1
|
Chang J, Yin XM, Zhang M, Liu JW, Zhao L. Bridging bioengineering and nanotechnology: Bone marrow derived mesenchymal stem cell-exosome solutions for peripheral nerve injury. World J Stem Cells 2025; 17:101161. [PMID: 39866899 PMCID: PMC11752453 DOI: 10.4252/wjsc.v17.i1.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs. BMSCs-derived exosomes (Exos) are considered as a promising cell-free nanomedicine for PNI, avoiding the ethical issues of BMSCs. Exos in combination with bioengineering therapeutics (including extracellular matrix, hydrogel) brings new hope for PNI, provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile, significantly increases expression of neurotrophic factors, promotes axonal and myelin regeneration, and demonstrates a strong potential to enhance neurogenesis. Therefore, engineered Exos exhibit better properties, such as stronger targeting and more beneficial components. This article briefly describes the role of nanotechnology and bioengineering therapies for BMSCs in PNI, proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiu-Mei Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Man Zhang
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian-Wei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. Int J Mol Sci 2024; 25:7882. [PMID: 39063125 PMCID: PMC11277195 DOI: 10.3390/ijms25147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Peripheral nerve injury (PNI) is a complex and protracted process, and existing therapeutic approaches struggle to achieve effective nerve regeneration. Recent studies have shown that mesenchymal stem cells (MSCs) may be a pivotal choice for treating peripheral nerve injury. MSCs possess robust paracrine capabilities, and exosomes, as the primary secretome of MSCs, are considered crucial regulatory mediators involved in peripheral nerve regeneration. Exosomes, as nanocarriers, can transport various endogenous or exogenous bioactive substances to recipient cells, thereby promoting vascular and axonal regeneration while suppressing inflammation and pain. In this review, we summarize the mechanistic roles of exosomes derived from MSCs in peripheral nerve regeneration, discuss the engineering strategies for MSC-derived exosomes to improve therapeutic potential, and explore the combined effects of MSC-derived exosomes with biomaterials (nerve conduits, hydrogels) in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Fengshi Zhang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
3
|
Liu YM, Wang HY, Wei CH, Li JP, Wang Y, Ma WZ, Jia H. Exploring miR-21 as a key regulator in two distinct approaches of bone marrow stromal cells differentiation into Schwann-like cells. Synapse 2024; 78:e22293. [PMID: 38779935 DOI: 10.1002/syn.22293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The differentiation of bone marrow stromal cells (BMSCs) into Schwann-like cells (SCLCs) has the potential to promote the structural and functional restoration of injured axons. However, the optimal induction protocol and its underlying mechanisms remain unclear. This study aimed to compare the effectiveness of different induction protocols in promoting the differentiation of rat BMSCs into SCLCs and to explore their potential mechanisms. BMSCs were induced using two distinct methods: a composite factor induction approach (Protocol-1) and a conditioned culture medium induction approach (Protocol-2). The expression of Schwann cells (SCs) marker proteins and neurotrophic factors (NTFs) in the differentiated cells was assessed. Cell proliferation and apoptosis were also measured. During induction, changes in miR-21 and Sprouty RTK signaling antagonist 2 (SPRY2) mRNA were analyzed. Following the transfection of BMSCs with miR-21 agomir or miR-21 antagomir, induction was carried out using both protocols, and the expression of SPRY2, ERK1/2, and SCs marker proteins was examined. The results revealed that NTFs expression was higher in Protocol-1, whereas SCs marker proteins expression did not significantly differ between the two groups. Compared to Protocol-1, Protocol-2 exhibited enhanced cell proliferation and fewer apoptotic and necrotic cells. Both protocols showed a negative correlation between miR-21 and SPRY2 expression throughout the induction stages. After induction, the miR-21 agomir group exhibited reduced SPRY2 expression, increased ERK1/2 expression, and significantly elevated expression of SCs marker proteins. This study demonstrates that Protocol-1 yields higher NTFs expression, whereas Protocol-2 results in stronger SCLCs proliferation. Upregulating miR-21 suppresses SPRY2 expression, activates the ERK1/2 signaling pathway, and promotes BMSC differentiation into SCLCs.
