. Arguably better results are obtained when conduits are used in conjunction with support cells (e.g., Schwann cells or stem cells) that can improve regeneration distance and speed of repair, and provide informative experimental data on how Schwann and neuronal cells respond in regenerating injured nerves. In this review we discuss the range of current nerve guides commercially available and appraise experimental studies in the context of the future design of nerve guides for clinical use.
Collapse
Affiliation(s)
- Juliet H A Bell
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|