1
|
Yang J, Zhang X, Li Y, Yang N, Luo J, He T, Xing Y. Inhibition of TLR4/NF-κB pathway and endoplasmic reticulum stress by overexpressed S100A4 ameliorates retinal ischemia-reperfusion injury of mice. Mol Neurobiol 2024; 61:2228-2240. [PMID: 37872355 DOI: 10.1007/s12035-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Retinal ischemia exists in various ischemic retinopathies including glaucoma, contributing to the death of retinal neurons. Calcium binding protein S100A4 is important in tumors, and our previous study found that S100A4 protects retinal ganglion cells (RGCs) against retinal ischemia-reperfusion (I/R) injury. This study was aimed to further discuss the neuroprotection and mechanisms of S100A4 in retinal I/R of mice. The rAAV-EF1α-s100a4-EGFP-WPRE or rAAV-EF1α-EGFP-WPRE-Pa was injected intravitreally 4 weeks before I/R. S100A4, molecules in TLR4 signaling pathway and endoplasmic reticulum (ER) stress branches, inflammatory molecules, and surviving RGCs and cholinergic amacrine (ChAT) cells were determined by quantitative PCR, western blot, or immunofluorescent staining. The apoptosis and necrosis of retinal neurons induced by I/R were inhibited by overexpressed S100A4. RGCs, ChAT cells, and the retinal function were preserved by S100A4 overexpressing 7 days after I/R. Mechanistically, the beneficial effects of S100A4 may be mediated by inhibiting the activation of TLR4 signaling pathway and alleviating ER stress, leading to the attenuation of inflammatory response of the retina after I/R. Our findings indicated that S100A4 has neuroprotective effect against retinal I/R injury, and promoting S100A4 expression may be an effective strategy to inhibit retinal neurons from degeneration in ischemic retinopathy.
Collapse
Affiliation(s)
- Jiayi Yang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Zhang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Li
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Yang
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinyuan Luo
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao He
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yiqiao Xing
- Ophthalmic Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Tang F, Peng Y, Liu J, Gao W, Xu Y. Integrating network pharmacology and experimental models to examine the mechanisms of corosolic acid in preventing hepatocellular carcinoma progression through activation PERK-eIF2a-ATF4 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3671-3682. [PMID: 37294427 DOI: 10.1007/s00210-023-02560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, with a high recurrence rate and heterogeneity. We aimed to examine the effect of corosolic acid (CRA) on HCC. We employed transcriptomics to validate the target molecules in CRA-treated HCC cells and conducted enrichment analyses that revealed their involvement in the regulation of endoplasmic reticulum (ER) stress and apoptosis. Our experimental data indicated that CRA markedly induced apoptosis in human HCC cell lines through the mitochondrial apoptosis pathway. We also revealed that the pro-apoptotic effects of CRA depended on ER stress, as pretreatment with selective ERS inhibitor salubrinal effectively reversed CRA-induced cell apoptosis. Furthermore, the knockdown of the unfolded protein response (UPR) protein CHOP remarkably abrogated CRA-induced expression of ER stress-associated proteins. Collectively, our results suggest that CRA triggers ER stress-mediated apoptosis in HCC cells via activation of the PERK-eIF2a-ATF4 pathway. Our findings provide novel insights into the potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenhui Gao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
4
|
Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell Mol Neurobiol 2023; 43:3161-3178. [PMID: 37338781 DOI: 10.1007/s10571-023-01373-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Chun-Ling Fan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Ye He
- Changsha Aier Eye Hospital, Hunan Province, No. 188, Furong Road, Furong District, Changsha City, 410015, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410013, China.
| |
Collapse
|
5
|
Feng Y, Lu J, Peng X, Ge Y, Zhang R, Li H. Long noncoding RNA uc007nnj.1 mediates neuronal death induced by retinal ischemia/reperfusion in mice via the miR-155-5p/Tle4 axis. Mol Med 2023; 29:9. [PMID: 36653745 PMCID: PMC9850566 DOI: 10.1186/s10020-022-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion (I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs (lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis. METHODS Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 h to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 h was used to construct a mouse model of retinal I/R injury. RESULTS In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function. DISCUSSION Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs. CONCLUSIONS Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death.
Collapse
Affiliation(s)
- Yuqing Feng
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Jinfang Lu
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Xujun Peng
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Yanni Ge
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Ran Zhang
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Huiling Li
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| |
Collapse
|
6
|
Wu Y, Fan X, Chen S, Deng L, Jiang L, Yang S, Dong Z. Geraniol-Mediated Suppression of Endoplasmic Reticulum Stress Protects against Cerebral Ischemia-Reperfusion Injury via the PERK-ATF4-CHOP Pathway. Int J Mol Sci 2022; 24:ijms24010544. [PMID: 36613992 PMCID: PMC9820715 DOI: 10.3390/ijms24010544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays an important role in cerebral ischemia-reperfusion injury (CIRI). Geraniol has antioxidant, antibacterial, and anti-inflammatory activities. Studies have shown that geraniol has a protective effect against CIRI in rats, but the exact mechanism is unclear. Purpose: The aim of this study was to investigate the protective mechanism of geraniol against CIRI. We established a middle cerebral artery occlusion reperfusion model in rats and a PC12 cell oxygen-glucose deprivation/reoxygenation (OGD/R) model to observe the neuroprotective effects of geraniol. Neurological scoring, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin and eosin staining were used to evaluate the neuroprotective effects of geraniol against CIRI. ER-stress-related and apoptosis-related protein expression was detected via Western blotting and immunofluorescence. Apoptosis was also detected via TUNEL assays and flow cytometry. The fluorescent detection of intracellular calcium was achieved using fluorescent calcium-binding dyes, and transmission electron microscopy was used to assess the neuronal ultrastructure. Geraniol effectively attenuated cerebral infarction and pathological injury after CIRI, had a protective effect against CIRI, significantly reduced the expression of the ER-stress-related proteins P-PERK, ATF4, CHOP, and GRP78 and the pro-apoptotic protein BAX, increased the expression of the anti-apoptotic protein BCL-2, and reduced the occurrence of apoptosis. In the OGD/R model in PC12 cells, the protective effect of geraniol was the same as that in vivo. Our results suggest that geraniol has a protective effect against ischemic stroke by a mechanism possibly related to ER stress via the PERK-ATF4-CHOP pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Dong
- Correspondence: ; Tel.: +86-135-0839-3231
| |
Collapse
|
7
|
Tang D, Liu X, Chen J. Mitoquinone intravitreal injection ameliorates retinal ischemia-reperfusion injury in rats involving SIRT1/Notch1/NADPH axis. Drug Dev Res 2022; 83:800-810. [PMID: 35014081 DOI: 10.1002/ddr.21911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is an important pathological process of many ocular diseases. Mitoquinone (MitoQ), a mitochondrial targeted antioxidant, is a potential compound for therapeutic development of RIRI. This study observed the effect of MitoQ on RIRI, and further explored its possible molecular mechanism. Temporary increase in intraocular pressure was used to establish rat model of RIRI to observe the effect of MitoQ treatment on retinal function, pathological injury, oxidative stress, inflammation and apoptosis. Immunohistochemistry and Western blot were used to detect expressions of cleaved caspase 3, B cell leukemia/lymphoma 2 associated X (Bax), nicotinamide adenine dinucleotide phosphate oxidase (NOX1), NOX4, cleaved-Notch 1, hairy and enhancer of split 1 (Hes1), and sirtuin 1 (SIRT 1) in retina were detected by immunohistochemistry and Western blot. MitoQ treatment significantly improved retinal function and pathological injury, inhibited the over-production of reactive oxygen species, increased the expression of superoxide dismutase 1 (SOD 1), suppressed the releases of inflammatory cytokines, and inhibited retinal cells apoptosis. MitoQ also down-regulated the expressions of cleaved caspase 3, Bax, NOX 1, NOX 4, cleaved-Notch 1, and Hes 1, increased the expression of SIRT 1 protein and its activity. These effects were significantly reversed by SIRT1 inhibitor EX527. Our data suggests that MitoQ, as a potentially effective drug for improving RIRI, may act through the SIRT1/Notch1/NADPH signal axis.
