1
|
Wen J, Xu Q, Li J, Shen X, Zhou X, Huang J, Liu S. Sodium butyrate exerts a neuroprotective effect in rats with acute carbon monoxide poisoning by activating autophagy through the mTOR signaling pathway. Sci Rep 2024; 14:4610. [PMID: 38409245 PMCID: PMC10897214 DOI: 10.1038/s41598-024-55198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Acute carbon monoxide (CO) poisoning is a prevalent type of poisoning that causes significant harm globally. Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that occurs after acute CO poisoning; however, the exact underlying pathological cause of DEACMP remains unclear. Accumulating evidence indicates that abnormal inflammation and immune-mediated brain damage, cellular apoptosis and autophagy, and direct neuronal toxicity are involved in the development of delayed neurologic sequelae. Sodium butyrate, a histone deacetylase inhibitor, has gained increasing attention for its numerous beneficial effects on various diseases, such as obesity, diabetes, inflammatory diseases, and cerebral damage. In this study, an acute carbon monoxide poisoning (ACOP) model is established in rats to investigate the mechanism of CO poisoning and the therapeutic potential of sodium butyrate. The results suggested that the ACOP rats had impaired spatial memory, and cell apoptosis was observed in the hippocampi with activated autophagy. Sodium butyrate treatment further increased the activation of autophagy in the hippocampi of CO-exposed rats, inhibited apoptosis, and consolidated spatial memory. These findings indicated that sodium butyrate may improve memory and cognitive function in ACMP rats by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jing Wen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Qiong Xu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Li
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xuanyang Shen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Xiaolong Zhou
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Huang
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Shiping Liu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Charcoal burning is associated with a higher risk of delayed neurological sequelae after domestic carbon monoxide poisoning in South China: A retrospective cohort study. Am J Emerg Med 2022; 60:57-61. [DOI: 10.1016/j.ajem.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 12/27/2022] Open
|
3
|
Baek SH, Kim JW, Lee YY, Kim JY, Kim SW, Kim JM. Case report: Recovery of hallucinations and cognitive impairment after administration of donepezil in a patient with schizophrenia and carbon monoxide poisoning. Front Psychiatry 2022; 13:1071417. [PMID: 36465281 PMCID: PMC9715735 DOI: 10.3389/fpsyt.2022.1071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES This report aims to introduce a rare case of a dramatic recovery by donepezil with a patient with schizophrenia who suffered from remaining psychotic symptoms despite proper treatment and had a cognitive impairment by carbon monoxide (CO) poisoning sequelae. CASE REPORT A 38-year-old male who developed schizophrenia 2 years ago had attempted suicide via CO inhalation due to his uncontrolled symptoms. He was hospitalized with delayed neurological sequelae (DNS). Though hyperbaric oxygen therapy (HBOT) was applied 10 times, his cognitive impairment did not recover. Surprisingly, with 5-10 mg donepezil, both cognitive function and the psychotic symptoms of the patient remarkably improved. CONCLUSION This case showed a good response of donepezil for a patient with schizophrenia and CO-induced DNS after ineffective HBOT. Although the mechanism of the phenomenon is unclear, it can be possible reasons that the neuroprotective effect of donepezil and white matter insult by CO poisoning.
Collapse
Affiliation(s)
- Seon-Hwa Baek
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Ju-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Yun Young Lee
- Departments of Radiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Ju-Yong Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Min Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
4
|
Ning K, Zhou YY, Zhang N, Sun XJ, Liu WW, Han CH. Neurocognitive sequelae after carbon monoxide poisoning and hyperbaric oxygen therapy. Med Gas Res 2021; 10:30-36. [PMID: 32189667 PMCID: PMC7871936 DOI: 10.4103/2045-9912.279981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) has been the leading cause of poisoning mortality in many countries and hyperbaric oxygen (HBO) is a widely accepted treatment for CO poisoning. However, some patients with CO poisoning will still develop neurocognitive sequelae regardless of HBO therapy, which can persist since CO poisoning or be present days to weeks after a recovery from CO poisoning. HBO has been used in the prevention and treatment of neurocognitive sequelae after CO poisoning, and some mechanisms are also proposed for the potential neuroprotective effects of HBO on the neurocognitive impairment after CO poisoning, but there is still controversy on the effectiveness of HBO on neurocognitive sequelae after CO poisoning. In this paper, we briefly introduce the neurocognitive sequelae after CO poisoning, summarize the potential predictive factors of neurocognitive sequelae, and discuss the use of HBO in the treatment and prevention of neurocognitive sequelae after CO poisoning.