Collapse
Affiliation(s)
- Yu-Mei Liu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - He-Ying Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Cai-Hong Wei
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jun-Ping Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Wen-Zhi Ma
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Yan X, Liu Y, Yu S, Huang D, Hu R. Repair Effects of Bone Marrow Mesenchymal Stem Cells on Demyelination of Trigeminal Ganglion in Rats with Trigeminal Neuralgia. J Pain Res 2022; 15:613-622. [PMID: 35250305 PMCID: PMC8894102 DOI: 10.2147/jpr.s347907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The current study investigated the effects of bone marrow mesenchymal stem cells (BMSCs) on pain behavior in rats with trigeminal neuralgia induced by infraorbital nerve chronic constriction injury (ION-CCI), and the repair effects of BMSCs on pathological changes in trigeminal ganglion demyelination. Methods BMSCs or phosphate-buffered saline (PBS) alone were injected around trigeminal ganglion in ION-CCI rats via a rat brain stereotaxic apparatus. Mechanical pain threshold (von Frey test) and face grooming behavior were measured in each group. Recovery of demyelination of trigeminal ganglion was observed via electron microscopy 2 weeks later, and BMSC differentiation was observed via immunofluorescence. Results Rats in the BMSC group exhibited significant improvements in mechanical pain threshold and face grooming behavior compared with the PBS group. BMSCs could repair demyelinating changes in trigeminal ganglion in ION-CCI rats. Only cells expressing GFAP, S-100, and p75 were observed via immunofluorescence, and no PKH67-labeled BMSCs were observed in the trigeminal ganglion. No BMSC differentiation was observed in the trigeminal ganglion. Conclusion Injection of BMSCs around the trigeminal ganglion could relieve trigeminal neuralgia effectively and repair trigeminal ganglion demyelination. No differentiation of BMSCs injected around the trigeminal ganglion into Schwann cells was observed. The mechanism of trigeminal neuralgia demyelination repair requires further investigation.
Collapse
Affiliation(s)
- Xuebin Yan
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yi Liu
- Department of Anesthesia, The First Hospital of Changsha, Changsha, People’s Republic of China
| | - Shanzi Yu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Correspondence: Rong Hu, Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China, Tel +86 18973162969, Email
| |
Collapse
|
5
|
Bojanic C, To K, Zhang B, Mak C, Khan WS. Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration. World J Stem Cells 2020; 12:288-302. [PMID: 32399137 PMCID: PMC7202926 DOI: 10.4252/wjsc.v12.i4.288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peripheral nerve injury can occur as a result of trauma or disease and carries significant morbidity including sensory and motor loss. The body has limited ability for nerve regeneration and functional recovery. Left untreated, nerve lesions can cause lifelong disability. Traditional treatment options such as neurorrhaphy and neurolysis have high failure rates. Surgical reconstruction with autograft carries donor site morbidity and often provide suboptimal results. Mesenchymal stem cells (MSCs) are known to have promising regenerative potential and have gained attention as a treatment option for nerve lesions. It is however, unclear whether it can be effectively used for nerve regeneration.
AIM To evaluate the evidence for the use of human umbilical cord derived MSCs (UCMSCs) in peripheral nerve regeneration.
METHODS We carried out a systematic literature review in accordance with the PRISMA protocol. A literature search was performed from conception to September 2019 using PubMed, EMBASE and Web of Science. The results of eligible studies were appraised. A risk of bias analysis was carried out using Cochrane’s RoB 2.0 tool.
RESULTS Fourteen studies were included in this review. A total of 279 subjects, including both human and animal were treated with UCMSCs. Four studies obtained UCMSCs from a third-party source and the remainder were harvested by the investigators. Out of the 14 studies, thirteen conducted xenogenic transplantation into nerve injury models. All studies reported significant improvement in nerve regeneration in the UCMSC treated groups compared with the various different controls and untreated groups.
CONCLUSION The evidence summarised in this PRISMA systematic review of in vivo studies supports the notion that human UCMSC transplantation is an effective treatment option for peripheral nerve injury.
