1
|
Wu C, Deng Q, Zhu L, Liu TCY, Duan R, Yang L. Methylene Blue Pretreatment Protects Against Repeated Neonatal Isoflurane Exposure-Induced Brain Injury and Memory Loss. Mol Neurobiol 2024; 61:5787-5801. [PMID: 38233687 DOI: 10.1007/s12035-024-03931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Perioperative neurocognitive impairment (PND) is a common medical complication in the postoperative period. General anesthesia through volatile anesthetics poses a high risk of POCD. Moreover, the developing brain is especially vulnerable to anesthesia-induced neurotoxicity. Therefore, finding a practical approach to prevent or alleviate neonatal isoflurane (ISO) exposure-induced brain injury and cognitive decline is essential for reducing medical complications following major surgery during the early postnatal period. Using a repeated neonatal ISO exposure-induced PND rat model, we investigated the effects of methylene blue (MB) pretreatment on repeated neonatal isoflurane exposure-induced brain injury and memory loss. Intraperitoneal injection of low-dose MB (1 mg/kg) was conducted three times 24 h before each ISO exposure. The Barnes maze and novel objection test were conducted to assess learning and memory. Immunofluorescence staining, F-Jade C staining, TUNEL staining, and Western blot analysis were performed to determine mitochondrial fragmentation, neuronal injury, degeneration, and apoptosis. Evans blue extravasation assay, total antioxidant capacity assay, MDA assay kit, and related inflammatory assay kits were used to test blood-brain barrier (BBB) disruption, antioxidant capacity, and neuroinflammation. Behavioral tests revealed that MB pretreatment significantly ameliorated ISO exposure-induced cognitive deficits. In addition, MB pretreatment alleviates neuronal injury, apoptosis, and degeneration. Furthermore, the BBB integrity was preserved by MB pretreatment. Additional studies revealed that ISO-induced excessive mitochondrial fragmentation, oxidative stress, and neuroinflammation were significantly attenuated by MB pretreatment in the PND rat model. Our findings suggest that MB pretreatment alleviates ISO exposure-induced brain injury and memory loss for the first time, supporting MB pretreatment as a promising approach to protect the brain against neonatal ISO exposure-induced postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Liu J, Wang T, Song J, Cao L. Effect of esketamine on postoperative analgesia and postoperative delirium in elderly patients undergoing gastrointestinal surgery. BMC Anesthesiol 2024; 24:46. [PMID: 38302882 PMCID: PMC10832082 DOI: 10.1186/s12871-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE To investigate the analgesic effect of esketamine combined with low-dose sufentanil in elderly patients after gastrointestinal surgery, and whether the anti-inflammatory effect of esketamine is involved in the mechanism of postoperative delirium. METHOD We enrolled sixty elderly patients (age ≥ 65 years old, American Society of Anesthesiologists (ASA) grade I-III) who underwent gastrointestinal surgery. Patients were randomly assigned to Group C (control group) who received sufentanil 2 ug/kg, and Group E (experimental group) who received sufentanil 1.5 ug/kg + esketamine 1 mg/kg, with 30 patients in each group. All patients underwent total intravenous anesthesia during the surgery and were connected to a patient-controlled intravenous analgesia (PCIA) pump after surgery. The primary outcome was the evaluation of pain at 4, 24, 48 h after surgery which was evaluated by NRS scores. In secondary outcomes, inflammation was assessed by measuring IL-6 levels using ELISA. The postoperative delirium and the occurrence of adverse reactions were observed on the 1st and 3rd day after surgery. RESULTS The NRS scores at 4, 24, and 48 h after surgery in the experimental group [(4.53 ± 1.22), (3.46 ± 0.73), (1.37 ± 0.99)] were lower than that in the control group [(5.23 ± 1.16), (4.46 ± 0.77), (2.13 ± 0.78)] (P < 0.05). The concentration of serum IL-6 in the experimental group at 24 and 48 h after operation [(15.96 ± 4.65), (11.8 ± 3.24)] were lower than that in the control group [(23.07 ± 4.86), (15.41 ± 4.01)] (P < 0.05); the incidence of postoperative delirium in the experimental group was less than that in the control group (P < 0.05); there was no significant difference in the incidence of postoperative nausea and vomiting between the two groups (P > 0.05), and neither group had nightmares or delirium. CONCLUSION Esketamine may enhance postoperative pain management compare with sufentanil, and esketamine has anti-inflammatory effects that reduce the incidence of postoperative delirium. TRIAL REGISTRATION Full name of the registry: Chinese Clinical Trial Registry. TRIAL REGISTRATION NUMBER ChiCTR2300072374. Date of registration:2023/06/12.
Collapse
Affiliation(s)
- Jing Liu
- Department of Anesthesiology, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - TingTing Wang
- Department of Anesthesiology, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - Jian Song
- Department of Anesthesiology, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taishan District, Tai'an City, Shandong Province, 271000, China
| | - Li Cao
- Department of Anesthesiology, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taishan District, Tai'an City, Shandong Province, 271000, China.
| |
Collapse
|
3
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Rizk AA, Plitman E, Senthil P, Venkatraghavan L, Chowdhury T. Effects of Anesthetic Agents on Blood Brain Barrier Integrity: A Systematic Review. Can J Neurol Sci 2023; 50:897-904. [PMID: 36353901 DOI: 10.1017/cjn.2022.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The blood brain barrier (BBB) is a highly selective permeable barrier that separates the blood and the central nervous system. Anesthesia is an integral part of surgery, and there is little known about the impact of anesthetics on the BBB. Therefore, it is imperative to explore reversible or modifiable variables such as anesthetic agents that influence BBB integrity. We aimed to synthesize the literature pertaining to the various effects of anesthetics on the BBB. METHODS MEDLINE, Embase, and Cochrane were searched from inception up to September 2022. RESULTS A total of 14 articles met inclusion into the review. The articles included nine randomized control studies (64.3%) and five quasi-experimental studies (35.7%). Twelve studies used volatile anesthetics, one study used fentanyl intravenously, and one study used pentobarbital or ketamine intraperitoneally. BBB structural deficits following the administration of an anesthetic agent included ultrastructural deficits, decreases in tight junctions, and decreases in BBB components. BBB functional deficits included permeability increases following exposure to volatile anesthetics. However, two studies found decreased permeability after fentanyl, pentobarbital, or ketamine exposure. Moreover, the impact of anesthetics on the BBB seems to be related to the duration of exposure. Notably, study findings also suggest that changes following anesthetic exposure demonstrate some reversibility over the short-term. CONCLUSION Overall, our systematic review highlights interesting findings pertaining to the impact of anesthetic agents on BBB integrity in previously healthy models. These findings and mechanisms should inspire future work to aid practitioners and healthcare teams potentially better care for patients.