Collapse
Affiliation(s)
- Ke Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yan-Yan Zhou
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ning Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the Affiliated No 1 People's Hospital of Jining City, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
5
|
Ochi S, Sekiya K, Abe N, Funahashi Y, Kumon H, Yoshino Y, Nishihara T, Boku S, Iga JI, Ueno SI. Neural precursor cells are decreased in the hippocampus of the delayed carbon monoxide encephalopathy rat model. Sci Rep 2021; 11:6244. [PMID: 33737717 PMCID: PMC7973557 DOI: 10.1038/s41598-021-85860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
The pathophysiology of delayed carbon monoxide (CO) encephalopathy remains unclear. In this study, the effects of CO exposure on the dentate gyrus (DG) were investigated in a Wistar rat model by histochemical and molecular methods. Model rats showed significant cognitive impairment in the passive-avoidance test beginning 7 days after CO exposure. Immunohistochemistry showed that compared to the control, the cell number of SRY (sex-determining region Y)-box 2 (SOX2)+/brain lipid binding protein (BLBP)+/glial fibrillary acidic protein (GFAP)+ cells in the DG was significantly less, but the number of SOX2+/GFAP− cells was not, reflecting a decreased number of type 1 and type 2a neural precursor cells. Compared to the control, the numbers of CD11b+ cells and neuron glial antigen 2+ cells were significantly less, but the number of SOX2−/GFAP+ cells was not. Flow cytometry showed that the percent of live microglial cells isolated from the hippocampus in this CO rat model was significantly lower than in controls. Furthermore, mRNA expression of fibroblast growth factor 2 and glial cell-derived neurotrophic factor, which are neurogenic factors, was significantly decreased in that area. We conclude that, in this rat model, there is an association between delayed cognitive impairment with dysregulated adult hippocampal neurogenesis and glial changes in delayed CO encephalopathy.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
6
|
P2Y12 receptor-mediated microglia activation involved in delayed encephalopathy after acute carbon monoxide poisoning. Aging (Albany NY) 2021; 13:6134-6143. [PMID: 33611310 PMCID: PMC7950236 DOI: 10.18632/aging.202607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022]
Abstract
To investigate the role of P2Y12 receptor-mediated microglia activation in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), we used static inhalation carbon monoxide to build DEACMP rat model. DEACMP rats were randomly assigned into DEACMP group and intervention group. A control goup was also set. The rats in intervention group received intraperitoneal injection of 100uM suramin (a P2Y12 receptor antagonist). In control group, the escape latency, level of microglia activation and ATP content were similar between different time points. In both DEACMP group and intervention group, the escape latency, level of microglia activation and ATP content were significanlty increased at 21th and 28th day. The hippocampal cells in DEACMP group and intervention group were severely and moderately, respectively, damaged at 21th and 28th day. Meanwhile, compared to control group, both DEACMP group and intervention group had significanlty longer escape latency, higher level of microglia activation and ATP content at 21th and 28th day. Compared to DEACMP group, the intervention group had significantly shorter escape latency and lower level of microglia activation at 21th and 28th day. These results suggested that the microglia activation regulated by ATP through P2Y12 receptor pathway might be closely related to the development of DEACMP.
