1
|
Tsuchiya T, Kim SY, Matsuda M, Kim J, Stotland A, Naiki M, Seki E. Repurposing of the analgesic Neurotropin for MASLD/MASH treatment. Hepatol Commun 2024; 8:e0480. [PMID: 39023282 PMCID: PMC11262822 DOI: 10.1097/hc9.0000000000000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased in recent decades. Approximately 25% of patients with MASLD progress to metabolic dysfunction-associated steatohepatitis, which is characterized by hepatic steatosis plus hepatocyte damage, inflammation, and fibrosis. We previously reported that Neurotropin (NTP), a drug used for relieving pain in Japan and China, inhibits lipid accumulation in hepatocytes by preventing mitochondrial dysfunction. We hypothesized that inhibiting hepatic steatosis and inflammation by NTP can be an effective strategy for treating MASLD and tested this hypothesis in a MASLD mouse model. METHODS Six-week-old C57BL/6NJ male mice were fed a normal diet and normal drinking water or a high-fat diet with high fructose/glucose water for 12 weeks. During the last 6 weeks, the mice were also given high-dose NTP, low-dose NTP, or control treatment. Histologic, biochemical, and functional tests were conducted. MitoPlex, a new proteomic platform, was used to measure mitochondrial proteins, as mitochondrial dysfunction was previously reported to be associated with MASLD progression. RESULTS NTP inhibited the development of hepatic steatosis, injury, inflammation, and fibrosis induced by feeding a high-fat diet plus high fructose/glucose in drinking water. NTP also inhibited HSC activation. MitoPlex analysis revealed that NTP upregulated the expression of mitochondrial proteins related to oxidative phosphorylation, the tricarboxylic acid cycle, mitochondrial dynamics, and fatty acid transport. CONCLUSIONS Our results indicate that NTP prevents the development of hepatic steatosis, injury, and inflammation by preserving mitochondrial function in the liver and inhibits liver fibrosis by suppressing HSC activation. Thus, repurposing NTP may be a beneficial option for treating MASLD/metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Takashi Tsuchiya
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - So Yeon Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michitaka Matsuda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jieun Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexsandr Stotland
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Company Ltd., Osaka, Japan
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Iwahashi T, Suzuki K, Tanaka H, Matsuoka H, Nishimoto S, Hirai Y, Kasuya T, Shimada T, Yoshimura Y, Oka K, Murase T, Okada S. Neurotropin® accelerates peripheral nerve regeneration in a rat sciatic nerve crush injury model. J Orthop Sci 2024; 29:653-659. [PMID: 36858838 DOI: 10.1016/j.jos.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Peripheral nerve injuries are common and serious conditions. The effect of Neurotropin® (NTP), a nonprotein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, on peripheral nerve regeneration has not been fully elucidated. However, it has analgesic properties via the activation of descending pain inhibitory systems. Therefore, the current study aimed to determine the effects of NTP on peripheral nerve regeneration. METHODS We examined axonal outgrowth of dorsal root ganglion (DRG) neurons using immunocytochemistry in vitro. In addition, nerve regeneration was evaluated functionally, electrophysiologically, and histologically in a rat sciatic nerve crush injury model in vivo. Furthermore, gene expression of neurotrophic factors in the injured sciatic nerves and DRGs was evaluated. RESULTS In the dorsal root ganglion neurons in vitro, NTP promoted axonal outgrowth at a concentration of 10 mNU/mL. Moreover, the systemic administration of NTP contributed to the recovery of motor and sensory function at 2 weeks, and of sensory function, nerve conduction velocity, terminal latency, and axon-remyelination 4 weeks after sciatic nerve injury. In the gene expression assessment, insulin-like growth factor 1 and vascular endothelial growth factor expressions were increased in the injured sciatic nerve 2 days postoperatively. CONCLUSIONS Therefore, NTP might be effective in not only treating chronic pain but also promoting peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Sports Medical Science, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Itami City Hospital, Hyogo, 664-8540, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Yukio Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Abe R, Ohzono H, Gotoh M, Nakamura Y, Honda H, Nakamura H, Kume S, Okawa T, Shiba N. Neurotropin protects rotator cuff tendon cells from lidocaine-induced cell death. Clin Shoulder Elb 2021; 24:224-230. [PMID: 34875729 PMCID: PMC8651596 DOI: 10.5397/cise.2021.00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Local anesthetics often are used in rotator cuff tears as therapeutic tools, although some cases have reported that they have detrimental effects. Neurotropin (NTP) is used widely in Japan as a treatment for various chronic pain conditions and is shown to have protective effects on cartilage and nerve cells. In this study, we investigated the protective effect of NTP against lidocaine-induced cytotoxicity. Methods Tenocytes from rotator cuff tendons were incubated with lidocaine, NTP, lidocaine with NTP, and a control medium. Cell viability was evaluated using the WST-8 assay. Cell apoptosis was detected via annexin V staining using flow cytometry. The expression of BCL-2 and cytochrome c, which are involved in the intrinsic mitochondrial pathway of apoptosis, was evaluated via Western blotting and immunohistochemical staining. Results In the cell viability assay, lidocaine decreased cell viability in a dose-dependent manner, and NTP did not affect cell viability. Moreover, NTP significantly inhibited the cytotoxic effect of lidocaine. The flow cytometry analysis showed that lidocaine significantly induced apoptosis in tenocytes, and NTP considerably inhibited this lidocaine-induced apoptosis. Western blotting experiments showed that lidocaine decreased the protein expression of BCL-2, and that NTP conserved the expression of BCL-2, even when used with lidocaine. Immunohistochemical staining for cytochrome c showed that 0.1% lidocaine increased cytochrome c-positive cells, and NTP suppressed lidocaine-induced cytochrome c expression. Conclusions NTP suppresses lidocaine-induced apoptosis of tenocytes by inhibiting the mitochondrial apoptotic pathway. Intra-articular/ bursal injection of NTP with lidocaine could protect tenocytes in rotator cuff tendons against lidocaine-induced apoptosis.