Collapse
Affiliation(s)
| | - Eric Plitman
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pooja Senthil
- Faculty of Science, McMaster University, Hamilton, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zhao N, Chung TD, Guo Z, Jamieson JJ, Liang L, Linville RM, Pessell AF, Wang L, Searson PC. The influence of physiological and pathological perturbations on blood-brain barrier function. Front Neurosci 2023; 17:1289894. [PMID: 37937070 PMCID: PMC10626523 DOI: 10.3389/fnins.2023.1289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
The blood-brain barrier (BBB) is located at the interface between the vascular system and the brain parenchyma, and is responsible for communication with systemic circulation and peripheral tissues. During life, the BBB can be subjected to a wide range of perturbations or stresses that may be endogenous or exogenous, pathological or therapeutic, or intended or unintended. The risk factors for many diseases of the brain are multifactorial and involve perturbations that may occur simultaneously (e.g., two-hit model for Alzheimer's disease) and result in different outcomes. Therefore, it is important to understand the influence of individual perturbations on BBB function in isolation. Here we review the effects of eight perturbations: mechanical forces, temperature, electromagnetic radiation, hypoxia, endogenous factors, exogenous factors, chemical factors, and pathogens. While some perturbations may result in acute or chronic BBB disruption, many are also exploited for diagnostic or therapeutic purposes. The resultant outcome on BBB function depends on the dose (or magnitude) and duration of the perturbation. Homeostasis may be restored by self-repair, for example, via processes such as proliferation of affected cells or angiogenesis to create new vasculature. Transient or sustained BBB dysfunction may result in acute or pathological symptoms, for example, microhemorrhages or hypoperfusion. In more extreme cases, perturbations may lead to cytotoxicity and cell death, for example, through exposure to cytotoxic plaques.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Tracy D. Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - John J. Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Raleigh M. Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alex F. Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Linus Wang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Deng Y, Hong JS, Cao YY, Kang N, Han DY, Li YT, Chen L, Li ZQ, Zhan R, Guo XY, Yang N, Shi CM. Specific antagonist of receptor for advanced glycation end‑products attenuates delirium‑like behaviours induced by sevoflurane anaesthesia with surgery in aged mice partially by improving damage to the blood‑brain barrier. Exp Ther Med 2023; 26:317. [PMID: 38895540 PMCID: PMC11184639 DOI: 10.3892/etm.2023.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/16/2023] [Indexed: 06/21/2024] Open
Abstract
Postoperative delirium (POD), which occurs in hospital up to 1-week post-procedure or until discharge, is a common complication, especially in older adult patients. However, the pathogenesis of POD remains unclear. Although damage to blood-brain barrier (BBB) integrity is involved in the neuropathogenesis of POD, the specific role of the BBB in POD requires further elucidation. Anaesthesia using 2% isoflurane for 4 h results in the upregulation of hippocampal receptor for advanced glycation end-products (RAGE) expression and β-amyloid accumulation in aged rats. The present study investigated the role of RAGE in BBB integrity and its mechanisms in POD-like behaviours. The buried food, open field and Y maze tests were used to evaluate neurobehavioural changes in aged mice following 2.5% sevoflurane anaesthesia administration with exploratory laparotomy. Levels of tight junction proteins were assessed by western blotting. Multiphoton in vivo microscopy was used to observe the ultrastructural changes in the BBB in the hippocampal CA1 region. Anaesthesia with surgery decreased the levels of tight junction proteins occludin and claudin 5, increased matrix metalloproteinases (MMPs) 2 and 9, damaged the ultrastructure of the BBB and induced POD-like behaviour. FPS-ZM1, a specific RAGE antagonist, ameliorated POD-like behaviour induced by anaesthesia and surgery in aged mice. Furthermore, FPS-ZM1 also restored decreased levels of occludin and claudin 5 as well as increased levels of MMP2 and MMP9. The present findings suggested that RAGE signalling was involved in BBB damage following anaesthesia with surgery. Thus, RAGE has potential as a novel therapeutic intervention for the prevention of POD.
Collapse
Affiliation(s)
- Ying Deng
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing-Shu Hong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Yun Cao
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Ning Kang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Deng-Yang Han
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Tong Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lei Chen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zheng-Qian Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, P.R. China
| | - Xiang-Yang Guo
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Cheng-Mei Shi
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
7
|
Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023; 54:673-685. [PMID: 36848422 PMCID: PMC9991081 DOI: 10.1161/strokeaha.122.038263] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
8
|
Cai S, Li Q, Fan J, Zhong H, Cao L, Duan M. Therapeutic Hypothermia Combined with Hydrogen Sulfide Treatment Attenuated Early Blood-Brain Barrier Disruption and Brain Edema Induced by Cardiac Arrest and Resuscitation in Rat Model. Neurochem Res 2023; 48:967-979. [PMID: 36434369 PMCID: PMC9922226 DOI: 10.1007/s11064-022-03824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/26/2022]
Abstract
Brain injury remains a major problem in patients suffering cardiac arrest (CA). Disruption of the blood-brain barrier (BBB) is an important factor leading to brain injury. Therapeutic hypothermia is widely accepted to limit neurological impairment. However, the efficacy is incomplete. Hydrogen sulfide (H2S), a signaling gas molecule, has protective effects after cerebral ischemia reperfusion injury. This study showed that combination of hypothermia and H2S after resuscitation was more beneficial for attenuated BBB disruption and brain edema than that of hypothermia or H2S treatment alone. CA was induced by ventricular fibrillation for 4 min. Hypothermia was performed by applying alcohol and ice bags to the body surface under anesthesia. We used sodium hydrosulphide (NaHS) as the H2S donor. We found that global brain ischemia induced by CA and cardiopulmonary resuscitation (CPR) resulted in brain edema and BBB disruption; Hypothermia or H2S treatment diminished brain edema, decreased the permeability and preserved the structure of BBB during the early period of CA and resuscitation, and more importantly, improved the neurologic function, increased the 7-day survival rate after resuscitation; the combination of hypothermia and H2S treatment was more beneficial than that of hypothermia or H2S treatment alone. The beneficial effects were associated with the inhibition of matrix metalloproteinase-9 expression, attenuated the degradation of the tight junction protein occludin, and subsequently protected the structure of BBB. These findings suggest that combined use of therapeutic hypothermia and hydrogen sulfide treatment during resuscitation of CA patients could be a potential strategy to improve clinical outcomes and survival rate.