Collapse
|
7
|
Zhang L, Sun Q, Xin Q, Qin J, Zhang L, Wu D, Gao G, Xia Y. Hyperbaric oxygen therapy mobilized circulating stem cells and improved delayed encephalopathy after acute carbon monoxide poisoning with up-regulation of brain-derived neurotrophic factor. Am J Emerg Med 2021; 42:95-100. [PMID: 33497900 DOI: 10.1016/j.ajem.2021.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Delayed encephalopathy (DE) is the most severe complication after acute carbon monoxide (CO) poisoning, which seriously affects the outcome of patients and leads to a high disability rate. Prior studies have shown that hyperbaric oxygen (HBO2) therapy is therapeutic for DE due to reducing immune-mediated neuropathology and thus improving cognitive performance. Methods In our present perspective study, five DE patients were treated regularly with HBO2 therapy. The mini-mental state examination (MMSE) and Barthel index (BI) were intermittently collected during their hospitalization for mental and physical status evaluation, the peripheral bloods were serially sampled to determine the concentration changes of circulating stem cells, as well as corresponding BDNF and neural markers. Results MMSE and BI showed series of improvements after multiple HBO2 therapies. The CD34+/CD90+ and CD34+/CD133+ dual positive cells, which were categorized as circulating stem cells, were observed an overall up-regulation since the beginning of the DE onset upon the application of HBO2 therapy. Characteristic neurotrophin BDNF, neural markers such as nestin and synaptophysin (SYP) were also up-regulated after exposure of HBO2. Conclusion The application of HBO2 therapy is of significance in improving the cognition of DE patients, along with mobilized circulating stem cells. We primarily infer that the CD34+/CD90+ and CD34+/CD133+ cells were mobilized by HBO2 exposure and have played a positive role in cognition improvement on DE patients by up-regulation of BDNF, nestin and SYP. The altering amount of circulating stem cells mobilized in peripheral blood could be a potential marker on predicting the outcome of DE.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qing Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China; Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Qun Xin
- Department of General Surgery, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Jiangnan Qin
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang 261000, Shandong, China
| | - Lu Zhang
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Di Wu
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Guangkai Gao
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China.
| | - Yujun Xia
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
8
|
Xu SY, Li CX, Li LY, Song Y, Sui Y. Wallerian degeneration of bilateral cerebral peduncles after acute carbon monoxide poisoning. BMC Neurol 2020; 20:96. [PMID: 32183727 PMCID: PMC7077113 DOI: 10.1186/s12883-020-01677-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cases of Wallerian degeneration of bilateral cerebral peduncles after acute carbon monoxide poisoning have not yet been reported. To date, most of the delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) lesions captured in magnetic resonance imaging (MRI) has been located in the subcortical white matter and basal ganglia. Here we report two cases of DEACMP with abnormalities in the bilateral cerebral peduncles. The etiology of abnormalities, which were strictly confined to the bilateral cerebral peduncles, was Wallerian degeneration secondary to upstream nerve axonal damage, making this the first report on such bilateral cerebral peduncle abnormalities after DEACMP. Case presentation In this report, we present two cases of DEACMP with abnormal signals in the bilateral cerebral peduncles captured during brain MRIs. Case 1 was of a 68-year-old man who presented with paroxysmal disturbance of the consciousness, left limb weakness for 16 days, and lagging responses for 2 days. Case 2 was of a 55-year-old man who was unconscious for 6 h. In addition to the above mentioned characteristics on the brain MRIs, the electroencephalography of case 1 indicated that his forehead scans had a mixture of wide sharp, sharp, and three-phase waves. Brain diffusion tensor imaging of case 2 further proved that the bilateral cerebral anomalies represented Wallerian degeneration secondary to upstream axonal damage. After the definitive diagnosis, the patients returned to the local hospital for hyperbaric oxygen therapy. Conclusions Wallerian degeneration of the bilateral cerebral peduncles after acute carbon monoxide poisoning has never been reported before. The abnormal signals in the bilateral cerebral peduncles captured during brain MRIs indicated Wallerian degeneration secondary to upstream axonal damage; thus, these two cases may further our understanding of DEACMP imaging.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chang-Xin Li
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Le-Yi Li
