1
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Zhang N, Zhao S, Ma Y, Xiao Z, Xue B, Dong Y, Wang Q, Xu H, Zhang X, Wang Y. Hyperexcitation of ovBNST CRF neurons during stress contributes to female-biased expression of anxiety-like avoidance behaviors. SCIENCE ADVANCES 2024; 10:eadk7636. [PMID: 38728397 PMCID: PMC11086623 DOI: 10.1126/sciadv.adk7636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Sha Zhao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yanqiao Ma
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bao Xue
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yuan Dong
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huamin Xu
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato T, Sakimura K, Itoi K. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differ 2019; 10:6. [PMID: 30691514 PMCID: PMC6350317 DOI: 10.1186/s13293-019-0221-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background The bed nucleus of the stria terminalis (BNST) contains the highest density of corticotropin-releasing factor (CRF)-producing neurons in the brain. CRF-immunoreactive neurons show a female-biased sexual dimorphism in the dorsolateral BNST in the rat. Since CRF neurons cannot be immunostained clearly with available CRF antibodies in the mouse, we used a mouse line, in which modified yellow fluorescent protein (Venus) was inserted to the CRF gene, and the Neo cassette was removed, to examine the morphological characteristics of CRF neurons in the dorsolateral BNST. Developmental changes of CRF neurons were examined from postnatal stages to adulthood. Gonadectomy (GDX) was carried out in adult male and female mice to examine the effects of sex steroids on the number of CRF neurons in the dorsolateral BNST. Methods The number of Venus-expressing neurons, stained by immunofluorescence, was compared between male and female mice over the course of development. GDX was carried out in adult mice. Immunohistochemistry, in combination with Nissl staining, was carried out, and the effects of sex or gonadal steroids were examined by estimating the number of Venus-expressing neurons, as well as the total number of neurons or glial cells, in each BNST subnucleus, using a stereological method. Results Most Venus-expressing neurons co-expressed Crf mRNA in the dorsolateral BNST. They constitute a group of neurons without calbindin immunoreactivity, which makes a contrast to the principal nucleus of the BNST that is characterized by calbindin immunostaining. In the dorsolateral BNST, the number of Venus-expressing neurons increased across developmental stages until adulthood. Sexual difference in the number of Venus-expressing neurons was not evident by postnatal day 5. In adulthood, however, there was a significant female predominance in the number of Venus expressing neurons in two subnuclei of the dorsolateral BNST, i.e., the oval nucleus of the BNST (ovBNST) and the anterolateral BNST (alBNST). The number of Venus-expressing neurons was smaller significantly in ovariectomized females compared with proestrous females in either ovBNST or alBNST, and greater significantly in orchiectomized males compared with gonadally intact males in ovBNST. The total number of neurons was also greater significantly in females than in males in ovBNST and alBNST, but it was not affected by GDX. Conclusion Venus-expressing CRF neurons showed female-biased sexual dimorphism in ovBNST and alBNST of the mouse. Expression of Venus in these subnuclei was controlled by gonadal steroids.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| | - Hiroko Otsuka
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Masahiro Morishita
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Tsukahara
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| |
Collapse
|
5
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
6
|
Funabashi T, Sakakibara H, Hirahara F, Kimura F. Reduced Luteinizing Hormone Induction Following Estrogen and Progesterone Priming in Female-to-Male Transsexuals. Front Endocrinol (Lausanne) 2018; 9:212. [PMID: 29867755 PMCID: PMC5949340 DOI: 10.3389/fendo.2018.00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anatomical studies have suggested that one of the brain structures involved in gender identity is the bed nucleus of the stria terminalis, though this brain structure is probably not the only one to control gender identity. We hypothesized that, if this brain area also affected gonadotropin secretion in humans, transsexual individuals might produce different gonadotropin levels in response to exogenous stimulation. In the present study, we examined whether estrogen combined with progesterone might lead to a change in luteinizing hormone (LH) secretion in female-to-male (FTM) transsexual individuals. We studied female control subjects (n = 9), FTM transsexual subjects (n = 12), and male-to-female (MTF) transsexual subjects (n = 8). Ethinyl estradiol (50 μg/tablet) was administered orally, twice a day, for five consecutive days. After the first blood sampling, progesterone (12.5 mg) was injected intramuscularly. Plasma LH was measured with an immunoradiometric assay. The combination of estrogen and progesterone resulted in increased LH secretion in female control subjects and in MTF subjects, but this increase appeared to be attenuated in FTM transsexual subjects. In fact, the %LH response was significantly reduced in FTM subjects (P < 0.05), but not in MTF subjects (P > 0.5), compared to female control subjects. In addition, the peak time after progesterone injection was significantly delayed in FTM subjects (P < 0.05), but not in MTF subjects (P > 0.5), compared to female control subjects. We then compared subjects according to whether the combination of estrogen and progesterone had a positive (more than 200% increase) or negative (less than 200% increase) effect on LH secretion. A χ2 analysis revealed significantly different (P < 0.05) effects on LH secretion between female controls (positive n = 7, negative n = 2) and FTM transsexual subjects (positive n = 4, negative n = 8), but not between female controls and MTF transsexual subjects (positive n = 7, negative n = 1). Thus, LH secretion in response to estrogen- and progesterone priming was attenuated in FTM subjects, but not in MTF subjects, compared to control females. This finding suggested that the brain area related to gender identity in morphological studies might also be involved in the LH secretory response in humans. Thus, altered brain morphology might be correlated to altered function in FTM transsexuals.