Collapse
Affiliation(s)
- Dongyong Tang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Chen
- Department of Traditional Chinese Medicine Surgery, Clinical College, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Lai AKW, Ng TC, Hung VKL, Tam KC, Cheung CW, Chung SK, Lo ACY. Exacerbated VEGF up-regulation accompanies diabetes-aggravated hemorrhage in mice after experimental cerebral ischemia and delayed reperfusion. Neural Regen Res 2021; 17:1566-1575. [PMID: 34916442 PMCID: PMC8771109 DOI: 10.4103/1673-5374.330612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reperfusion therapy is the preferred treatment for ischemic stroke, but is hindered by its short treatment window, especially in patients with diabetes whose reperfusion after prolonged ischemia is often accompanied by exacerbated hemorrhage. The mechanisms underlying exacerbated hemorrhage are not fully understood. This study aimed to identify this mechanism by inducing prolonged 2-hour transient intraluminal middle cerebral artery occlusion in diabetic Ins2Akita/+ mice to mimic patients with diabetes undergoing delayed mechanical thrombectomy. The results showed that at as early as 2 hours after reperfusion, Ins2Akita/+ mice exhibited rapid development of neurological deficits, increased infarct and hemorrhagic transformation, together with exacerbated down-regulation of tight-junction protein ZO-1 and up-regulation of blood-brain barrier-disrupting matrix metallopeptidase 2 and matrix metallopeptidase 9 when compared with normoglycemic Ins2+/+ mice. This indicated that diabetes led to the rapid compromise of vessel integrity immediately after reperfusion, and consequently earlier death and further aggravation of hemorrhagic transformation 22 hours after reperfusion. This observation was associated with earlier and stronger up-regulation of pro-angiogenic vascular endothelial growth factor (VEGF) and its downstream phospho-Erk1/2 at 2 hours after reperfusion, which was suggestive of premature angiogenesis induced by early VEGF up-regulation, resulting in rapid vessel disintegration in diabetic stroke. Endoplasmic reticulum stress-related pro-apoptotic C/EBP homologous protein was overexpressed in challenged Ins2Akita/+ mice, which suggests that the exacerbated VEGF up-regulation may be caused by overwhelming endoplasmic reticulum stress under diabetic conditions. In conclusion, the results mimicked complications in patients with diabetes undergoing delayed mechanical thrombectomy, and diabetes-induced accelerated VEGF up-regulation is likely to underlie exacerbated hemorrhagic transformation. Thus, suppression of the VEGF pathway could be a potential approach to allow reperfusion therapy in patients with diabetic stroke beyond the current treatment window. Experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong [CULATR 3834-15 (approval date January 5, 2016); 3977-16 (approval date April 13, 2016); and 4666-18 (approval date March 29, 2018)].
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Tsz Chung Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Victor Ka Lok Hung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Chi Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Sookja Kim Chung
- Macau University of Science and Technology, Taipa, Macau Special Administration Region; School of Biomedical Sciences, The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| |
Collapse
|
9
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhang R, Feng Y, Lu J, Ge Y, Li H. lncRNA Ttc3-209 Promotes the Apoptosis of Retinal Ganglion Cells in Retinal Ischemia Reperfusion Injury by Targeting the miR-484/Wnt8a Axis. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33687475 PMCID: PMC7960841 DOI: 10.1167/iovs.62.3.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Apoptosis of the retinal ganglion cells (RGCs) can cause irreversible damage to visual function after retinal ischemia reperfusion injury (RIR). Using a lncRNA chip assay, we selected lncRNA Ttc-209 and characterized its role in RGCs during ischemia reperfusion (I/R)–induced apoptosis. Methods We created an ischemic model of RGCs by applying Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 hours. RIR was induced in mice by elevating the intraocular pressure to 120 mm Hg for 1 hour by cannulation of the cornea; this was followed by reperfusion. Real-time quantitative PCR was used to detect the expression levels of long noncoding RNA (lncRNA), microRNA (miRNA), and target gene mRNA. Western blotting, flow cytometry, immunofluorescent staining, and TUNEL assays were performed to detect cell apoptosis. Dual-luciferase reporter assays and FISH were used to identify endogenous competitive RNA (ceRNA) mechanisms that link lncRNAs, miRNAs, and target genes. We also used scotopic electroretinography examinations to evaluate visual function in treated mice. Results lncRNA Ttc3-209 was significantly upregulated after I/R injury and played a proapoptotic role in RGCs during I/R-induced apoptosis. Mechanistically, lncRNA Ttc3-209 is a ceRNA that competitively binds to miR-484 and upregulates the translation of its target (Wnt8a mRNA), thus promoting apoptosis in RGCs. Conclusions Reducing the expression of lncRNA Ttc3-209 had a protective effect against apoptosis in RGCs. This may provide a new therapeutic option for the prevention of RGC apoptosis in response to RIR injury.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuqing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jinfang Lu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yanni Ge
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
11
|
Mazzoli V, Zhong LH, Dang VT, Shi Y, Werstuck GH. Characterization of Retinal Microvascular Complications and the Effects of Endoplasmic Reticulum Stress in Mouse Models of Diabetic Atherosclerosis. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32852545 PMCID: PMC7452854 DOI: 10.1167/iovs.61.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent evidence suggests that there is a correlation between the micro- and macrovascular complications of diabetes mellitus. The aim of this study is to investigate the molecular mechanisms by which diabetes promotes the development of microvascular disease (diabetic retinopathy [DR]) through characterization of the effects of hyperglycemia in the retina of mouse models of diabetic atherosclerosis. Methods Hyperglycemia was induced in apolipoprotein E-deficient (ApoE-/-) mice, a model of accelerated atherosclerosis, either through streptozotocin (STZ) injection or introduction of the Ins2Akita mutation (ApoE-/-Ins2+/Akita). Another subset of ApoE-/- mice was supplemented with glucosamine (GlcN). To attenuate atherosclerosis, subsets of mice from each experimental group were treated with the chemical chaperone, 4-phenylbutyric acid (4PBA). Eyes from 15-week-old mice were either trypsin digested and stained with periodic acid-Schiff (PAS) or frozen for cryostat sectioning and immunostained for endoplasmic reticulum (ER) stress markers, including C/EBP homologous protein (CHOP) and 78-kDa glucose-regulated protein (GRP78). PAS-stained retinal flatmounts were analyzed for microvessel density, acellular capillaries, and pericyte ghosts. Results Features of DR, including pericyte ghosts and reduced microvessel density, were observed in hyperglycemic and GlcN-supplemented mice. Treatment with 4PBA reduced ER stress in the retinal periphery and attenuated DR in the experimental groups. Conclusions Mouse models of diabetic atherosclerosis show characteristic pathologies of DR that correlate with atherosclerosis. The increased magnitude of these changes and responses to 4PBA in the peripheral retina suggest that future studies should be aimed at assessing regional differences in mechanisms of ER stress-related pathways in these mouse models.