Collapse
Affiliation(s)
- Shenquan Cai
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Fan
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Liangbin Cao
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Manlin Duan
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
9
|
Qiu Y, Mo C, Xu S, Chen L, Ye W, Kang Y, Chen G, Zhu T. Research progress on perioperative blood-brain barrier damage and its potential mechanism. Front Cell Dev Biol 2023; 11:1174043. [PMID: 37101615 PMCID: PMC10124715 DOI: 10.3389/fcell.2023.1174043] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
The blood-brain barrier (BBB) is an important barrier separating the central nervous system from the periphery. The composition includes endothelial cells, pericytes, astrocytes, synapses and tight junction proteins. During the perioperative period, anesthesia and surgical operations are also a kind of stress to the body, which may be accompanied by blood-brain barrier damage and brain metabolism dysfunction. Perioperative blood-brain barrier destruction is closely associated with cognitive impairment and may increase the risk of postoperative mortality, which is not conducive to enhanced recovery after surgery. However, the potential pathophysiological process and specific mechanism of blood-brain barrier damage during the perioperative period have not been fully elucidated. Changes in blood-brain barrier permeability, inflammation and neuroinflammation, oxidative stress, ferroptosis, and intestinal dysbiosis may be involved in blood-brain barrier damage. We aim to review the research progress of perioperative blood-brain barrier damage and its potential adverse effects and potential molecular mechanisms, and provide ideas for the study of homeostasis maintenance of brain function and precision anesthesia.
Collapse
Affiliation(s)
- Yong Qiu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanlin Ye
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Kang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Chen
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guo Chen, ; Tao Zhu,
| | - Tao Zhu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012), West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guo Chen, ; Tao Zhu,
| |
Collapse
|
10
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
11
|
Hughes JM, Neese OR, Bieber DD, Lewis KA, Ahmadi LM, Parsons DW, Canfield SG. The Effects of Propofol on a Human in vitro Blood-Brain Barrier Model. Front Cell Neurosci 2022; 16:835649. [PMID: 35634467 PMCID: PMC9132176 DOI: 10.3389/fncel.2022.835649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRecently, the safety of repeated and lengthy anesthesia administration has been called into question, a subset of these animal studies demonstrated that anesthetics induced blood-brain barrier (BBB) dysfunction. The BBB is critical in protecting the brain parenchyma from the surrounding micro-vasculature. BBB breakdown and dysfunction has been observed in several neurodegenerative diseases and may contribute to both the initiation and the progression of the disease. In this study we utilize a human induced pluripotent stem cell (iPSC) derived-BBB model, exhibiting near in vivo properties, to evaluate the effects of anesthetics on critical barrier properties.MethodsiPSC-derived brain microvascular endothelial cells (BMECs) expressed near in vivo barrier tightness assessed by trans-endothelial electrical resistance and para-cellular permeability. Efflux transporter activity was determined by substrate transport in the presence of specific inhibitors. Trans-cellular transport was measured utilizing large fluorescently tagged dextran. Tight junction localization in BMECs was evaluated with fluorescent microscopy. The anesthetic, propofol was exposed to BMECs at varying durations and concentrations and BBB properties were monitored post-exposure.ResultsFollowing propofol exposure, BMECs displayed reduced resistance and increased permeability indicative of a leaky barrier. Reduced barrier tightness and the dysregulation of occludin, a tight junction protein, were partly the result of an elevation in matrix metalloproteinase (MMP) levels. Efflux transporter activity and trans-cellular transport were unaffected by propofol exposure. Propofol induced barrier dysfunction was partially restored following matrix metalloproteinase inhibition.ConclusionFor the first time, we have demonstrated that propofol alters BBB integrity utilizing a human in vitro BBB model that displays key in vivo characteristics. A leaky BBB enables otherwise impermeable molecules such as pathogens and toxins the ability to reach vulnerable cell types of the brain parenchyma. A robust human in vitro BBB model will allow for the evaluation of several anesthetics at fluctuating clinical scenarios and to elucidate mechanisms with the goal of ultimately improving anesthesia safety.
Collapse
Affiliation(s)
- Jason M. Hughes
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Olivia R. Neese
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - Dylan D. Bieber
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Kirsten A. Lewis
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Layla M. Ahmadi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Dustin W. Parsons
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Scott G. Canfield
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- *Correspondence: Scott G. Canfield,
| |
Collapse
|
12
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
13
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
14
|
Zhang Q, Zheng M, Betancourt CE, Liu L, Sitikov A, Sladojevic N, Zhao Q, Zhang JH, Liao JK, Wu R. Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655122. [PMID: 33859779 PMCID: PMC8026308 DOI: 10.1155/2021/6655122] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability. METHODS Experiments included in vivo assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as in vitro assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins. RESULTS Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while anesthesia emergence times were shorter in MMP3-KO mice and longer in WT+MMP3 mice than in WT. Extravasation of systemically administered dyes was also lower in MMP3-KO mouse brains and higher in WT+MMP3 mouse brains, than in the brains of WT mice. The results from both TEER and Transwell assays indicated that MMP3 deficiency (or inhibition) increased, while MMP3 upregulation reduced barrier integrity in either BMVEC or the coculture. MMP3 deficiency also increased the abundance of TJs and VE-cadherin proteins in BMVECs, and the protein abundance declined when MMP3 activity was upregulated in BMVECs, but not when the cells were treated with an inhibitor of extracellular signal related-kinase (ERK). CONCLUSION MMP3 increases BBB permeability following the administration of isoflurane by upregulating the ERK signaling pathway, which subsequently reduces TJ and VE-cadherin proteins in BMVECs.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mei Zheng
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | | | - Lifeng Liu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Albert Sitikov
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Nikola Sladojevic
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, USA
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University, School of Medicine, USA
| | - James K. Liao
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Rongxue Wu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| |
Collapse
|
15
|
Mi X, Cao Y, Li Y, Li Y, Hong J, He J, Liang Y, Yang N, Liu T, Han D, Kuang C, Han Y, Zhou Y, Liu Y, Shi C, Guo X, Li Z. The Non-peptide Angiotensin-(1-7) Mimic AVE 0991 Attenuates Delayed Neurocognitive Recovery After Laparotomy by Reducing Neuroinflammation and Restoring Blood-Brain Barrier Integrity in Aged Rats. Front Aging Neurosci 2021; 13:624387. [PMID: 33658918 PMCID: PMC7917118 DOI: 10.3389/fnagi.2021.624387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed neurocognitive recovery (dNCR) after surgery is a common postoperative complication in older adult patients. Our previous studies have demonstrated that cognitive impairment after surgery involves an increase in the brain renin-angiotensin system (RAS) activity, including overactivation of the angiotensin 2/angiotensin receptor-1 (Ang II/AT1) axis, which provokes the disruption of the hippocampal blood-brain barrier (BBB). Nevertheless, the potential role of the counter-regulatory RAS axis, the Ang-(1–7)/Mas pathway, in dNCR remains unknown. Using an aged rat model of dNCR, we dynamically investigated the activity of both axes of the RAS following laparotomy. AVE 0991, a nonpeptide analog of Ang-(1–7), was administered intranasally immediately after laparotomy. We found that the elevation of Ang II, induced by surgery was accompanied by a decrease of Ang-(1–7) in the hippocampus, but not in the circulation. Surgery also significantly downregulated hippocampal Mas receptor expression at 24 h postsurgery. Mas activation with intranasal AVE 0991 treatment significantly improved hippocampus-dependent learning and memory deficits induced by surgery. Furthermore, it attenuated hippocampal neuroinflammation, as shown by the decreased level of the microglial activation marker cluster of differentiation 11b (CD11b) and the decreased production of several inflammatory molecules. Along with these beneficial effects, the AVE 0991 treatment also alleviated the imbalance between matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), modulated the expression of occludin, and alleviated the IgG extravasation, thereby restoring the integrity of the BBB. In conclusion, these data indicate that activation of Mas by AVE 0991 attenuates dNCR after surgery by reducing neuroinflammation and restoring BBB integrity. Our findings suggest that the Ang-(1–7)/Mas pathway may be a novel therapeutic target for treating dNCR after surgery in older adult patients.