Collapse
Affiliation(s)
- Ryunosuke Abe
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hiroki Ohzono
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Masafumi Gotoh
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Yosuke Nakamura
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hirokazu Honda
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hidehiro Nakamura
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Shinichiro Kume
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Takahiro Okawa
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| |
Collapse
|
4
|
Wang Q, Wang Z, Xu M, Tu W, Hsin IF, Stotland A, Kim JH, Liu P, Naiki M, Gottlieb RA, Seki E. Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Front Physiol 2020; 11:950. [PMID: 32848877 PMCID: PMC7424056 DOI: 10.3389/fphys.2020.00950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/14/2020] [Indexed: 11/27/2022] Open
Abstract
The accumulation of lipid droplets in the cytoplasm of hepatocytes, known as hepatic steatosis, is a hallmark of non-alcoholic fatty liver disease (NAFLD). Inhibiting hepatic steatosis is suggested to be a therapeutic strategy for NAFLD. The present study investigated the actions of Neurotropin (NTP), a drug used for chronic pain in Japan and China, on lipid accumulation in hepatocytes as a possible treatment for NAFLD. NTP inhibited lipid accumulation induced by palmitate and linoleate, the two major hepatotoxic free fatty acids found in NAFLD livers. An RNA sequencing analysis revealed that NTP altered the expression of mitochondrial genes. NTP ameliorated palmitate-and linoleate-induced mitochondrial dysfunction by reversing mitochondrial membrane potential, respiration, and β-oxidation, suppressing mitochondrial oxidative stress, and enhancing mitochondrial turnover. Moreover, NTP increased the phosphorylation of AMPK, a critical factor in the regulation of mitochondrial function, and induced PGC-1β expression. Inhibition of AMPK activity and PGC-1β expression diminished the anti-steatotic effect of NTP in hepatocytes. JNK inhibition could also be associated with NTP-mediated inhibition of lipid accumulation, but we did not find the association between AMPK and JNK. These results suggest that NTP inhibits lipid accumulation by maintaining mitochondrial function in hepatocytes via AMPK activation, or by inhibiting JNK.