- Department of Radiology, Liaoning Jinqiu Hospital, Liaoning Provincial Geriatric Hospital, Shenyang, China
| | - Yu Song
- Department of Radiology, Liaoning Jinqiu Hospital, Liaoning Provincial Geriatric Hospital, Shenyang, China
| | - Yi Sui
- Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
9
|
Gu J, Zeng J, Wang X, Gu X, Zhang X, Zhang P, Zhang F, Han Y, Han Y, Zhang H, Li W, Gu R. LRCH1 polymorphisms linked to delayed encephalopathy after acute carbon monoxide poisoning identified by GWAS analysis followed by Sequenom MassARRAY® validation. BMC MEDICAL GENETICS 2019; 20:197. [PMID: 31842790 PMCID: PMC6916040 DOI: 10.1186/s12881-019-0931-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND We explored the association of leucine-rich repeats and calponin homology domain containing 1 (LRCH1) gene polymorphisms with genetic susceptibility to delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), which might provide a theoretical basis for the pathogenesis, diagnosis, and prognosis research of DEACMP. METHODS Four single nucleotide polymorphisms, rs1539177 (G/A), rs17068697 (G/A), rs9534475 (A/C), and rs2236592 (T/C), of LRCH1, selected as candidate genes through genome-wide association analysis, were genotyped in 661 patients (DEACMP group: 235 cases; ACMP group: 426 cases) using Sequenom Massarray®. The association analysis of four SNPs and LRCH1 was performed under different genetic models. RESULTS LRCH1 polymorphisms (rs1539177, rs17068697, rs9534475) under additive and dominant genetic models were significantly associated with an increased risk of DEACMP, but no significant association under allele and recessive models was found. The LRCH1 rs2236592 polymorphism was susceptible to DEACMP only under the dominant model (TT/TC + CC, OR = 1.616, 95% CI: 1.092-2.390, P = 0.015784). In addition, the A allele gene of rs9534475 polymorphism in LRCH1 might increase the risk for DEACMP (OR = 1.273, 95% CI: 1.013-1.601, P = 0.038445). CONCLUSIONS We found a significant association between the four LRCH1 polymorphisms and DEACMP. The allelic A of rs9534475 polymorphism in LRCH1 might be a risk factor for DEACMP.
Collapse
Affiliation(s)
- Jiapeng Gu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Jiao Zeng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Xi Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Xin Gu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Xiaoli Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Ping Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Fan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Yongkai Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China
| | - Yazhou Han
- Qinyang People's Hospital, Jiaozuo City, 454550, Henan Province, China
| | - Hongxing Zhang
- The Psychology College of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, China
| | - Wenqiang Li
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang City, 453002, Henan Province, China.
| | - Renjun Gu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No. 388 Jianshe Middle Road, Muye District, Xinxiang City, 453002, Henan Province, China.
| |
Collapse
|
10
|
Casillas S, Galindo A, Camarillo-Reyes LA, Varon J, Surani SR. Effectiveness of Hyperbaric Oxygenation Versus Normobaric Oxygenation Therapy in Carbon Monoxide Poisoning: A Systematic Review. Cureus 2019; 11:e5916. [PMID: 31788375 PMCID: PMC6855999 DOI: 10.7759/cureus.5916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) is a gas product of combustion, considered highly poisonous. Prolonged CO exposure is responsible for more than half of fatal poisonings and is also one of the leading causes of poisoning in Western countries. We aimed to compare the effectiveness of therapy with hyperbaric oxygen (HBO) versus normobaric oxygen (NBO) in the setting of carbon monoxide poisoning (COP). We independently searched the National Library of Medicine's Medline (PubMed™), ScienceDirect™, and Scielo™ for any relevant studies published from 1989 to 2017, using the following keywords: hyperbaric therapy, hyperbaric oxygenation, normobaric therapy, carbon monoxide poisoning, carboxyhemoglobin, Haldane effect. We analyzed the studies that suggested the effectiveness of HBO or NBO. Also, we searched for studies related to COP; including history, epidemiology (risk factors, incidence, demographics), pathophysiology, clinical manifestations, diagnosis, and treatment. Sixty-eight articles were found, sixteen of which dealt with either HBO or NBO or both. Twelve suggested HBO as the treatment of choice in COP; four studies indicated that NBO was an adequate treatment due to its cost-effectiveness and availability in the emergency department (ED). HBO has been shown in several studies to be effective in moderate to high-risk COP situations, being the therapy of choice to avoid sequelae, especially neurologically. NBO can be considered as a reasonable alternative due to its cost-effectiveness. The availability and understanding of different therapeutic interventions are critical in the management of patients with COP in ED and the Critical Care unit.