Collapse
Affiliation(s)
- Vienna Mazzoli
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Lexy H. Zhong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Vi T. Dang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Ikeda HO, Muraoka Y, Hata M, Sumi E, Ikeda T, Nakagawa T, Abe H, Tada H, Morita S, Kakizuka A, Yoshimura N, Tsujikawa A. Safety and effectiveness of a novel neuroprotectant, KUS121, in patients with non-arteritic central retinal artery occlusion: An open-label, non-randomized, first-in-humans, phase 1/2 trial. PLoS One 2020; 15:e0229068. [PMID: 32053676 PMCID: PMC7018138 DOI: 10.1371/journal.pone.0229068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
Kyoto University Substance (KUS) 121, an ATPase inhibitor of valosin-containing protein, is a novel neuroprotectant. We tested the safety and effectiveness of KUS121 in patients with acute central retinal artery occlusion (CRAO). We conducted an investigator-initiated, first-in-humans, phase 1/2 clinical trial. Nine patients with non-arteritic CRAO symptoms lasting for 4–48 h were enrolled. These patients received daily intravitreal injections of KUS121 for 3 days: 25 μg (low-dose) in the first three patients and 50 μg (high-dose) in the next six patients. The primary endpoint was the safety of the drug. As a secondary endpoint, pharmacokinetics was evaluated. Other key secondary endpoints were changes in best-corrected visual acuity (BCVA), measured using the Early Treatment Diabetic Retinopathy Study chart, visual field scores, and retinal sensitivities between baseline and week 12; and decimal BCVA at week 12. Administration of KUS121 did not result in serious adverse events. All nine patients (100%) showed significant improvement of BCVA. Average readable letter counts, visual field scores, and retinal sensitivities also improved. Decimal BCVA at week 12 was better than 0.1 in four patients (44%) and equal to or better than 0.05 in seven patients (78%). This first-in-humans clinical trial provides support for the safety and efficacy of intravitreal KUS121 injection. To substantiate the safety and effectiveness for patients with acute CRAO, further larger scale clinical studies will be needed.
Collapse
Affiliation(s)
- Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Eriko Sumi
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Takafumi Ikeda
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Takayuki Nakagawa
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Hiroyasu Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Morita
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies & Solution Oriented Research for Science and Technology, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Ge Y, Zhang R, Feng Y, Li H. Mbd2 Mediates Retinal Cell Apoptosis by Targeting the lncRNA Mbd2-AL1/miR-188-3p/Traf3 Axis in Ischemia/Reperfusion Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1250-1265. [PMID: 32074940 PMCID: PMC7025978 DOI: 10.1016/j.omtn.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
Recent studies reported that DNA methylation was involved in retinal cell death. Methyl-CpG binding domain protein 2 (Mbd2) is one of the DNA methylation readers. Its role and mechanism of regulation remain unclear. The ischemia/reperfusion (I/R) model in mice primary culture retinal ganglion cells (RGCs) and Mbd2 knockout (Mbd2-KO) mice was used in the current study. We demonstrated that Mbd2 mediates RGC apoptosis caused by I/R injury. Mechanistically, the data suggested that Mbd2 upregulated Mbd2-associated long noncoding RNA 1 (Mbd2-AL1) via demethylation of its promoter. Furthermore, Mbd2-AL1 sponged microRNA (miR)-188-3p, thus preventing tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) downregulation and inducing RGC apoptosis. This was further demonstrated by the fact that inhibition of miR-188-3p diminished the anti-apoptosis role of Mbd2-AL1 small interfering RNA (siRNA). Finally, it showed that the apoptosis of retinal cells was attenuated, and the visual function was preserved in Mbd2-KO mice, which were associated with the Mbd2-AL1/miR-188-3p/Traf3 axis. Our present study revealed the role of Mbd2 in RGC apoptosis, which may provide a novel therapeutic strategy for retinal ischemic diseases.
Collapse
Affiliation(s)
- Yanni Ge
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Ran Zhang
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Yuqing Feng
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Huiling Li
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China.
| |
Collapse
|
14
|
Coucha M, Shanab AY, Sayed M, Vazdarjanova A, El-Remessy AB. Modulating Expression of Thioredoxin Interacting Protein (TXNIP) Prevents Secondary Damage and Preserves Visual Function in a Mouse Model of Ischemia/Reperfusion. Int J Mol Sci 2019; 20:ijms20163969. [PMID: 31443163 PMCID: PMC6721134 DOI: 10.3390/ijms20163969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR). Wild type (WT) and TXNIP knockout (TKO) mice underwent IR injury by increasing intraocular pressure for 40 min, followed by reperfusion. An additional group of WT mice received intravitreal TXNIP-antisense oligomers (ASO, 100 µg/2 µL) 2 days post IR injury. Activation of Müller glial cells, apoptosis and expression of inflammasome markers and visual function were assessed. IR injury triggered early TXNIP mRNA expression that persisted for 14 days and was localized within activated Müller cells in WT-IR, compared to sham controls. Exposure of Müller cells to hypoxia-reoxygenation injury triggered endoplasmic reticulum (ER) stress markers and inflammasome activation in WT cells, but not from TKO cells. Secondary damage was evident by the significant increase in the number of occluded acellular capillaries and visual impairment in IR-WT mice but not in IR-TKO. Intervention with TXNIP-ASO prevented ischemia-induced glial activation and neuro-vascular degeneration, and improved visual function compared to untreated WT. Targeting TXNIP expression may offer an effective approach in the prevention of secondary damage associated with retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Maha Coucha
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Pharmaceutical Sciences, South University, School of Pharmacy, Savannah, GA 31406, USA
| | - Ahmed Y Shanab
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mohamed Sayed
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Almira Vazdarjanova
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30901, USA
| | - Azza B El-Remessy
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
- Department of Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, USA.