Collapse
Affiliation(s)
- Qinglan Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mingyi Xu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Tu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aleksandr Stotland
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeong Han Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co., Ltd., Osaka, Japan
| | - Roberta A. Gottlieb
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines. J Orthop Translat 2020; 26:74-83. [PMID: 33437626 PMCID: PMC7773959 DOI: 10.1016/j.jot.2020.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background/objective Spinal cord injury (SCI) severely and irreversibly damages the central nervous system. Neurotropin (NTP), a nonprotein extract obtained from inflamed rabbit skin inoculated with vaccinia virus, is a drug that has been used for more than sixty years to alleviate neuropathic pain. It also reportedly exerts a neuroprotective role in peripheral nerves and in response to various central nervous system diseases, such as brain injury and Alzheimer disease. However, whether NTP promotes SCI recovery remains unknown. This study evaluated NTP's effects after SCI and explored its underlying mechanisms in a rat contusion model of SCI. Method NTP was intraperitoneally administered to adult female Wistar rats subjected to contusion-induced SCI. Functional recovery was evaluated with behavioural scores and electrophysiological examinations. Tissue recovery was assessed with magnetic resonance imaging as well as histological staining with haematoxylin and eosin and Luxol Fast Blue. Neuronal survival and gliosis were observed after NeuN and glial fibrillary acidic protein immunofluorescence. Levels of apoptosis were demonstrated with TdT-mediated dUTP nick-end labeling (TUNEL) staining, Caspase-3 and B-cell lymphoma-2 (Bcl-2) Western blot, and Annexin V/propidium iodide flow cytometry. A protein antibody chip analysis was performed to evaluate the expression levels of 67 rat cytokines. Results NTP treatment improved the hindlimb locomotor recovery of the injured animals as well as their electrophysiological outcomes after SCI. A dosage of 50 NTP units/kg was found to optimize the efficacy of NTP. Magnetic resonance imaging revealed that lesion sizes decreased after NTP treatment. The haematoxylin and eosin and Luxol Fast Blue staining showed significant increases in the amount of spared tissue. The NeuN and glial fibrillary acidic protein immunofluorescence revealed that NTP treatment increased neuronal survival and reduced gliosis in tissue samples obtained from the lesion's epicentre. That NTP inhibited apoptosis was confirmed by the decreased number of TUNEL-positive cells, level of Caspase-3 expression, and number of Annexin V/propidium iodide–positive cells, as well as the increased level of Bcl-2 expression. The protein array analysis identified 28 differentially expressed proteins in the NTP group, and the gene ontology (GO) analysis showed that the enriched differentially expressed proteins implicate janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathways. The expression levels of proinflammatory cytokines such as interleukin 6, thymus chemokine-1(TCK-1), and lipopolysaccharide-induced CXC chemokine (LIX) decreased after NTP treatment, whereas the levels of prorepair cytokine hepatocyte growth factor and adiponectin increased. Conclusion Our research provides evidence that NTP can improve functional outcomes and alleviate secondary injury after SCI by inhibiting apoptosis and modulating cytokines. The translational potential of this article The multicomponent NTP might have broad target spectra in SCI pathophysiology and halt the secondary injury cascade. As a safe drug that features sixty years of clinical use as an analgesic, translating this demonstrated efficacy of NTP to addressing SCI in human patients may potentially be accelerated.
Collapse
|
6
|
Sleigh JN, Tosolini AP, Schiavo G. In Vivo Imaging of Anterograde and Retrograde Axonal Transport in Rodent Peripheral Nerves. Methods Mol Biol 2020; 2143:271-292. [PMID: 32524487 PMCID: PMC7116510 DOI: 10.1007/978-1-0716-0585-1_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport, which is the process mediating the active shuttling of a variety cargoes from one end of an axon to the other, is essential for the development, function, and survival of neurons. Impairments in this dynamic process are linked to diverse nervous system diseases and advanced ageing. It is thus essential that we quantitatively study the kinetics of axonal transport to gain an improved understanding of neuropathology as well as the molecular and cellular mechanisms regulating cargo trafficking. One of the best ways to achieve this goal is by imaging individual, fluorescent cargoes in live systems and analyzing the kinetic properties of their progression along the axon. We have therefore developed an intravital technique to visualize different organelles, such as signaling endosomes and mitochondria, being actively transported in the axons of both motor and sensory neurons in live, anesthetized rodents. In this chapter, we provide step-by-step instructions on how to deliver specific organelle-targeting, fluorescent probes using several routes of administration to image individual cargoes being bidirectionally transported along axons within the exposed sciatic nerve. This method can provide detailed, physiologically relevant information on axonal transport, and is thus poised to elucidate mechanisms regulating this process in both health and disease.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
- UK Dementia Research Institute, University College London, London, UK.
- Discoveries Centre for Regenerative and Precision Medicine, University College London, London, UK.
| |
Collapse
|
7
|
Zhu M, Zhou F, Li L, Yin Q, Qiu M, Zhang Y. Success with neurotropin in treating pediatric lower extremity pain induced by spinal cord injury after epidural anesthesia. J Pain Res 2017; 10:1391-1394. [PMID: 28652804 PMCID: PMC5476653 DOI: 10.2147/jpr.s135037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spinal cord injury (SCI) complicated by epidural anesthesia, though rare, can result in neuropathic pain. However, the treatment for this kind of life-altering injury remains a challenge. A 7-year-old girl was referred with dyskinesia and severe pain in her right lower extremity due to an accidental SCI following lumbar puncture. After treatment with analgesics such as gabapentin, mecobalamin, and dexamethasone/methylprednisolone for 1 week, the myodynamia had improved, but progressive pain persisted. After treatment with neurotropin, a gradual decrease in visual analog scale score from 7 to 0 was observed. We herein first describe that neurotropin produced sustained relief of pain induced by SCI. This case suggests that neurotropin might be a promising drug in treating pediatric neuropathic pain caused by SCI.