Collapse
Affiliation(s)
- Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yiyun Cao
- Department of Anesthesiology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chongshen Kuang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Cao Y, Liu T, Li Z, Yang J, Ma L, Mi X, Yang N, Qi A, Guo X, Wang A. Neurofilament degradation is involved in laparotomy-induced cognitive dysfunction in aged rats. Aging (Albany NY) 2020; 12:25643-25657. [PMID: 33232265 PMCID: PMC7803518 DOI: 10.18632/aging.104172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/19/2020] [Indexed: 12/04/2022]
Abstract
Excessive neuroinflammatory responses play important roles in the development of postoperative cognitive dysfunction (POCD). Neurofilaments (NFs) were essential to the structure of axon and nerve conduction; and the abnormal degradation of NFs were always accompanied with degenerative diseases, which were also characterized by excessive neuroinflammatory responses in brain. However, it is still unclear whether the NFs were involved in the POCD. In this study, the LC-MS/MS method was used to explore the neuroinflammatory response and NFs of POCD in aged rats. Moreover, trichostatin A (TSA), an inflammation-related drug, was selected to test whether it could improve the surgery-induced cognitive dysfunction, inflammatory responses and NFs. Evident cognitive dysfunction, excessive microglia activation, neuroinflammatory responses and upregulated NFs in hippocampus were observed in the POCD group. TSA pretreatment could significantly mitigate these changes. The KEGG analysis revealed that nine pathways were enriched in the TSA + surgery group (versus the surgery group). Among them, two signaling pathways were closely related with the changes of NFs proteins. In conclusion, surgery could impair the cognitive function and aggravate neuroinflammation and NFs. The TSA could significantly improve these changes which might be related to the activation of the “focal adhesion” and “ECM-receptor interaction” pathways.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jiao Yang
- Department of Pharmacy, Sixth People’s Hospital East Campus Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Aihua Qi
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Aizhong Wang
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
17
|
Jin Z, Hu J, Ma D. Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth 2020; 125:492-504. [DOI: 10.1016/j.bja.2020.06.063] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
|
18
|
Han D, Li Z, Liu T, Yang N, Li Y, He J, Qian M, Kuang Z, Zhang W, Ni C, Guo X. Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging Dis 2020; 11:1029-1045. [PMID: 33014520 PMCID: PMC7505279 DOI: 10.14336/ad.2020.0106] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence indicates that the intestinal microbiota could interact with the central nervous system and modulate multiple pathophysiological changes, including the integrity of intestinal barrier and blood-brain barrier, as well as neuroinflammatory response. In the present study, we investigated the potential role of intestinal microbiota in the pathophysiological process of postoperative cognitive dysfunction. Six-month-old APP/PS1 mice were subjected to partial hepatectomy to establish surgery model and exhibited cognitive dysfunction. The expressions of inflammatory mediators increased and tight junction proteins (ZO-1 and Occludin) levels decreased in the intestine and hippocampus. The 16S ribosomal RNA gene sequencing showed altered β diversity and intestinal microbiota richness after surgery, including genus Rodentibacter, Bacteroides, Ruminococcaceae_UCG_014 and Faecalibaculum, as well as family Eggerthellaceae and Muribaculaceae. Furthermore, prebiotics (Xylooligosaccharides, XOS) intervention effectively attenuated surgery-induced cognitive dysfunction and intestinal microbiota alteration, reduced inflammatory responses, and improved the integrity of tight junction barrier in the intestine and hippocampus. In summary, the present study indicates that intestinal microbiota alteration, the related intestinal barrier and blood-brain barrier damage, and inflammatory responses participate the pathophysiological process of postoperative cognitive dysfunction. Prebiotics intervention could be a potential preventative approach.
Collapse
Affiliation(s)
- Dengyang Han
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jindan He
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Qian
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhongshen Kuang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wen Zhang
- 2National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Cheng Ni
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Liang T, Ju H, Zhou Y, Yang Y, Shi Y, Fang H. Inhibition of glycogen synthase kinase 3β improves cognitive function in aged mice by upregulating claudin presences in cerebral endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:363-370. [PMID: 32141492 DOI: 10.1093/abbs/gmaa002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 11/12/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, is widely distributed in mammalian brains. Since GSK-3β plays a vital role in the development of neurodegenerative disorders, the present study was designed to investigate the role of GSK-3β in the blood-brain barrier (BBB) permeability in aged mice. Morris water maze test was used to examine mouse cognitive function. BBB permeability was examined by the leakage of fluorescence signals of low-molecular weight dextran. GSK-3β inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), was administrated in aged mice and in cultured mouse brain microvascular endothelial cells (bEnd.3). Compared with young mice, aged mice had increased leftover signals of dextran in the hippocampus and a lower score in the maze test, suggesting that aged mice have abnormal leakage of BBB and cognitive dysfunction. The protein expression of Toll-like receptor 4 (TLR4) was increased, whereas the protein expressions of junction proteins (claudin1 and claudin5) were reduced in endothelial cells of BBB in aged mice. Phosphorylated level of serine 9, an inhibitory residue in GSK-3β protein, was decreased. TDZD-8 treatment downregulated TLR4 protein expression, upregulated claudin1 and claudin5 protein expressions, and significantly improved cognitive function in aged mice. In bEnd.3 cells, TDZD-8 treatment reduced TLR4 expression and increased claudin5 expression in cells stimulated with lipopolysaccharides. In conclusion, the inhibition of GSK-3β activity downregulates aging-induced TLR4 expression and restores the BBB integrity, resulting in the improvement of cognitive function in aged mice.
