Tinkov AA, Skalnaya MG, Skalny AV. Serum trace element and amino acid profile in children with cerebral palsy.
J Trace Elem Med Biol 2021;
64:126685. [PMID:
33249374 DOI:
10.1016/j.jtemb.2020.126685]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND
The existing data demonstrate that both trace elements and amino acids play a significant role in neurodevelopment and brain functioning. Certain studies have demonstrated alteration of micronutrient status in children with cerebral palsy, although multiple inconsistencies exist.
THE OBJECTIVE
of the present study was to assess serum trace element and mineral, as well as amino acid levels in children with cerebral palsy.
METHODS
71 children with cerebral palsy (39 boys and 32 girls, 5.7 ± 2.3 y.o.) and 84 healthy children (51 boys and 33 girls, 5.4 ± 2.3 y.o.) were enrolled in the present study. Serum trace element and mineral levels were assessed using inductively-coupled plasma mass-spectrometry (ICP-MS). Amino acid profile was evaluated by means of high-pressure liquid chromatography (HPLC).
RESULTS
Children with cerebral palsy are characterized by significantly lower Cu and Zn levels by 6% and 8%, whereas serum I concentration exceeded the control values by 7%. A tendency to increased serum Mn and Se levels was also observed in patients with cerebral palsy. Serum citrulline, leucine, tyrosine, and valine levels were 15 %, 23 %, 15 %, and 11 % lower than those in healthy controls. Nearly twofold lower levels of serum proline were accompanied by a 44 % elevation of hydroxyproline concentrations when compared to the control values. In multiple regression model serum I, Zn, and hydroxyproline levels were found to be independently associated with the presence of cerebral palsy. Correlation analysis demonstrated a significant correlation between Cu, Mn, Se, I, and Zn levels with hydroxyproline and citrulline concentrations.
CONCLUSION
The observed alterations in trace element and amino acid metabolism may contribute to neurological deterioration in cerebral palsy. However, the cross-sectional design of the study does not allow to estimate the causal trilateral relationships between cerebral palsy, altered trace element, and amino acid metabolism.
Collapse