1
|
Dai J, Zhang MZ, He QQ, Chen R. The emerging role of exosomes in Schizophrenia. Psychiatry Res 2023; 327:115394. [PMID: 37536144 DOI: 10.1016/j.psychres.2023.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Schizophrenia (SCZ), a serious mental disorder, is one of the leading causes of disease burden worldwide. Exosomes, as a natural nanocarrier, are able to cross the blood-brain barrier (BBB) and play a key bridging role in central nervous system (CNS) communication, participating in important physiological processes such as neural regeneration, prominent plasticity, axonal support, and neuroinflammation. In recent years, exosomes have received widespread attention in the field of neurodegenerative diseases and mental disorders, especially Alzheimer's disease. However, there are few reviews on exosomes and SCZ. Therefore, we conducted a literature search in PubMed and Web of Science using the following search terms: "schizophrenia", "mental disorder", "central system", "exosome", "extracellular vesicles" to identify publications from January 2010 to December 2022. Our review summarized exosomes secreted by different cell types in the CNS and the double-edged role of exosomes in the development of SCZ, and discussed their future potential as biomarkers and therapeutic targets. In conclusion, this article provides an up-to-date overview of the current research on the involvement of exosomes in SCZ, while also highlighting the challenges that are currently faced in this field.
Collapse
Affiliation(s)
- Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Min-Zhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Qi-Qiang He
- School of Public Health, Wuhan University, Wuhan, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China
| | - Rui Chen
- School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
3
|
Dysbindin-1 Involvement in the Etiology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18102044. [PMID: 28937620 PMCID: PMC5666726 DOI: 10.3390/ijms18102044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world’s population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success on cognitive impairment and long-term disability and are burdened by side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of the disease. To date, many susceptibility genes have been identified to be associated with schizophrenia. DTNBP1 gene, which encodes dysbindin-1, has been linked to schizophrenia in multiple populations. Studies on genetic variations show that DTNBP1 modulate prefrontal brain functions and psychiatric phenotypes. Dysbindin-1 is enriched in the dorsolateral prefrontal cortex and hippocampus, while postmortem brain studies of individuals with schizophrenia show decreased levels of dysbindin-1 mRNA and protein in these brain regions. These studies proposed a strong connection between dysbindin-1 function and the pathogenesis of disease. Dysbindin-1 protein was localized at both pre- and post-synaptic sites, where it regulates neurotransmitter release and receptors signaling. Moreover, dysbindin-1 has also been found to be involved in neuronal development. Reduced expression levels of dysbindin-1 mRNA and protein appear to be common in dysfunctional brain areas of schizophrenic patients. The present review addresses our current knowledge of dysbindin-1 with emphasis on its potential role in the schizophrenia pathology. We propose that dysbindin-1 and its signaling pathways may constitute potential therapeutic targets in the therapy of schizophrenia.
Collapse
|
4
|
Petit EI, Michalak Z, Cox R, O'Tuathaigh CMP, Clarke N, Tighe O, Talbot K, Blake D, Joel J, Shaw A, Sheardown SA, Morrison AD, Wilson S, Shapland EM, Henshall DC, Kew JN, Kirby BP, Waddington JL. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2017; 42:1349-1360. [PMID: 27986973 PMCID: PMC5437891 DOI: 10.1038/npp.2016.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/12/2023]
Abstract
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A-/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A-/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A-/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Collapse
Affiliation(s)
- Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zuzanna Michalak
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Niamh Clarke
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Konrad Talbot
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Derek Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Josephine Joel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Horizon Discovery, Cambridge, UK
| | - Alexander Shaw
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Steven A Sheardown
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Takeda Cambridge, Cambridge, UK
| | - Alastair D Morrison
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Worldwide Business Development, GlaxoSmithKline, Stevenage, UK
| | - Stephen Wilson
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ellen M Shapland
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James N Kew
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics 2015; 7:427-49. [DOI: 10.2217/epi.14.85] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|