| |
Collapse
|
15
|
Li L, Chen Q, Yu Y, Chen H, Lu M, Huang Y, Li P, Chang H. RKI‐1447 suppresses colorectal carcinoma cell growth via disrupting cellular bioenergetics and mitochondrial dynamics. J Cell Physiol 2019; 235:254-266. [PMID: 31237697 DOI: 10.1002/jcp.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Liyi Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Qin Chen
- Department of Intensive Care First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yaojun Yu
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui Chen
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Mingdong Lu
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Yingpeng Huang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Pihong Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Hong Chang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| |
Collapse
|
16
|
Zhao X, Zhu L, Liu D, Chi T, Ji X, Liu P, Yang X, Tian X, Zou L. Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/reperfusion injury. Apoptosis 2019; 24:157-167. [PMID: 30387007 DOI: 10.1007/s10495-018-1495-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reports have showed that Sigma-1 receptor (Sig-1R) activation can protect neurons against cerebral ischemia/reperfusion (I/R) injury in mice and alleviate endoplasmic reticulum (ER) stress in cultured cells, but little known is about the protective role of Sig-1R on ER stress induced by cerebral I/R. The purpose of this study was to determine whether Sig-1R exerts a protective effect against ER stress-mediated apoptosis in cerebral I/R using a 15-min bilateral common carotid artery occlusion (BCCAO) mouse model. At 72 h after reperfusion in BCCAO mice, we found that Sig-1R knockout (Sig-1R KO) significantly increased terminal dUTP nick-end labeling (TUNEL)-positive cells and nuclear structural damage in cortical neurons. Treatment with the Sig-1R agonist PRE084 once daily for three consecutive days reduced the number of TUNEL-positive cells and improved the ultrastructural damage of neurons in the cerebral cortex. These protective effects could be blocked by the Sig-1R antagonist BD1047. Then, we used BCCAO mice at 24 h after reperfusion to detect the expression of ER stress-mediated apoptotic pathway proteins. We found that expression of the pro-apoptotic proteins p-PERK, p-eIF2α, ATF, CHOP, p-IRE, p-JNK, Bim, PUMA, cleaved-caspase-12 and cleaved-caspase-3 was significantly increased and that expression of the anti-apoptotic protein Bcl-2 was significantly decreased in Sig-1R KO-BCCAO mice compared with BCCAO mice. Meanwhile, we found that treatment with PRE084 twice a day decreased pro-apoptotic protein expression and increased anti-apoptotic protein expression. The effects of PRE084 were blocked by the Sig-1R antagonist BD1047. These results suggest that Sig-1R activation inhibits ER stress-mediated apoptosis in BCCAO mice, indicating that Sig-1R may be a therapeutic target for neuroprotection particularly relevant to ER stress-induced apoptosis after cerebral I/R injury.
Collapse
Affiliation(s)
- Xuemei Zhao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
- Department of Pharmacology, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, People's Republic of China
| | - Lin Zhu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xuexue Yang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xinxin Tian
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Yu Y, Xing N, Xu X, Zhu Y, Wang S, Sun G, Sun X. Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:178-186. [PMID: 30599897 DOI: 10.1016/j.phymed.2018.09.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/04/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Protection the heart from ischemia/reperfusion (I/R) injury is an area of intense research, as myocardial infarction is a major cause of mortality and morbidity all around the world. Tournefolic acid B (TAB) is a relative new compound derived from Clinopodium chinense (Benth.) Kuntze (Chinese name: Feng Lun Cai). This traditional Chinese herbal medicine has been used for its activities on anti-inflammatory, lowering blood glucose, antitumor and antiradiation. However, the pharmacological effects of TAB were rarely studied. PURPOSE Pathways involving phosphoinositide 3-kinase (PI3K) and protein kinase b (Akt) are crucial in regulating the ER stress and associated apoptosis in the process of I/R injury. In the present study, we aim to investigate the cardioprotective effects of tournefolic acid B (TAB) against myocardial I/R injury and explore the molecular mechanisms involved. STUDY DESIGN H9c2 cadiomyocyte were incubated with TAB for 24 h and then exposed to hypoxia/reoxygenation. Isolated rat hearts were subjected to global ischemia and reperfusion in the absence or presence of TAB. METHODS The possible mechanisms were investigated in vitro and ex vivo by multiple detection methods including JC-1 staining, ROS detection, activities of caspases detection, TUNEL staining, and Western-blot analysis. RESULTS We found that TAB significantly improved the hemodynamic parameters (LVeDP, LVSP, + dP/dtmax, - dP/dtmin, and HR) of isolated rat hearts, and depressed the cardiomyocyte apoptosis. Besides, TAB inhibited the oxidative stress by adjusting the activities of antioxidant enzymes (SOD, CAT, and GSH-Px). The I/R injury triggered the endoplasmic reticulum (ER) stress by activating the ER proteins, such as Grp78, ATF6, PERK, and eIf2α. which are all refrained by TAB. TAB also enhanced the phosphorylation of PI3K and AKT, inhibited the expression of CHOP and Caspase-12, reduced the phosphorylation of JNK, and increased Bcl-2/Bax ratio. CONCLUSION TAB protects against myocardial I/R injury by suppressing PI3K/AKT-mediated ER stress, oxidative stress, and apoptosis, revealing a promising therapeutic agent against ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xudong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yindi Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
18
|
Wang H, Chen L, Zhang X, Xu L, Xie B, Shi H, Duan Z, Zhang H, Ren F. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Biomed Pharmacother 2018; 111:468-475. [PMID: 30594786 DOI: 10.1016/j.biopha.2018.12.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Kaempferol is a flavonoid compound that has many functions, such as anti-inflammation and antioxidation. Acute liver failure (ALF) is a life-threatening illness accompanied by serious inflammation and extensive hepatocyte apoptosis. The aim of this study was to examine the therapeutic potential of kaempferol and its mechanism in ALF. In a murine ALF model induced by d-galactosamine (d-GalN, 700 mg/kg) / lipopolysaccharide (LPS, 10 μg/kg), mice were pretreated with kaempferol at 2 h before d-GalN/LPS administration and then sacrificed 6 h after d-GalN/LPS injection. Lethality, liver damage, endoplasmic reticulum(ER) stress, hepatocyte viability and apoptosis were evaluated. Whether pretreatment of kaempferol protected hepatocytes from ER stress-induced apoptosis was detected in vitro. Pretreatment of kaempferol decreased lethality, prolonged the survival time and significantly protected against liver injury, which was indicated by decreased transaminase levels and the well-preserved liver structure. The protective effect of kaempferol on the ALF mouse model was achieved by inhibiting hepatocyte apoptosis. Moreover, pretreatment of kaempferol increased the expression of glucose-regulated/binding immunoglobulin protein 78 (Grp78), decreased the expression of C/EBP-homologous protein (CHOP), and protected hepatocytes from ER stress-induced apoptosis in vitro. Our results showed that pretreatment of Grp78 siRNA partially negated the hepatic protection from kaempferol and reversed the inhibition of CHOP protein expression in d-GalN/LPS-induced ALF mice. In conclusion, kaempferol inhibits hepatocyte apoptosis to protect mice from liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Therefore, kaempferol may be used to treat ALF.