Collapse
Affiliation(s)
- Toshiya Funabashi
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
- *Correspondence: Toshiya Funabashi,
| | - Hideya Sakakibara
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Gynecology, Yokohama City University Medical Center, Yokohama, Japan
| | - Fumiki Hirahara
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Fukuko Kimura
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
- Tanaka Clinic Yokohama-Koen, Yokohama, Japan
| |
Collapse
|
7
|
Ponti G, Rodriguez-Gomez A, Farinetti A, Marraudino M, Filice F, Foglio B, Sciacca G, Panzica GC, Gotti S. Early postnatal genistein administration permanently affects nitrergic and vasopressinergic systems in a sex-specific way. Neuroscience 2017; 346:203-215. [PMID: 28131623 DOI: 10.1016/j.neuroscience.2017.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/01/2022]
Abstract
Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. In the present study, we have used a different experimental protocol mimicking, in mice, the direct precocious exposure to GEN. Mice pups of both sexes were fed either with oil, estradiol or GEN from birth to postnatal day 8. Nitric oxide synthase and vasopressin neural systems were analyzed in adult mice. Interestingly, we observed that GEN effect was time specific (when compared to our previous study), sex specific, and not always comparable to the effects of estradiol. This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.
Collapse
Affiliation(s)
- G Ponti
- Department of Veterinary Sciences, Largo Braccini 2, 10095 Grugliasco (TO), University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy.
| | - A Rodriguez-Gomez
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - A Farinetti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - F Filice
- Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - B Foglio
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G Sciacca
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| |
Collapse
|
8
|
Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 2016; 21:450-63. [PMID: 26878891 PMCID: PMC4804181 DOI: 10.1038/mp.2016.1] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a center of integration for limbic information and valence monitoring. The BNST, sometimes referred to as the extended amygdala, is located in the basal forebrain and is a sexually dimorphic structure made up of between 12 and 18 sub-nuclei. These sub-nuclei are rich with distinct neuronal subpopulations of receptors, neurotransmitters, transporters and proteins. The BNST is important in a range of behaviors such as: the stress response, extended duration fear states and social behavior, all crucial determinants of dysfunction in human psychiatric diseases. Most research on stress and psychiatric diseases has focused on the amygdala, which regulates immediate responses to fear. However, the BNST, and not the amygdala, is the center of the psychogenic circuit from the hippocampus to the paraventricular nucleus. This circuit is important in the stimulation of the hypothalamic-pituitary-adrenal axis. Thus, the BNST has been largely overlooked with respect to its possible dysregulation in mood and anxiety disorders, social dysfunction and psychological trauma, all of which have clear gender disparities. In this review, we will look in-depth at the anatomy and projections of the BNST, and provide an overview of the current literature on the relevance of BNST dysregulation in psychiatric diseases.
Collapse
Affiliation(s)
- M A Lebow
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Maekawa F, Tsukahara S, Kawashima T, Nohara K, Ohki-Hamazaki H. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes. Front Neurosci 2014; 8:242. [PMID: 25177264 PMCID: PMC4132582 DOI: 10.3389/fnins.2014.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022] Open
Abstract
From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.
Collapse
Affiliation(s)
- Fumihiko Maekawa
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies Tsukuba, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Takaharu Kawashima
- Ecological Genetics Research Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies Tsukuba, Japan
| | - Keiko Nohara
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies Tsukuba, Japan
| | | |
Collapse
|