Collapse
Affiliation(s)
| | | | | | - Joseph Varon
- Critical Care, United General Hospital, Houston, USA
| | - Salim R Surani
- Internal Medicine, Texas A&M Health Science Center, Temple, USA
| |
Collapse
|
11
|
Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, Hamada T, Ikemune K, Takasaki Y, Tanaka J, Asano M, Yorozuya T. Carbon monoxide poisoning-induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia-induced brain damage. Brain Res 2018; 1710:22-32. [PMID: 30578768 DOI: 10.1016/j.brainres.2018.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022]
Abstract
Carbon monoxide (CO) causes not only acute fatal poisoning but also may cause a delayed neurologic syndrome called delayed encephalopathy (DE), which occasionally occurs after an interval of several days to several weeks post-exposure. However, the mechanisms of DE have not been fully elucidated. This study aimed to clarify the pathophysiology of CO-induced DE and its distinctive features compared with hypoxemic hypoxia. Rats were randomly assigned to three groups; the air group, the CO group (exposed to CO), and the low O2 group (exposed to low concentration of O2). Impairment of memory function was observed only in the CO group. The hippocampus tissues were collected and analyzed for assessment of CO-induced changes and microglial reaction. Demyelination was observed only in the CO group and it was more severe and persisted longer than that observed in the low O2 group. Moreover, in the CO group, decreased in microglial cell numbers were observed using flow cytometry, and microglia with detached branches were observed were observed using immunohistochemistry. Conversely, microglial cells with shortened branches and enlarged somata were observed in the low O2 group. Furthermore, mRNAs encoding several neurotrophic factors expressed by microglia were decreased in the CO group but were increased in the low O2 group. Thus, CO-induced DE displayed distinctive pathological features from those of simple hypoxic insults: prolonged demyelination accompanying a significant decrease in microglial cells. Decreased neurotrophic factor expression by microglial cells may be one of the causes of CO-induced DE.
Collapse
Affiliation(s)
- Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Hideyuki Nandate
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Keizo Ikemune
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Yasushi Takasaki
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
12
|
Zhang P, Dai Y, Xiong J, Zhu S, Zhao M, Ding S, Li J. iTRAQ-based differential proteomic analysis of the brains in a rat model of delayedcarbon monoxide encephalopathy. Brain Res Bull 2018; 137:329-337. [PMID: 29355713 DOI: 10.1016/j.brainresbull.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 11/26/2022]
Abstract
Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a difficult-to-manage neurological complication that can severely affect the life quality of patients. Although the central nervous system (CNS) injuries have been reported, the underlying molecular mechanisms are still unclear. Therefore, we established a rat model of DEACMP, applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in cerebral tissue. A total of 170 proteins in the CO exposure groups were identified as differentially changed. Bioinformatics analysis suggested that these proteins are mainly involved in the biological processes, such as energy metabolism and many neurodegenerative diseases. Three proteins, Glial fibrillary acidic protein (GFAP), mitochondrial malate dehydrogenase (MDHM), and isocitrate dehydrogenase [NAD] subunit alpha (IDH3A), were identified as playing important roles in CNS injuries in DEACMP, and were successfully confirmed by immunohistochemistry analysis. Our study not only offers us new insights into the pathophysiological mechanisms of CNS injuries in DEACMP, but also may provide clinicians with important references in early prevention and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yalei Dai
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Xiong
- Chongqing Wanzhou District Public Security Bureau, Chongqing 404000, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Li HM, Shi YL, Wen D, Luo HM, Lin X, Xiao F. A novel effective chemical hemin for the treatment of acute carbon monoxide poisoning in mice. Exp Ther Med 2017; 14:5186-5192. [PMID: 29201235 PMCID: PMC5704266 DOI: 10.3892/etm.2017.5157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
There is no effective drug for the therapy of acute carbon monoxide (CO) poisoning. The purpose of the present study was to investigate the potential preventive and therapeutic effects of hemin on an animal model of acute CO poisoning and to provide a potential therapeutic candidate drug. A total of 80 Kunming mice were randomly divided into four groups, namely the air control, acute CO poisoning, hemin-treatment + CO and hemin-pretreatment + CO groups (n=20 each). Furthermore, the mortality rate of mice, blood carboxyhaemoglobin (HbCO) concentration and serum malondialdehyde (MDA) concentration were measured, and pathological changes of the hippocampal area were determined using histochemical staining. The mice with acute CO poisoning had a 50% mortality rate at 1 h, with an increase in blood HbCO, serum MDA levels and pathological impairments of the hippocampus. Furthermore, the mortality rate, blood HbCO and serum MDA levels of mice with pretreatment and treatment of hemin were decreased. Additionally, the pathological changes of the hippocampal area were improved in the hemin-treatment and hemin-pretreatment groups compared with the mice treated with CO. These results suggest that hemin is a novel effective chemical for the prevention and treatment of acute CO poisoning in mice. Therefore, the present study provides a novel method and experimental basis for the application of hemin in treating patients with acute CO poisoning.