Collapse
Affiliation(s)
- Huijuan Wang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Liyan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xiangying Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Lin Xu
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Bangxiang Xie
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Hongbo Shi
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Huanhu Zhang
- Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Feng Ren
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Kong DQ, Li L, Liu Y, Zheng GY. Association between endoplasmic reticulum stress and risk factors of diabetic retinopathy. Int J Ophthalmol 2018; 11:1704-1710. [PMID: 30364130 DOI: 10.18240/ijo.2018.10.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common and challenging ocular complications of diabetes mellitus. As a chronic, progressive ocular disease that poses a serious threat to vision, DR has gradually become a leading cause of blindness worldwide. Emerging evidence points to an important role of endoplasmic reticulum (ER) stress in not only maintaining the steady-state equilibrium in the body, but also in intracellular synthesis, protein folding, and other essential functions. Recent studies have demonstrated clear associations between ER stress-related physiological functions and the pathogenesis of DR. When cells are stimulated by external stimuli, UPR pathway is activated firstly to protect it. However, long-term harmful factors can induce ER stress. which interferes with the physiological metabolism of retinal cells and participates in the occurrence of DR via the ATF6 pathway, PERK pathway and IRE1 pathway. At present, ER stress blocker is expected to become a new anti-DR therapy. Thus, understanding the relationship between ER stress and DR will help to develop new effective preventative treatments. In this review, we summarize the risk factors of DR pathogenesis induced by ER stress toward revealing potentially new therapeutic targets.
Collapse
Affiliation(s)
- De-Qian Kong
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Li Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yue Liu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Guang-Ying Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
20
|
Sevoflurane relieves hepatic ischemia-reperfusion injury by inhibiting the expression of Grp78. Biosci Rep 2018; 38:BSR20180549. [PMID: 30217942 PMCID: PMC6172422 DOI: 10.1042/bsr20180549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: This article aimed to study the role of sevoflurane pre-conditioning in hepatic ischemia–reperfusion and its potential mechanism. Methods: Rat liver ischemia–reperfusion model was constructed. Serum TNF-α, IL-1β, IL-10, and IL-6 concentrations were detected by ELISA. Malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) in liver homogenate were determined. Hematoxylin–Eosin (HE) staining, Tunel, and immunohistochemistry were performed. Ischemia–reperfusion hepatocyte model was established. Cells transfection was conducted. Apoptosis was observed by flow cytometry. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were used. Results: Compared with I/R group, liver damage degree, liver cell apoptosis, and glucose regulatory protein 78 (Grp78) expression was obviously reduced in rats of SEV group. TNF-α, IL-1β, and IL-6 concentrations were also significantly increased (P<0.01). MDA and NO concentrations were dramatically lower (P<0.01) and SOD concentration was significantly higher (P<0.01). Apoptosis rate, Grp78, PERK, eIF2α, and p-c-JNK/JNK expression was also significantly decreased (P<0.01). Sevoflurane significantly reduced apoptosis and expression of PERK, eIF2α, p-c-JNK/JNK by inhibiting the expression of Grp78 (P<0.01). Conclusion: Sevoflurane relieves hepatic ischemia–reperfusion injury by inhibiting the expression of Grp78.
Collapse
|
21
|
Huang Y, Hu Z. UBIAD1 protects against oxygen-glucose deprivation/reperfusion-induced multiple subcellular organelles injury through PI3K/AKT pathway in N2A cells. J Cell Physiol 2018; 233:7480-7496. [PMID: 29663377 DOI: 10.1002/jcp.26602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/09/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Cerebral ischemia/reperfusion-induced injury plays a significant role in the development of multi-subcellular organelles injury after ischemic stroke. UBIAD1 was discovered originally as a potential tumor suppressor protein. Recently, analysis of UBIAD1 has indicated it is a prenyltransferase enzyme for both non-mitochondrial CoQ10 and vitamin K2 production. Further, UBIAD1 has been localized to multiple subcellular organelles. Particularly, UBIAD1 plays an important role in the regulation of oxidative stress, apoptosis and cell proliferation, cholesterol and lipid metabolism, which was closely associated with the cerebral ischemic/reperfusion mechanism. However, the mechanism underlying effects of UBIAD1 on cerebral ischemia/reperfusion-induced injury remains largely unknown. We aimed to investigate the effects of UBIAD1 on ischemia/reperfusion-induced multiple subcellular organelles injury in vitro, mouse N2A cells were subjected to a classical oxygen-glucose deprivation and reperfusion (OGD/R) insult. The expression of UBIAD1 was reduced in mouse N2A cells after OGD/R. UBIAD1 exhibits multi-subcellular organelles co-localization in N2a cells, including in the mitochondria, endoplasmic reticulum, and Golgi apparatus. The over-expression of UBIAD1 significantly protects against OGD/R-induced cell death. UBIAD1 over-expression also attenuated OGD/R-induced mitochondrial fragmentation and dysfunction and mediated the level of apoptosis-associated protein. Moreover, we observed that the over-expression of UBIAD1 ameliorated OGD/R-induced fragmentation and reduced the level of oxidative stress-related protein expression in both the endoplasmic reticulum and Golgi apparatus. Besides, the neuroprotective effect of UBIAD1 was correlated with the PI3K/AKT pathway, which was demonstrated using the PI3K inhibitor LY294002 and perifosion. Collectively, these findings identified that UBIAD1 protects against OGD/R-induced multiple subcellular organelles injury through PI3K/AKT Pathway.
Collapse
Affiliation(s)
- Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Yang FW, Fu Y, Li Y, He YH, Mu MY, Liu QC, Long J, Lin SD. Prostaglandin E1 protects hepatocytes against endoplasmic reticulum stress-induced apoptosis via protein kinase A-dependent induction of glucose-regulated protein 78 expression. World J Gastroenterol 2017; 23:7253-7264. [PMID: 29142472 PMCID: PMC5677201 DOI: 10.3748/wjg.v23.i40.7253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the protective effect of prostaglandin E1 (PGE1) against endoplasmic reticulum (ER) stress-induced hepatocyte apoptosis, and to explore its underlying mechanisms.
METHODS Thapsigargin (TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinoma-derived cell line HepG2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RT-PCR. Apoptotic index and cell viability of L02 cells and HepG2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay.
RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and HepG2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein (CHOP), glucose-regulated protein (GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and mRNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phospho-eukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A (PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78.
CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathway-dependent induction of GRP78 expression.