Collapse
Affiliation(s)
- Tao Liang
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Huihui Ju
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
- Department of Anesthesiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yile Zhou
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Shanghai 200032, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Minhang Branch Zhongshan Hospital of Fudan University, Shanghai 201100, China
| |
Collapse
|
20
|
Eor JY, Tan PL, Son YJ, Lee CS, Kim SH. Milk products fermented by
Lactobacillus
strains modulate the gut–bone axis in an ovariectomised murine model. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Yoon Ji Son
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| |
Collapse
|
21
|
Eleutheroside E attenuates isoflurane-induced cognitive dysfunction by regulating the α7-nAChR-NMDAR pathway. Neuroreport 2019; 30:188-194. [PMID: 30585907 DOI: 10.1097/wnr.0000000000001182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing evidence that cognitive dysfunction induced by anesthetics is adversely affecting a large number of elderly surgical patients. Eleutheroside E (EE), a principal component of Eleutherococcus senticosus, exerts obvious protective effects on cognition. The aim of this study was to investigate the neuroprotective effect of EE on isoflurane (ISO)-induced cognitive dysfunction and explore the possible mechanisms. Learning and memory are assessed in novel object recognition and Morris water maze. We found that with ISO exposure, aged rats had a lower preference for the new object and spent less time in the target quarter. However, the amnesia can be alleviated by EE (50 mg/kg, intraperitoneally). Further research focused on the possible protective molecules associated with learning and memory, such as acetylcholine (ACh) and choline acetyltransferase (ChAT), nicotinic acetylcholine receptors (α7-nAChR), and NR2B, is required. The ACh in the hippocampus and serum was decreased after ISO exposure; meanwhile, the expression of ChAT, α7-nAChRs, and NR2B was downregulated. This abnormal state can be reversed by the administration of EE. Here, our results suggested that EE may be a potential therapeutic agent against ISO-induced cognitive dysfunction. The possible mechanism can be attributed to its neuroprotection through enhancing ChAT, which promotes the synthesis of ACh, further influencing the expression of the α7-nAChR-NR2B complex.
Collapse
|
22
|
Cao Y, Li Z, Ma L, Yang N, Guo X. Isoflurane-Induced Postoperative Neurovascular and Cognitive Dysfunction Is Associated with VEGF Overexpression in Aged Rats. J Mol Neurosci 2019; 69:215-223. [PMID: 31250275 DOI: 10.1007/s12031-019-01350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in older adults; however, its aetiology remains unclear. Although vascular endothelial growth factor (VEGF) is associated with blood-brain barrier (BBB) disorders and neurological disease, its role in POCD is unknown. Here, we investigated the effect of brain VEGF inhibition on isoflurane-induced cognitive impairment in an aged rat model of POCD. VEGF protein expression was increased in the hippocampus after isoflurane exposure, suggesting that inhalation anaesthesia induces hippocampal VEGF protein overexpression in aged rats. Pretreatment with 2 mg/kg RB-222, an anti-VEGF neutralizing antibody, may partially abolish the degradation of occludin protein in cerebral capillaries, thereby maintaining the ultrastructural and functional integrity of the hippocampal BBB. Inhibition of VEGF also significantly attenuated the isoflurane-induced cognitive deficits in the Morris water maze task. Together, our findings show, for the first time, that elevated expression of brain VEGF after isoflurane exposure contributes to POCD in aged rats. Therefore, therapeutic strategies involving VEGF should take into consideration its role in the pathogenesis of POCD.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 200233, China.,Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
23
|
Schmidt RF, Theofanis TN, Lang MJ, Stricsek GP, Lin R, Lebrun A, Hooper DC, Rosenwasser RH, Sharan AD, Iacovitti L. Sphenopalatine ganglion stimulation is a reversible and frequency-dependent modulator of the blood-brain barrier. Brain Res 2019; 1718:231-241. [PMID: 31034813 DOI: 10.1016/j.brainres.2019.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The sphenopalatine ganglion (SPG) is a vasoactive mediator of the anterior intracranial circulation in mammals. SPG stimulation has been demonstrated to alter blood-brain barrier (BBB) permeability, although this phenomenon is not well characterized. OBJECTIVE To determine the effect of SPG stimulation on the BBB using rat models. METHODS Extravasation of fluorescent tracer 70 kDa FITC-dextran into rat brain specimens was measured across a range of stimulation parameters to assess BBB permeability. Tight junction (TJ) morphology was compared by assessing differences in the staining of proteins occludin and ZO-1 and analyzing ultrastructural changes on transmission electron microscopy (TEM) between stimulated and unstimulated specimens. RESULTS SPG stimulation at 10 Hz maximally increased BBB permeability, exhibiting a 6-fold increase in fluorescent traceruptake (1.66% vs 0.28%, p < 0.0001). This effect was reversed 4-hours after stimulation (0.36% uptake, p = 0.99). High-frequency stimulation at 20 Hz and 200 Hz did not increase tracer extravasation, (0.26% and 0.28% uptake, p = >0.999 and p = 0.998, respectively). Stimulation was associated a significant decrease in the colocalization of occludin and ZO-1 with endothelial markers in stimulated brains compared to control (74.6% vs. 39.7% and 67.2% vs. 60.4% colocalization, respectively, p < 0.0001), and ultrastructural changes in TJ morphology associated with increased BBB permeability were observed on TEM. CONCLUSION This study is the first to show a reversible, frequency-dependent increase in BBB permeability with SPG stimulation and introduces a putative mechanism of action through TJ disruption. Bypassing the BBB with SPG stimulation could enable new paradigms in delivering therapeutics to the CNS. Further study of this technology is needed.
Collapse
Affiliation(s)
- Richard F Schmidt
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thana N Theofanis
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Michael J Lang
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Geoffrey P Stricsek
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruihe Lin
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aurore Lebrun
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D Craig Hooper
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert H Rosenwasser
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ashwini D Sharan
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Li F, Geng X, Yip J, Ding Y. Therapeutic Target and Cell-signal Communication of Chlorpromazine and Promethazine in Attenuating Blood-Brain Barrier Disruption after Ischemic Stroke. Cell Transplant 2018; 28:145-156. [PMID: 30569751 PMCID: PMC6362522 DOI: 10.1177/0963689718819443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke destroys blood–brain barrier (BBB) integrity. There are currently no effective treatments available in the clinical setting. Post-ischemia treatment with phenothiazine drugs [combined chlorpromazine and promethazine (C+P)] has been shown to be neuroprotective in stroke. The present study determined the effect of C+P in BBB integrity. Sprague-Dawley rats were divided into the following groups (n=8 each): (1) stroke, (2) stroke treated by C+P with temperature control, and (3) stroke treated by C+P without temperature control. Infarct volume and neurological deficits were measured to assess the neuroprotective effect of C+P. BBB permeability was determined by brain edema and Evans blue leakage. Expression of BBB integral molecules, including proteins of aquaporin-4 and -9 (AQP-4, AQP-9), matrix metalloproteinase-2 and -9 (MMP-2, MMP-9), zonula occludens-1 (ZO-1), claudin-1/5, occludin, and laminin were determined by Western blot. Stroke caused brain infarction and neurological deficits, as well as BBB damage, which were all attenuated by C+P through drug-induced hypothermia. When the reduced temperature was controlled to physiological levels, C+P still conferred neuroprotection, suggesting a therapeutic effect independent of hypothermia. Furthermore, C+P significantly attenuated the increase in AQP-4, AQP-9, MMP-2, and MMP-9 levels after stroke, and reversed the decrease in tight junction protein (ZO-1, claudin-1/5, occludin) and basal laminar protein (laminin) levels. This study clearly indicates a beneficial effect of C+P on BBB integrity after stroke, which may be independent of drug-induced hypothermia. These findings further prove the clinical target and cell-signal communication of C+P treatment, which may direct us closer toward the development of an efficacious neuroprotective therapy.