Collapse
Affiliation(s)
- Hui-Min Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,The Second Clinical Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ying-Lu Shi
- International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Di Wen
- International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Huan-Min Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Yanagiha K, Ishii K, Tamaoka A. Acetylcholinesterase inhibitor treatment alleviated cognitive impairment caused by delayed encephalopathy due to carbon monoxide poisoning: Two case reports and a review of the literature. Medicine (Baltimore) 2017; 96:e6125. [PMID: 28225493 PMCID: PMC5569429 DOI: 10.1097/md.0000000000006125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Delayed encephalopathy due to carbon monoxide (CO) poisoning can even occur in patients with mild symptoms of acute CO poisoning. Some cases taking conventional hyperbaric oxygen (HBO) therapy or steroid-pulse therapy may be insufficient, and AchEI may be effective. PATIENT CONCERNS AND DIAGNOSES We report two cases of delayed encephalopathy after acute CO poisoning involving two women aged 69 (Case 1) and 60 years (Case 2) whose cognitive function improved with acetylcholinesterase inhibitor (AchEI) treatment. Delayed encephalopathy occurred 25 and 35 days after acute CO poisoning in Case 1 and Case 2, respectively. Both patients demonstrated cognitive impairment, apathy, and hypokinesia on admission. INTERVENTIONS AND OUTCOMES Although hyperbaric oxygen therapy did not yield any significant improvements, cognitive dysfunction improved substantially. This was evidenced by an improved Mini-Mental State Examination score ffom 9 to 28 points in Case 1 and an improved Hasegawa's dementia rating scale score from 4 to 25 points in Case 2 after administration of an AchEI. In Case 1, we administered galantamine hydrobromide, which was related with improved white matter lesions initially detected on brain magnetic resonance imaging. However, in Case 2 white matter lesions persisted despite AchEI treatment. AchEI treatment may result in improved cognitive and frontal lobe function by increasing low acetylcholine concentrations in the hippocampus and frontal lobe caused by decreased nicotinic acetylcholine receptor levels in delayed encephalopathy after CO poisoning. CONCLUSION Physicians should consider AchEIs for patients demonstrating delayed encephalopathy due to CO poisoning.
Collapse
|
15
|
Jurič DM, Šuput D, Brvar M. Hyperbaric oxygen preserves neurotrophic activity of carbon monoxide-exposed astrocytes. Toxicol Lett 2016; 253:1-6. [PMID: 27113706 DOI: 10.1016/j.toxlet.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
In astrocytes, carbon monoxide (CO) poisoning causes oxidative stress and mitochondrial dysfunction accompanied by caspase and calpain activation. Impairment in astrocyte function can be time-dependently reduced by hyperbaric (3bar) oxygen (HBO). Due to the central role of astrocytes in maintaining neuronal function by offering neurotrophic support we investigated the hypothesis that HBO therapy may exert beneficial effect on acute CO poisoning-induced impairment in intrinsic neurotrophic activity. Exposure to 3000ppm CO in air followed by 24-72h of normoxia caused a progressive decline of gene expression, synthesis and secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) to different extent. 1h treatment with 100% oxygen disclosed a pressure- and time-dependent efficacy in preserving astrocytic neurotrophic support. The beneficial effect was most evident when the astrocytes were exposed to HBO 1-5h after exposure to CO. The results further support an active role of hyperbaric, not normobaric, oxygenation in reducing dysfunction of astrocytes after acute CO poisoning. By preserving endogenous neurotrophic activity HBO therapy might promote neuronal protection and thus prevent the occurrence of late neuropsychological sequelae.