Collapse
Affiliation(s)
- Fang-Wan Yang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yu Fu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
- Department of Infectious Diseases, Heze Municipal Hospital, Heze 274000, Shandong Province, China
| | - Ying Li
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Qi-Chuan Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Jun Long
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Shi-De Lin
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
23
|
Hata M, Ikeda HO. Modulation of valosin-containing protein by Kyoto University Substances (KUS) as a novel therapeutic strategy for ischemic neuronal diseases. Neural Regen Res 2017; 12:1252-1255. [PMID: 28966635 PMCID: PMC5607815 DOI: 10.4103/1673-5374.213540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retinal ischemia causes several vision-threatening diseases, including diabetic retinopathy, retinal artery occlusion, and retinal vein occlusion. Intracellular adenosine triphosphate (ATP) depletion and subsequent induced endoplasmic reticulum (ER) stress are proposed to be the underlying mechanisms of ischemic retinal cell death. Recently, we found that a naphthalene derivative can inhibit ATPase activity of valosin-containing protein, universally expressed within various types of cells, including retinal neural cells, with strong cytoprotective activity. Based on the chemical structure, we developed novel valosin-containing protein modulators, Kyoto University Substances (KUSs), that not only inhibit intracellular ATP depletion, but also ameliorate ER stress. Suppressing ER stress by KUSs is associated with neural cell survival in animal models of several neurodegenerative diseases, such as glaucoma and retinal degeneration. Given that a major pathology of ischemic retinal diseases, other than intracellular ATP depletion, is ER stress-induced cell death, KUSs may provide a novel strategy for cell protection in ischemic conditions. Hence, we investigated the efficacy of KUS121 in a rat model of retinal ischemic injury. Intravitreal injections of KUS121, which is clinically preferable route of drug administration in retinal diseases, significantly suppressed inner retinal thinning and retinal cell death, and maintained visual functions. Valosin-containing protein modulation by KUS is a promising novel therapeutic strategy for ischemic retinal diseases.
Collapse
Affiliation(s)
- Masayuki Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Neuroprotective Treatment Project for Ocular Diseases, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Neuroprotective Treatment Project for Ocular Diseases, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
24
|
KUS121, a VCP modulator, attenuates ischemic retinal cell death via suppressing endoplasmic reticulum stress. Sci Rep 2017; 7:44873. [PMID: 28317920 PMCID: PMC5357950 DOI: 10.1038/srep44873] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
Ischemic neural damages cause several devastating diseases, including brain stroke and ischemic retinopathies, and endoplasmic reticulum (ER) stress has been proposed to be the underlying mechanism of the neuronal cell death of these conditions. We previously synthesized Kyoto University substances (KUSs) as modulators of valosin-containing protein (VCP); KUSs inhibit VCP ATPase activity and protect cells from different cell death-inducing insults. Here, we examined the efficacy of KUS121 in a rat model of retinal ischemic injury. Systemic administration of KUS121 to rats with ischemic retinal injury significantly suppressed inner retinal thinning and death of retinal ganglion and amacrine cells, with a significant functional maintenance of visual functions, as judged by electroretinography. Furthermore, intravitreal injection of KUS121, which is the clinically preferred route of drug administration for retinal diseases, appeared to show an equal or better neuroprotective efficacy in the ischemic retina compared with systemic administration. Indeed, induction of the ER stress marker C/EBP homologous protein (CHOP) after the ischemic insult was significantly suppressed by KUS121 administration. Our study suggests VCP modulation by KUS as a promising novel therapeutic strategy for ischemic neuronal diseases.
Collapse
|
25
|
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin 2017; 38:317-330. [PMID: 28112174 DOI: 10.1038/aps.2016.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg-1·d-1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1-1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis.
Collapse
|
26
|
Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, Xu K, Yin J, Li R, Shi H, Wang Z, Li X, Xiao J, Zhang H. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway. Int J Mol Sci 2017; 18:ijms18020315. [PMID: 28208696 PMCID: PMC5343851 DOI: 10.3390/ijms18020315] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose‑regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3β, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of β-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3β, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.
Collapse
Affiliation(s)
- Zhengmao Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fenzan Wu
- Science and Education division, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, China.
| | - Xie Zhang
- Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, China.
| | - Yi Chai
- Department of neurosurgery, The second Affiliated Hospital, Nanchang University, Nanchang 330006, China.
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuetao Yang
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kebin Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiayu Yin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Rui Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongxue Shi
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhouguang Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
27
|
Chen HY, Chou HC, Chang SJ, Liao EC, Tsai YT, Wei YS, Li JM, Lin LH, Lin MW, Chen YJ, Chen YS, Lin CC, Wang YS, Ko ML, Chan HL. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia-Reperfusion Injury and Possible Relevance to Acute Glaucoma. Int J Mol Sci 2017; 18:ijms18020334. [PMID: 28165428 PMCID: PMC5343869 DOI: 10.3390/ijms18020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera) during ischemia–reperfusion (IR) injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group). The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
- Center for Teacher Education, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan.
| | - Shing-Jyh Chang
- Gynecologic Oncology Section Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu 300, Taiwan.
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ying-Jen Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Sheng Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Chih-Chun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
28
|
Xiong Y, Chen H, Lin P, Wang A, Wang L, Jin Y. ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells. Am J Physiol Cell Physiol 2017; 312:C341-C353. [PMID: 28100484 DOI: 10.1152/ajpcell.00222.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Activating transcription factor 6 (ATF6), a sensor protein located in the endoplasmic reticulum (ER) membrane, is an important factor in the ER stress signaling pathway. ER stress is known to be involved in folliculogenesis, follicular growth, and ovulation; however, the physiological function of ATF6 in mouse granulosa cells remains largely unknown. The aim of this study was to assess the role of ATF6 in mouse granulosa cells with respect to apoptosis, the cell cycle, and steroid hormone production, as well as several key genes related to follicular development, via RNA interference, immunohistochemical staining, real-time quantitative PCR, Western blotting, flow cytometry, terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL) assay, and ELISA. Immunohistochemical staining revealed that ATF6 was extensively distributed in the granulosa cells of various ovarian follicles and oocytes in adult female mice. FSH or LH treatment significantly increased ATF6 protein levels in mouse granulosa cells. In the meantime, a recombinant plasmid was used to deplete ATF6 successfully using short hairpin RNA-mediated interference technology, which was verified at both the mRNA and protein levels. Flow cytometry and TUNEL assay analysis indicated that ATF6 depletion decreased apoptosis and arrested the S phase of the cell cycle in mouse granulosa cells. Consistent with these results, p53, caspase-3, B cell lymphoma 2 (Bcl-2)-associated X protein, CCAAT-enhancer-binding protein homologous protein, cyclin A1, cyclin B1, and cyclin D2 mRNA expression decreased, whereas Bcl-2 and glucose-regulated protein 78 kDa mRNA expression increased. Interestingly, ATF6 knockdown obviously increased progesterone and estradiol production in mouse granulosa cells. Cytochrome P450 1b1 (Cyp1b1) mRNA levels were downregulated, whereas Cyp11a1, steroidogenic acute regulatory, and Cyp19a1 mRNA levels were upregulated, in keeping with the changes in steroid hormones. Furthermore, ATF6 disruption remarkably increased insulin-like growth factor binding protein4 (Igfbp4) expression and decreased hyaluronan synthase 2 (Has2), prostaglandin-endoperoxide synthase 2 (Ptgs2), and prostaglandin F receptor (Ptgfr) expression in mouse granulosa cells, which are proteins crucial for follicular development. But, after treating with tunicamycin, the levels of Has2, Ptgs2, and Ptgfr increased relatively, whereas Igfbp4 expression decreased. Collectively, these results imply that ATF6, as a key player in ER stress signaling, may regulate apoptosis, the cell cycle, steroid hormone synthesis, and other modulators related to folliculogenesis in mouse granulosa cells, which may indirectly be involved in the development, ovulation, and atresia of ovarian follicles by affecting the physiological function of granulosa cells. The present study extends our understanding and provides new insights into the physiological significance of ATF6, a key signal transducer of ER stress, in ovarian granulosa cells.