Collapse
Affiliation(s)
- Christine Bojanic
- Department of Plastic and Reconstructive Surgery, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Kendrick To
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bridget Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Christopher Mak
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
6
|
Wang H, Jia Y, Li J, Liu Q. Schwann cell‑derived exosomes induce bone marrow‑derived mesenchymal stem cells to express Schwann cell markers in vitro. Mol Med Rep 2020; 21:1640-1646. [PMID: 32016464 DOI: 10.3892/mmr.2020.10960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/27/2019] [Indexed: 11/05/2022] Open
Abstract
Following peripheral nerve injury, factors in the local microenvironment can induce the differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) into Schwann cells; however, the specific factors that participate in this process remain unclear. The present study aimed to investigate the role of Schwann cell‑derived exosomes in the differentiation of BMSCs into Schwann cells. Exosomes were extracted from Schwann cells or fibroblasts and co‑cultured with BMSCs. The morphology, as well as gene and protein expressions of the BMSCs were measured to determine the effect of exosomes on cell differentiation. The levels of Schwann cell‑specific markers in BMSCs were significantly increased by Schwann cell‑derived exosomes compared with untreated BMSCs; however, fibroblast‑derived exosomes did not demonstrate the same effects. In conclusion, Schwann cell‑derived exosomes may be involved in the differentiation of BMSCs into Schwann cells, which may provide a novel target for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| | - Yanjun Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jiamou Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Qingsong Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| |
Collapse
|
7
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
8
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
9
|
Chan KM, Beveridge J, Webber CA. Adipose-derived stem cells: From mice to man. Muscle Nerve 2018; 58:186-188. [PMID: 29742793 DOI: 10.1002/mus.26154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- K Ming Chan
- Division of Physical Medicine and Rehabilitation, 5005, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.,Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Julie Beveridge
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
10
|
Pan M, Wang X, Chen Y, Cao S, Wen J, Wu G, Li Y, Li L, Qian C, Qin Z, Li Z, Tan D, Fan Z, Wu W, Guo J. Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves. Exp Neurol 2017; 292:92-101. [DOI: 10.1016/j.expneurol.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022]
|
11
|
Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect. Sci Rep 2017; 7:44002. [PMID: 28287100 PMCID: PMC5347120 DOI: 10.1038/srep44002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
In the current research, to find if the combination of chitosan nerve conduits seeded with autologous bone marrow mononuclear cells (BM-MNCs) can be used to bridge 30 mm long peroneal nerve defects in goats, 15 animals were separated into BM-MNC group (n = 5), vehicle group (n = 5), and autologous nerve graft group (n = 5). 12 months after the surgery, animals were evaluated by behavioral observation, magnetic resonance imaging tests, histomorphological and electrophysiological analysis. Results revealed that animals in BM-MNC group and autologous nerve graft group achieved fine functional recovery; magnetic resonance imaging tests and histomorphometry analysis showed that the nerve defect was bridged by myelinated nerve axons in those animals. No significant difference was found between the two groups concerning myelinated axon density, axon diameter, myelin sheath thickness and peroneal nerve action potential. Animals in vehicle group failed to achieve significant functional recovery. The results indicated that chitosan nerve conduits seeded with autologous bone marrow mononuclear cells have strong potential in bridging long peripheral nerve defects and could be applied in future clinical trials.
Collapse
|
12
|
Fu X, Tong Z, Li Q, Niu Q, Zhang Z, Tong X, Tong L, Zhang X. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep 2016; 14:1187-93. [PMID: 27279556 PMCID: PMC4940092 DOI: 10.3892/mmr.2016.5367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/21/2016] [Indexed: 01/05/2023] Open
Abstract
The peripheral nervous system has the potential for full regeneration following injury and recovery, predominantly controlled by Schwann cells (SCs). Therefore, obtaining a sufficient number of SCs in a short duration is crucial. In the present study, rat adipose-derived stem cells (ADSCs) were isolated and cultured, following which characterization of the ADSCs was performed using flow cytometry. The results showed that the cells were positive for the CD29 and CD44 markers, and negative for the CD31, CD45, CD49 and CD106 markers. The multilineage differentiation potential of the ADSCs was assayed by determining the ability of the cells to differentiate into osteoblasts and adipocytes. Following this, the ADSCs were treated with a specific medium and differentiated into Schwann-like cells. Immunofluorescence, western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that ~95% of the differentiated cells expressed glial fibrillary acidic protein, S100 and p75. In addition, the present study found that a substantial number of SCs can be produced in a short duration via the mitotic feature of Schwann-like cells. These data indicated that Schwann-like cells derived from ADSCs can undergo mitotic proliferation, which may be beneficial for the treatment of peripheral nerve injury in the future.