Collapse
Affiliation(s)
- Damijana M Jurič
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.
| | - Miran Brvar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia; Poison Control Centre, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, Slovenia.
| |
Collapse
|
16
|
Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis. Crit Care Med 2016; 44:e25-39. [PMID: 26488220 DOI: 10.1097/ccm.0000000000001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. DESIGN Laboratory animal experiments. SETTING University/Medical center research laboratory. SUBJECTS Adult, male Sprague-Dawley rats. INTERVENTIONS Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. MEASUREMENTS AND MAIN RESULTS Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This suppression of adult neurogenesis by the carbon monoxide poisoning was appreciably alleviated by early treatment of hyperbaric oxygen. The hyperbaric oxygen treatment also promoted a sustained increase in hippocampal brain-derived neurotrophic factor level. Blockade of hippocampal brain-derived neurotrophic factor signaling with intracerebroventricular infusion of recombinant human TrkB-Fc chimera significantly blunted the protection by the hyperbaric oxygen on hippocampal neurogenesis; whereas intracerebroventricular infusion of brain-derived neurotrophic factor mimicked the action of hyperbaric oxygen and preserved hippocampal neurogenesis after acute carbon monoxide poisoning. Furthermore, acute carbon monoxide poisoning resulted in a delayed impairment of cognitive function. The hyperbaric oxygen treatment notably restored the cognitive impairment in a brain-derived neurotrophic factor-dependent manner. CONCLUSIONS The early hyperbaric oxygen treatment may alleviate delayed memory impairment after acute carbon monoxide poisoning by preserving adult neurogenesis via an increase in hippocampal brain-derived neurotrophic factor content.
Collapse
|
17
|
Li Q, Cheng Y, Bi MJ, Kang H, Qu Y, Lin H, Guo Y, Zou Y. Effects of N-Butylphthalide on the expressions of Nogo/NgR in rat brain tissue after carbon monoxide poisoning. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:953-961. [PMID: 25812770 DOI: 10.1016/j.etap.2015.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Carbon monoxide (CO) intoxication is one of the most common types of poisoning worldwide, and may result in neuropathologic sequelae, yet its pathogenesis is not clear and there is no optimal management strategy for patients with CO poisoning. In this study, the rat model of CO poisoning was established in a hyperbaric chamber by CO exposure. Rats were administered orally N-Butylphthalide (NBP) at a dose of 1 ml/100g. Neuronal apoptosis was assessed by TUNEL stain and flow cytometry. The expressions of neurite outgrowth inhibitor (Nogo), myelin-associated glycoprotein (MAG) and Nogo receptor-1 (NgR1) were observed in rat brain tissue by immunohistochemistry and double immunofluorescence staining. As we expected, CO poisoning could start the mechanism of apoptosis. The number of apoptotic cells and the early neuronal apoptosis percentage (EAR) were significantly increased at 1 day, 3 day after CO exposure. NBP treatment obviously reduce neuronal apoptosis and the EAR (P<0.05). CO poisoning could induce Nogo, MAG and NgR1 expressions. The increased Nogo, MAG and NgR1 proteins were still observed at 4 week after CO poisoning. NBP could significantly reduce the levels of Nogo and NgR1 proteins. Then we suspected that the expressions of Nogo, MAG and NGR1 proteins might be associated with brain injury and demyelination induced by CO poisoning. NBP might inhibit neuronal apoptosis and the EAR, down-regulate the expressions of Nogo and NgR1 proteins (but not MAG), and play a neuro-protective role in brain damage after acute CO poisoning.
Collapse
Affiliation(s)
- Qin Li
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yongmei Cheng
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China.
| | - Ming Jun Bi
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China.
| | - Hai Kang
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yun Qu
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Hongyang Lin
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao Jiangsu 16 Road, PR China
| | - Yong Zou
- Department of Clinical Medicine, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| |
Collapse
|