Collapse
Affiliation(s)
- Fengwu Li
- 1 China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- 1 China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,2 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - James Yip
- 2 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- 1 China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,2 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Bajwa NM, Lee JB, Halavi S, Hartman RE, Obenaus A. Repeated isoflurane in adult male mice leads to acute and persistent motor decrements with long-term modifications in corpus callosum microstructural integrity. J Neurosci Res 2018; 97:332-345. [DOI: 10.1002/jnr.24343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Nikita M. Bajwa
- Musculoskeletal Disease Center; VA Loma Linda Healthcare System; Loma Linda California
| | - Jeong B. Lee
- Department of Basic Sciences, School of Medicine; Loma Linda University; Loma Linda California
| | - Shina Halavi
- Department of Psychology, School of Behavioral Health; Loma Linda University; Loma Linda California
| | - Richard E. Hartman
- Department of Psychology, School of Behavioral Health; Loma Linda University; Loma Linda California
| | - Andre Obenaus
- Department of Basic Sciences, School of Medicine; Loma Linda University; Loma Linda California
- Department of Pediatrics, School of Medicine; University of California; Irvine California
| |
Collapse
|
26
|
Serum miR-146a and miR-150 as Potential New Biomarkers for Hip Fracture-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:8101359. [PMID: 30510490 PMCID: PMC6230404 DOI: 10.1155/2018/8101359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) and subsequent pulmonary infection are the most severe and usually fatal complications for elderly hip fracture patients. It is necessary to find some biomarkers for early diagnosis and prognosis of it. Objective This study is aimed at examining the differential expression of miR-146a, miR-150, and cytokines (IL-6 and IL-10) between younger and elderly rats suffering from hip fracture and investigating the possible meaning of them in early diagnosis and prognosis of ALI after hip fracture. Methods and Subjects Elderly rats and younger rats were randomly divided into sham group and fracture group, respectively. Two fracture groups received hip fracture operations. The damage degree of ALI was evaluated by histological observation and pathological score. Cytokines were measured by ELISA; miR-146a and miR-150 were analysed by qRT-PCR. Results After treatment, compared with the corresponding sham groups, the pulmonary histological score, the serum miR-146a concentrations, and the cytokine (IL-6 and IL-10) levels in serum and BALF were significantly higher (the miR-150 were lower) in the fracture groups (with the exception of IL-6 of the younger fracture group at 72 h, all P < 0.05). Meanwhile, compared with the younger fracture group, the aforementioned variables were significantly higher (the miR-150 levels were lower) in the elderly fracture group (with the exception of serum IL-10 and pulmonary histological score at 8 h, all P < 0.05). The results of linear regression analysis showed that serum miR-146a and miR-150 were significantly associated with pulmonary histological score. Conclusion Hip fracture can result in significant systemic inflammation and ALI in the rats. Compared to the younger rats, the elderly rats suffered a more remarkable ALI after hip fracture. It may be related to the abnormal expression of miR-146a and miR-150. Serum miR-146a and miR-150 are potential biomarkers for diagnosis and prognosis of ALI after hip fracture.
Collapse
|
27
|
Lu Z, Sun J, Xin Y, Chen K, Ding W, Wang Y. Sevoflurane-induced memory impairment in the postnatal developing mouse brain. Exp Ther Med 2018; 15:4097-4104. [PMID: 29731813 PMCID: PMC5920718 DOI: 10.3892/etm.2018.5950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/06/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.
Collapse
Affiliation(s)
- Zhijun Lu
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Jihui Sun
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Yichun Xin
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ken Chen
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Wen Ding
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Yujia Wang
- Intensive Care Unit, Shanghai Jing'an District Shibei Hospital, Shanghai 200443, P.R. China
| |
Collapse
|
28
|
Cao Y, Li Z, Ma L, Ni C, Li L, Yang N, Shi C, Guo X. Isoflurane‑induced postoperative cognitive dysfunction is mediated by hypoxia‑inducible factor‑1α‑dependent neuroinflammation in aged rats. Mol Med Rep 2018; 17:7730-7736. [PMID: 29620198 PMCID: PMC5983961 DOI: 10.3892/mmr.2018.8850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 03/02/2018] [Indexed: 12/28/2022] Open
Abstract
Elderly patients are at high risk of developing postoperative cognitive dysfunction (POCD) after prolonged exposure to inhaled anesthetics. However, the pathogenesis of POCD remains unknown. Hypoxia-inducible factor-1α (HIF-1α) is activated by inhaled anesthetics. The aim of the present study was to determine the role of HIF-1α in isoflurane-induced neuroinflammation and the resulting cognitive impairment. Following a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increased expression of HIF-1α protein, activation of nuclear factor (NF)-κB signaling and increased expression of TNF-1α were observed in the hippocampus of isoflurane-exposed rats compared with the control group. Pharmacological inhibition of HIF-1α activation by 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (YC-1) markedly suppressed the enhanced expression of HIF-1α, disrupted NF-κB signaling pathway activity and inhibited the isoflurane-induced increase of TNF-1α expression. YC-1 pretreatment also significantly attenuated isoflurane-induced cognitive deficits according to the results of the Morris water maze task. These results suggest that hippocampal HIF-1α appears to be involved in an upstream mechanism of isoflurane-induced cognitive impairment. Further research is warranted to fully clarify the pathogenesis and investigate HIF-1α as a potential therapeutic target for POCD.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, The Sixth People's Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai 200233, P.R. China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, Ningxia 750021, P.R. China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
29
|
Hypoxia-inducible factor-1α is involved in isoflurane-induced blood-brain barrier disruption in aged rats model of POCD. Behav Brain Res 2017; 339:39-46. [PMID: 28887194 DOI: 10.1016/j.bbr.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022]
Abstract
Prolonged exposure to inhaled anesthetics may lead to postoperative cognitive dysfunction (POCD). Nevertheless, the underlying mechanisms are not known. Hypoxia-inducible factor-1α (HIF-1α) and its target gene vascular endothelial growth factor (VEGF) were shown to be activated by inhaled anesthetics. The aim of the present study was to determine the role of HIF-1α in isoflurane-induced blood-brain barrier (BBB) disruption and resultant cognitive impairment. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in vascular permeability, and disrupted BBB ultrastructure were accompanied by the degradation of tight junction proteins occludin and collagen type IV in brain blood vessels. Increases in HIF-1α and VEGF proteins and activation of MMP-2 in the hippocampus were also observed in the hippocamp of isoflurane-exposed rats compared with control rats. Pharmacological inhibition of HIF-1α activation by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) markedly suppressed the expression of HIF-1α, VEGF and MMP-2, and mitigated the severity of BBB disruption.YC-1 pretreatment also significantly attenuated isoflurane-induced cognitive deficits in the Morris water maze task. Overall, our results demonstrate that hippocampal HIF-1α/VEGF signaling seems to be the upstream mechanism of isoflurane-induced cognitive impairment, and provides apotential preventive and therapeutic target for POCD.