Collapse
Affiliation(s)
- Xiumei Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhaoxue Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qi Li
- Department of Hand Surgery, Affiliated Feng Tian Hospital, Shenyang Medical College, Shenyang, Liaoning 110001, P.R. China
| | - Qingfei Niu
- Department of Hand Surgery, Affiliated Feng Tian Hospital, Shenyang Medical College, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Zhang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojie Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xu Zhang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage. Plast Reconstr Surg 2016; 137:318e-330e. [PMID: 26818322 DOI: 10.1097/01.prs.0000475762.86580.36] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. METHODS Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. RESULTS The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. CONCLUSIONS Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.
Collapse
|
14
|
Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve. CELL JOURNAL 2016; 17:668-77. [PMID: 26862526 PMCID: PMC4746417 DOI: 10.22074/cellj.2016.3839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells
that have the ability to produce growth factors that play an important role in survival and
generation of axons. The goal of this study was to evaluate the effects of the two different
mesenchymal stem cells on peripheral nerve regeneration.
Materials and Methods In this experimental study, a 10 mm segment of the left sciatic
nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into
this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal
cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa-
rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was
evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo-
morphology of the gastrocnemius muscle was observed.
Results The nerve regeneration in the BMSCs and HUCSCs groups that had received
the stem cells was significantly more favorable than the control group. In addition, the BM-
SCs group was significantly more favorable than the HUCSCs group (P<0.05).
Conclusion The results of this study suggest that both homograft BMSCs and het-
erograft HUCSCs may have the potential to regenerate peripheral nerve injury and
transplantation of BMSCs may be more effective than HUCSCs in rat.
Collapse
Affiliation(s)
- Sam Zarbakhsh
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Goudarzi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
Widgerow AD, Salibian AA, Lalezari S, Evans GRD. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J Neurosci Res 2013; 91:1517-24. [PMID: 24105674 DOI: 10.1002/jnr.23284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/17/2022]
Abstract
Peripheral nerve injury requiring nerve gap reconstruction remains a major problem. In the quest to find an alternative to autogenous nerve graft procedures, attempts have been made to differentiate mesenchymal stem cells into neuronal lineages in vitro and utilize these cellular constructs for nerve regeneration. Unfortunately, this has produced mixed results, with no definitive procedure matching or surpassing traditional nerve grafting procedures. This review presents a different approach to nerve regeneration. The literature was reviewed to evaluate current methods of using adipose-derived stem cells (ADSCs) for peripheral nerve regeneration in in vivo models of animal peripheral nerve injury. The authors present cited evidence for directing nerve regeneration through paracrine effects of ADSCs rather than through in vitro nerve regeneration. The paracrine effects rely mainly, but not solely, on the elaboration of nerve growth factors and neurotrophic mediators that influence surrounding host cells to orchestrate in vivo nerve regeneration. Although this paradigm has been indirectly referred to in a host of publications, few major efforts for this type of neuromodulatory nerve regeneration have been forthcoming. The ADSCs are initially "primed" in vitro using specialized controlled medium (not for neuronal differentiation but for sustainability) and then incorporated into a hydrogel base matrix designed for this purpose. This core matrix is then introduced into a natural collagen-based nerve conduit. The prototype design concepts, evidence for paracrine influences, and regulatory hurdles that are avoided using this approach are discussed.
Collapse
Affiliation(s)
- Alan D Widgerow
- Institute of Aesthetic and Plastic Surgery, University of California Irvine, Irvine, California
| | | | | | | |
Collapse
|