Collapse
Affiliation(s)
- Yongjie Xiong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
29
|
Xiang XY, Yang XC, Su J, Kang JS, Wu Y, Xue YN, Dong YT, Sun LK. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells. Oncol Rep 2016; 35:3471-9. [PMID: 27035858 DOI: 10.3892/or.2016.4725] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 01/04/2023] Open
Abstract
As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress.
Collapse
Affiliation(s)
- Xi-Yan Xiang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Chun Yang
- Centre of Nephrology and Urology, Shenzhen University Health Science Centre, Shenzhen 130021, P.R. China
| | - Jin Su
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing-Song Kang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yao Wu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ya-Nan Xue
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu-Tong Dong
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lian-Kun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
30
|
Jian L, Lu Y, Lu S, Lu C. Chemical chaperone 4-phenylbutyric acid protects H9c2 cardiomyocytes from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis. Mol Med Rep 2016; 13:4386-92. [PMID: 27035223 DOI: 10.3892/mmr.2016.5063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 02/02/2016] [Indexed: 11/06/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) is a potential contributor to high rates of mortality in several cardiovascular diseases. I/R initiates the unfolded protein response and endoplasmic reticulum (ER) stress, which may lead to apoptotic pathways and exaggerate I/R injury. 4‑phenylbutyric acid (4‑PBA), a low molecular weight, terminal aromatic substituted fatty acid, has been reported to function as an ER chaperone. The aim of the present study was to investigate whether 4‑PBA is able to reduce ER stress‑induced apoptosis and prevent cardiomyocyte damage during the process of I/R in vitro. Accordingly, the rat cardiomyocyte line, H9c2, was treated with hypoxia/reoxygenation as an I/R model in vitro. Myocardium apoptosis was determined with TUNEL staining. The expression of ER stress‑related proteins were examined by western blotting. The resulting data showed that I/R activates the ER stress proteins, glucose‑regulated protein 78, activating transcription factor 6 and protein kinase RNA‑like endoplasmic reticulum kinase, which were all reduced by pretreatment with 4‑PBA. In addition, pretreatment with 4‑PBA significantly inhibited the expression levels of pro‑apoptotic proteins, C/EBP homologous protein, B cell lymphoma (Bcl‑2)‑associated X protein and phosphorylated c‑Jun N‑terminal kinase, and enhanced the expression of the anti‑apoptotic protein Bcl‑2 (n=3; P<0.05). The data demonstrated that I/R initiates ER stress‑associated apoptotic pathways, and 4‑PBA pretreatment protected the cardiomyocytes from I/R‑induced cell death. To the best of our knowledge, the present study is the first to report on the cell repair mechanism of 4‑PBA against I/R damage in cardiomyocytes based on ER stress‑associated apoptotic pathways.
Collapse
Affiliation(s)
- Lian Jian
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Yuan Lu
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Shan Lu
- Radiology Department, Tianjin Medical University Metabolic Diseases Hospital, Tianjin 300000, P.R. China
| | - Chengzhi Lu
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
31
|
Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang J, Ai Q, Xing N, Sun X. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways. Sci Rep 2016; 6:21730. [PMID: 26888485 PMCID: PMC4757886 DOI: 10.1038/srep21730] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Recent reports suggested the involvement of oxidative stress- and endoplasmic reticulum stress (ERS)-associated pathways in the progression of ischemia/reperfusion (I/R) injury. Notoginsenoside R1 (NGR1) is a novel saponin isolated from P. notoginseng, which has a history of prevention and treatment of cardiovascular diseases. Objective: We aimed to examine the cardioprotective effects of NGR1 on I/R-induced heart dysfunction ex vivo and in vitro. Methods: H9c2 cadiomyocytes were incubated with NGR1 for 24 h and exposed to hypoxia/reoxygenation. Isolated rat hearts were perfused by NGR1 for 15 min and then subjected to global ischemia/reperfusion. Hemodynamic parameters were monitored as left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase and decrease of left ventricular pressure (±dP/dt max/min). Results: NGR1 pretreatment prevents cell apoptosis and delays the onset of ERS by decreasing the protein expression levels of ERS-responsive proteins GRP78, P-PERK, ATF6, IRE, and inhibiting the expression of pro-apoptosis proteins CHOP, Caspase-12, and P-JNK. Besides, NGR1 scavenges free radical, and increases the activity of antioxidase. NGR1 inhibits Tunicamycin-induced cell death and cardic dysfunction. Conclusion: We elucidated the significant cardioprotective effects of NGR1 against I/R injuries, and demonstrated the involvement of oxidative stress and ERS in the protective effects of NGR1.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Qidi Ai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| |
Collapse
|
32
|
Jiang M, Yun Q, Shi F, Niu G, Gao Y, Xie S, Yu S. Downregulation of miR-384-5p attenuates rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through inhibiting endoplasmic reticulum stress. Am J Physiol Cell Physiol 2016; 310:C755-63. [PMID: 26864693 DOI: 10.1152/ajpcell.00226.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress has been linked to the pathogenesis of Parkinson's disease (PD). However, the role of microRNAs (miRNAs) in this process involved in PD remains poorly understood. Recent studies indicate that miR-384-5p plays an important role for cell survival in response to different insults, but the role of miR-384-5p in PD-associated neurotoxicity remains unknown. In this study, we investigated the role of miR-384-5p in an in vitro model of PD using dopaminergic SH-SY5Y cells treated with rotenone. We found that miR-384-5p was persistently induced by rotenone in neurons. Also, the inhibition of miR-384-5p significantly suppressed rotenone-induced neurotoxicity, while overexpression of miR-384-5p aggravated rotenone-induced neurotoxicity. Through bioinformatics and dual-luciferase reporter assay, miR-384-5p was found to directly target the 3'-untranslated region of glucose-regulated protein 78 (GRP78), the master regulator of ER stress sensors. Quantitative polymerase chain reaction and Western blotting analysis showed that miR-384-5p negatively regulated the expression of GRP78. Inhibition of miR-384-5p remarkably suppressed rotenone-evoked ER stress, which was evident by a reduction in the phosphorylation of activating transcription factor 4 (ATF4) and inositol-requiring enzyme 1 (IRE1α). The downstream target genes of ER stress including CCAAT/enhancer-binding protein-homologous protein (CHOP) and X box-binding protein-1 (XBP-1) were also decreased by the miR-384-5p inhibitor. In contrast, overexpression of miR-384-5p enhanced ER stress signaling. In addition, knockdown of GRP78 significantly abrogated the inhibitory effect of miR-384-5p inhibitors on cell apoptosis and ER stress signaling. Moreover, we observed a significant increase of miR-384-5p expression in primary neurons induced by rotenone. Taken together, our results suggest that miR-384-5p mediated ER stress by negatively regulating GRP78 and that miR-384-5p inhibition might be a novel and promising approach for the treatment of PD.