Collapse
|
30
|
Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z. Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front Immunol 2017; 8:902. [PMID: 28848542 PMCID: PMC5552714 DOI: 10.3389/fimmu.2017.00902] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.
Collapse
Affiliation(s)
- Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Changping Gu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Emiri T Mandeville
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Elga Esposito
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Guang Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China
| | - Eng H Lo
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
31
|
Yang N, Li L, Li Z, Ni C, Cao Y, Liu T, Tian M, Chui D, Guo X. Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci Lett 2017; 649:85-92. [PMID: 28411068 DOI: 10.1016/j.neulet.2017.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/19/2022]
Abstract
Post-operative cognitive dysfunction (POCD) is a commonly seen postoperative complication in elderly patients and its underlying mechanisms are still unclear. Autophagy, a degradation mechanism of cellular components, is required for cell survival and many physiological processes. Although propofol is one of the most commonly used intravenous anesthetics, investigations into its mechanisms and effects on cognition in aged rodents are relatively scarce. In this study, we evaluate the influence of propofol on learning and memory, and identify the potential role of hippocampal autophagy in propofol-induced cognitive alterations in aged rats. The results demonstrate that 4h propofol exposure significantly impaired cognitive performance through the inhibition of hippocampal autophagy. Diaminodiphenyl sulfone (dapsone, DDS), which was used as an anti-leprosy drug, has been found to have neuroprotective effects. We have previously demonstrated that DDS can improve surgical stress induced depression- and anxiety-like behavior. We therefore aimed to investigate the effects of DDS on propofol-induced cognitive dysfunction and associated hippocampal autophagy responses. Pretreatment with 5mg/kg or 10mg/kg body weight DDS significantly improved the behavioral disorder and upregulated the inhibited autophagic response in aged rats. Our exploration is the first to establish an in vivo link between central autophagy and cognitive dysfunction in aged hippocampus after propofol anesthesia and demonstrate that the prophylactic effect of DDS on the cognitive impairment induced by propofol involves autophagy. These findings may imply a potential novel target for the treatment in patients with propofol anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yiyun Cao
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Miao Tian
- Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Dehua Chui
- Neuroscience Research Institute, Department of Neurobiology, Peking University, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
32
|
Shi C, Yi D, Li Z, Zhou Y, Cao Y, Sun Y, Chui D, Guo X. Anti-RAGE antibody attenuates isoflurane-induced cognitive dysfunction in aged rats. Behav Brain Res 2017; 322:167-176. [DOI: 10.1016/j.bbr.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
|
33
|
Chi OZ, Mellender SJ, Kiss GK, Liu X, Weiss HR. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia. Brain Res Bull 2017; 131:1-6. [PMID: 28238830 DOI: 10.1016/j.brainresbull.2017.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the Ki both in the isoflurane and pentobarbital anesthetized rats. However, the value of Ki was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The Ki of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the Ki (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Geza K Kiss
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
34
|
Critical role of matrix metallopeptidase 9 in postoperative cognitive dysfunction and age-dependent cognitive decline. Oncotarget 2017; 8:51817-51829. [PMID: 28881691 PMCID: PMC5584292 DOI: 10.18632/oncotarget.15545] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/31/2017] [Indexed: 01/02/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a significant clinical syndrome. Neuroinflammation is an important pathological process for POCD. However, it is not clear how systemic inflammation induced by surgery on peripheral tissues or organs is transmitted into the brain. We determined whether matrix metallopeptidase 9 (MMP9), a protein that can increase blood-brain barrier permeability, is critical in this transmission. The role of MMP9 in age-dependent cognitive decline was also determined. Methods Two-month old male C57BL/6J wild-type mice and MMP9-/- mice were randomly assigned to control or surgery groups. The surgery was right carotid artery exposure under isoflurane anesthesia. Cognitive function was tested from one week after the surgery by Barnes maze and fear conditioning. Cognitive function of 2-month old C57BL/6J mice was compared with that of 18-month old mice. Results Surgery increased the expression of interleukin 1β, interleukin 6 and ionized calcium binding adapter molecule 1, inflammation indicators, in the brain of the wild-type mice. Blood-brain barrier permeability was increased by surgery. Surgery also impaired the learning and memory of these mice. These surgical effects were absent in the MMP9-/- mice. Eighteen-month old wild-type mice had poorer performance in Barnes maze and fear conditioning tests and lower MMP9 protein expression and activity than did the 2-month old mice. Conclusion MMP9 is critical for transmission of systemic inflammation into the brain for POCD. MMP9 may also play a role in age-dependent cognitive decline.
Collapse
|
35
|
Zanghi CN, Jevtovic-Todorovic V. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies. Neurotoxicol Teratol 2016; 60:24-32. [PMID: 28039052 DOI: 10.1016/j.ntt.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/24/2016] [Accepted: 12/25/2016] [Indexed: 12/28/2022]
Abstract
The year 2016 marked the 15th anniversary since anesthesia-induced developmental neurotoxicity and its resulting cognitive dysfunction were first described. Since that time, multiple scientific studies have supported these original findings and investigated possible mechanisms behind anesthesia-induced neurotoxicity. This paper reviews the existing mechanistic literature on anesthesia-induced neurotoxicity in the context of a holistic approach that emphasizes the importance of both neuronal and non-neuronal cells during early postnatal development. Sections are divided into key stages in early neural development; apoptosis, neurogenesis, migration, differentiation, synaptogenesis, gliogenesis, myelination and blood brain barrier/cerebrovasculature. In addition, the authors combine the established literature in the field of anesthesia-induced neurotoxicity with literature from other related scientific fields to speculate on the potential role of non-neuronal cells and to generate new future hypotheses for understanding anesthetic toxicity and its application to the practice of pediatric anesthesia.
Collapse
Affiliation(s)
- Christine N Zanghi
- University of Colorado, Anschutz Medical Campus, Department of Anesthesiology, 12801 E. 17th Ave., Mail Stop 8130, Aurora, CO 80045, United States.
| | - Vesna Jevtovic-Todorovic
- University of Colorado, Anschutz Medical Campus, Department of Anesthesiology, 12801 E. 17th Ave., Mail Stop 8130, Aurora, CO 80045, United States.
| |
Collapse
|
36
|
Sugammadex-Enhanced Neuronal Apoptosis following Neonatal Sevoflurane Exposure in Mice. Anesthesiol Res Pract 2016; 2016:9682703. [PMID: 27895665 PMCID: PMC5118529 DOI: 10.1155/2016/9682703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022] Open
Abstract
In rodents, neonatal sevoflurane exposure induces neonatal apoptosis in the brain and results in learning deficits. Sugammadex is a new selective neuromuscular blockade (NMB) binding agent that anesthesiologists can use to achieve immediate reversal of an NMB with few side effects. Given its molecular weight of 2178, sugammadex is thought to be unable to pass through the blood brain barrier (BBB). Volatile anesthetics can influence BBB opening and integrity. Therefore, we investigated whether the intraperitoneal administration of sugammadex could exacerbate neuronal damage following neonatal 2% sevoflurane exposure via changes in BBB integrity. Cleaved caspase-3 immunoblotting was used to detect apoptosis, and the ultrastructure of the BBB was examined by transmission electron microscopy. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice. Sugammadex alone without sevoflurane did not induce apoptosis. The coadministration of sugammadex with sevoflurane to neonatal mice caused a significant increase (150%) in neuroapoptosis in the brain compared with 2% sevoflurane. In neonatal anesthesia, sugammadex could influence neurotoxicity together with sevoflurane. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice.