Collapse
Affiliation(s)
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang
| | | | - Qin Yin
- Department of Pain Clinic, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | | | | |
Collapse
|
8
|
Nishimoto S, Okada K, Tanaka H, Okamoto M, Fujisawa H, Okada T, Naiki M, Murase T, Yoshikawa H. Neurotropin attenuates local inflammatory response and inhibits demyelination induced by chronic constriction injury of the mouse sciatic nerve. Biologicals 2016; 44:206-211. [PMID: 27233579 DOI: 10.1016/j.biologicals.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain caused by nerve damage in the central and/or peripheral nervous systems is a refractory disorder and the management of such chronic pain has become a major issue. Neurotropin is a drug widely used in Japan and China to treat chronic pain. Although Neurotropin has been demonstrated to suppress chronic pain through the descending pain inhibitory system, the mechanism of analgesic action in the peripheral nervous system remains to be elucidated. In this study, we investigated the local effects of Neurotropin on peripheral nerve damage in a chronic constriction injury (CCI) model. Neurotropin reduced mRNA expressions of IL-1β, IL-6, and TNF-α in the sciatic nerve 1 day after the injury. Activation of Erk was also inhibited locally in the Neurotropin treatment group. Since Erk activation results in demyelination along with dedifferentiation of Schwann cells, we investigated the expression level of myelin basic protein. Five days after the injury, Neurotropin attenuated the downregulation of myelin basic protein in the sciatic nerve in the CCI model. Local effects of Neurotropin around the injury site may result in discovery of new treatments for not only neuropathic pain but also demyelinating diseases and peripheral nervous system injury.
Collapse
Affiliation(s)
- Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Michio Okamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Fujisawa
- Department of Pharmacological Research, Institute of Bio-active Science, Nippon Zoki Pharmaceutical Co., Ltd., 442-1, Kinashi, Kato, Hyogo 673-1461, Japan
| | - Tomoyuki Okada
- Department of Pharmacological Research, Institute of Bio-active Science, Nippon Zoki Pharmaceutical Co., Ltd., 442-1, Kinashi, Kato, Hyogo 673-1461, Japan
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-active Science, Nippon Zoki Pharmaceutical Co., Ltd., 442-1, Kinashi, Kato, Hyogo 673-1461, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Kamo A, Tominaga M, Matsuda H, Kina K, Kamata Y, Umehara Y, Ogawa H, Takamori K. Neurotropin suppresses itch-related behavior in NC/Nga mice with atopic dermatitis-like symptoms. J Dermatol Sci 2016; 81:212-5. [DOI: 10.1016/j.jdermsci.2015.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/07/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
10
|
Zhang B, Roh YS, Liang S, Liu C, Naiki M, Masuda K, Seki E. Neurotropin suppresses inflammatory cytokine expression and cell death through suppression of NF-κB and JNK in hepatocytes. PLoS One 2014; 9:e114071. [PMID: 25470242 PMCID: PMC4254918 DOI: 10.1371/journal.pone.0114071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory response and cell death in hepatocytes are hallmarks of chronic liver disease, and, therefore, can be effective therapeutic targets. Neurotropin® (NTP) is a drug widely used in Japan and China to treat chronic pain. Although NTP has been demonstrated to suppress chronic pain through the descending pain inhibitory system, the action mechanism of NTP remains elusive. We hypothesize that NTP functions to suppress inflammatory pathways, thereby attenuating disease progression. In the present study, we investigated whether NTP suppresses inflammatory signaling and cell death pathways induced by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) in hepatocytes. NTP suppressed nuclear factor-κB (NF-κB) activation induced by IL-1β and TNFα assessed by using hepatocytes isolated from NF-κB-green fluorescent protein (GFP) reporter mice and an NF-κB-luciferase reporter system. The expression of NF-κB target genes, Il6, Nos2, Cxcl1, ccl5 and Cxcl2 induced by IL-1β and TNFα was suppressed after NTP treatment. We also found that NTP suppressed the JNK phosphorylation induced by IL-1β and TNFα. Because JNK activation contributes to hepatocyte death, we determined that NTP treatment suppressed hepatocyte death induced by IL-1β and TNFα in combination with actinomycin D. Taken together, our data demonstrate that NTP attenuates IL-1β and TNFα-mediated inflammatory cytokine expression and cell death in hepatocytes through the suppression of NF-κB and JNK. The results from the present study suggest that NTP may become a preventive or therapeutic strategy for alcoholic and non-alcoholic fatty liver disease in which NF-κB and JNK are thought to take part.
Collapse
Affiliation(s)
- Bi Zhang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yoon Seok Roh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cheng Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Company Ltd., Kato, Hyogo, Japan
| | - Koichi Masuda
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ekihiro Seki
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|