Collapse
Affiliation(s)
- Mingfang Jiang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China; Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, China
| | - Feng Shi
- Department of Radiology, Inner Mongolia Chinese Medicine Hospital, Hohhot, China; and
| | - Guangming Niu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shenghui Xie
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China;
| |
Collapse
|
33
|
Salganik M, Sergeyev VG, Shinde V, Meyers CA, Gorbatyuk MS, Lin JH, Zolotukhin S, Gorbatyuk OS. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons. Neurobiol Aging 2015; 36:2213-23. [PMID: 25863526 DOI: 10.1016/j.neurobiolaging.2015.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Abstract
Age-related structural changes and gradual loss of key enzymes significantly affect the ability of the endoplasmic reticulum (ER) to facilitate proper protein folding and maintain homeostasis. In this work, we present several lines of evidence supporting the hypothesis that the age-related decline in expression of the ER chaperone glucose-regulated protein 78 (GRP78) could be related to the development of Parkinson's disease. We first determined that old (24 months) rats exhibit significantly lower levels of GRP78 protein in the nigrostriatal system as compared with young (2 months) animals. Then using recombinant adeno-associate virus-mediated gene transfer, we found that GRP78 downregulation by specific small interfering RNAs (siRNAs) aggravates alpha-synuclein (α-syn) neurotoxicity in nigral dopamine (DA) neurons. Moreover, the degree of chaperone decline corresponds with the severity of neurodegeneration. Additionally, comparative analysis of nigral tissues obtained from old and young rats revealed that aging affects the capacity of nigral DA cells to upregulate endogenous GRP78 protein in response to human α-syn neurotoxicity. Finally, we demonstrated that a sustained increase of GRP78 protein over the course of 9 months protected aging nigral DA neurons in the α-syn-induced rat model of Parkinson's-like neurodegeneration. Our data indicate that the ER chaperone GRP78 may have therapeutic potential for preventing and/or slowing age-related neurodegeneration.
Collapse
Affiliation(s)
- Maxim Salganik
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; The Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valeriy G Sergeyev
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biology, Udmurt State University, Izhevsk, Russia
| | - Vishal Shinde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Meyers
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marina S Gorbatyuk
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan H Lin
- Department of Pathology, University of California, La Jolla, CA, USA
| | - Sergey Zolotukhin
- The Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Oleg S Gorbatyuk
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapy, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Nashine S, Liu Y, Kim BJ, Clark AF, Pang IH. Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci 2014; 56:221-31. [PMID: 25414185 DOI: 10.1167/iovs.14-15447] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate the role of C/EBP homologous protein (CHOP), a proapoptotic protein, and the unfolded protein response (UPR) marker that is involved in endoplasmic reticulum (ER) stress-mediated apoptosis in mouse retinal ganglion cell (RGC) death following ischemia/reperfusion (I/R) injury. METHODS Retinal I/R injury was induced in adult C57BL/6J wild-type (WT) and CHOP knockout (Chop(-/-)) mice by raising IOP to 120 mm Hg for 60 minutes. Expression of CHOP and other UPR markers was studied by Western blot and immunohistochemistry. Retinal ganglion cell counts were performed in retinal flat mounts stained with an RGC marker. Retinal ganglion cell function was evaluated by scotopic threshold response (STR) electroretinography. RESULTS In WT mice, retinal CHOP was upregulated by 30% in I/R-injured eyes compared to uninjured eyes 3 days after injury (P < 0.05). Immunohistochemistry confirmed CHOP upregulation specifically in RGCs. CHOP knockout did not affect baseline RGC density or STR amplitude. Ischemia/reperfusion injury decreased RGC densities and STR amplitudes in both WT and Chop(-/-) mice. However, survival of RGCs in I/R-injured Chop(-/-) mouse was 48% higher (P < 0.05) than that in I/R-injured WT mouse 3 days after I/R injury. Similarly, RGC density was significantly higher in Chop(-/-) eyes at 7, 14, and 28 days after I/R injury. Scotopic threshold response amplitudes of Chop(-/-) mice were significantly higher at 3 and 7 days after I/R than those of WT mice. CONCLUSIONS Absence of CHOP partially protects against RGC loss and reduction in retinal function after I/R injury, indicating that CHOP and, thus, ER stress play an important role in RGC apoptosis in retinal I/R injury.
Collapse
Affiliation(s)
- Sonali Nashine
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
35
|
Tsujii S, Ishisaka M, Shimazawa M, Hashizume T, Hara H. Zonisamide suppresses endoplasmic reticulum stress-induced neuronal cell damage in vitro and in vivo. Eur J Pharmacol 2014; 746:301-7. [PMID: 25261037 DOI: 10.1016/j.ejphar.2014.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 11/15/2022]
Abstract
Zonisamide has been reported to have protective effects on epilepsy and Parkinson׳s disease and to work via various mechanisms of action, such as inhibition of monoamine oxidase-B and enhancement of tyrosine hydroxylase. Recently, it has been suggested that zonisamide itself shows neuroprotective actions. Therefore, in the present study we investigated the neuroprotective effects of zonisamide against endoplasmic reticulum (ER) stress. We used human neuroblastoma (SH-SY5Y) cells and investigated the protective effects of zonisamide against tunicamycin- and thapsigargin-induced neuronal cell death. In addition, we investigated the effect of zonisamide against 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death and the mechanism of protection against ER stress. In vivo, we investigated the effect of zonisamide (20 mg/kg, p.o.) in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson׳s disease. Zonisamide not only suppressed MPP⁺-induced cell death, but also inhibited ER stress-induced cell death and suppressed the expression of ER stress-related factors such as C/EBO homologous protein (CHOP) in vivo. Furthermore, zonisamide inhibited the activation of caspase-3 in vitro. These results suggest that zonisamide affected ER stress via caspase-3. We think that ER stress, particularly the mechanism via caspase-3, is involved in part of the neuroprotective effect of zonisamide against the experimental models of Parkinson׳s disease.
Collapse
Affiliation(s)
- Saori Tsujii
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Japan
| | - Mitsue Ishisaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Japan
| | - Takanori Hashizume
- Laboratory of Drug Metabolism & Pharmacokinetics, Faculty of Pharmacy, Osaka Ohtani University, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Japan.
| |
Collapse
|