Collapse
|
37
|
Yoneda M, Sugimoto N, Katakura M, Matsuzaki K, Tanigami H, Yachie A, Ohno-Shosaku T, Shido O. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. J Nutr Biochem 2016; 39:110-116. [PMID: 27833051 DOI: 10.1016/j.jnutbio.2016.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023]
Abstract
Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice.
Collapse
Affiliation(s)
- Mitsugu Yoneda
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan; Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan; Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan; Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, 350-0295, Japan.
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| | - Hayate Tanigami
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Akihiro Yachie
- Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan.
| | - Takako Ohno-Shosaku
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| |
Collapse
|
38
|
Walters JL, Chelonis JJ, Fogle CM, Orser BA, Paule MG. Single and repeated exposures to the volatile anesthetic isoflurane do not impair operant performance in aged rats. Neurotoxicology 2016; 56:159-169. [PMID: 27498192 DOI: 10.1016/j.neuro.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Postoperative Cognitive Dysfunction (POCD) is a complication that can occur in the elderly after anesthesia and surgery and is characterized by impairments in information processing, memory, and executive function. Currently, it is unclear whether POCD is due to the effects of surgery, anesthesia, or perhaps some interaction between these or other perioperative variables. Studies in rodents suggest that the development of POCD may be related directly to anesthesia-induced neuroactivity. Volatile anesthetics have been shown to increase cellular inflammation and apoptosis within the hippocampus of aged rodents, while producing corresponding impairments in hippocampal-dependent brain functions. However, it is unclear whether volatile anesthetics can affect additional aspects of cognition that do not primarily depend upon the hippocampus. The purpose of this study was to use established operant tests to examine the effects of isoflurane on aspects of behavioral inhibition, learning, and motivation in aged rats. Twenty-one adult Sprague-Dawley rats (11 male, 10 female) were trained to perform fixed consecutive number (FCN), incremental repeated acquisition (IRA), and progressive ratio (PR) tasks for a minimum of 15 months prior to receiving anesthesia. At 23 months of age, rats were exposed to 1.3% isoflurane or medical grade air for 2h. Initial results revealed that a 2h exposure to isoflurane had no effect on IRA, FCN, or PR performance. Thus, rats received 3 additional exposures to 1.3% isoflurane or medical grade air: 2, 4 and 6h exposures with 2 weeks elapsing before exposure two, 3 weeks elapsing between exposures two and three, and 2 weeks elapsing between exposures three and four. These additional exposures had no observable effects on performance of any operant task. These results suggest that single and repeated exposures to isoflurane do not impair the performance of aged rats in tasks designed to measure behavioral inhibition, learning, and motivation. This lack of significant effect suggests that the impairments associated with isoflurane exposure may not generalize to all aspects of cognition, but may be selective to tasks that primarily measure spatial memory processes.
Collapse
Affiliation(s)
- Jennifer L Walters
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States.
| | - John J Chelonis
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| | - Charles M Fogle
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| | - Beverley A Orser
- University of Toronto, Department of Physiology, Medical Sciences Building, Room 3318, 1 Kings College Circle, Toronto, Ontario M5S1A8, Canada
| | - Merle G Paule
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| |
Collapse
|
39
|
Li L, Li Z, Cao Y, Fan D, Chui D, Guo X. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia. Exp Ther Med 2016; 12:161-168. [PMID: 27347033 PMCID: PMC4906658 DOI: 10.3892/etm.2016.3306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
Abstract
There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25–6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment.
Collapse
Affiliation(s)
- Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yiyun Cao
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Dehua Chui
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
40
|
Li Z, Mo N, Li L, Cao Y, Wang W, Liang Y, Deng H, Xing R, Yang L, Ni C, Chui D, Guo X. Surgery-Induced Hippocampal Angiotensin II Elevation Causes Blood-Brain Barrier Disruption via MMP/TIMP in Aged Rats. Front Cell Neurosci 2016; 10:105. [PMID: 27199659 PMCID: PMC4844612 DOI: 10.3389/fncel.2016.00105] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/11/2016] [Indexed: 11/17/2022] Open
Abstract
Reversible blood-brain barrier (BBB) disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD). Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9), as well as three of their endogenous tissue inhibitors of MMP (TIMP-1, -2, -3), and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II) and Ang II receptor type 1 (AT1) after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1), as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB) activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.
Collapse
Affiliation(s)
- Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Na Mo
- Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University Beijing, China
| | - Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Yiyun Cao
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Wenming Wang
- Department of Hematology, Peking University Third Hospital (PUTH) Beijing, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital Beijing, China
| | - Hui Deng
- Department of Nephrology, Peking University Third Hospital (PUTH) Beijing, China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital (PUTH) Beijing, China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital (PUTH) Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Dehua Chui
- Key Laboratory for Neuroscience, Department of Neurobiology, Neuroscience Research Institute, Ministry of Education and Ministry of Public Health, Peking University Health Science Center Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| |
Collapse
|
41
|
Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 2016; 73:57-77. [PMID: 26403789 PMCID: PMC11108286 DOI: 10.1007/s00018-015-2050-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
As the primary protective barrier for neurons in the brain, the blood-brain barrier (BBB) exists between the blood microcirculation system and the brain parenchyma. The normal BBB integrity is essential in protecting the brain from systemic toxins and maintaining the necessary level of nutrients and ions for neuronal function. This integrity is mediated by structural BBB components, such as tight junction proteins, integrins, annexins, and agrin, of a multicellular system including endothelial cells, astrocytes, pericytes, etc. BBB dysfunction is a significant contributor to the pathogeneses of a variety of brain disorders. Many signaling factors have been identified to be able to control BBB permeability through regulating the structural components. Among those signaling factors are inflammatory mediators, free radicals, vascular endothelial growth factor, matrix metalloproteinases, microRNAs, etc. In this review, we provide a summary of recent progress regarding these structural components and signaling factors, relating to their roles in various brain disorders. Attention is also devoted to recent research regarding impact of pharmacological agents such as isoflurane on BBB permeability and how iron ion passes across BBB. Hopefully, a better understanding of the factors controlling BBB permeability helps develop novel pharmacological interventions of BBB hyperpermeability under pathological conditions.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Chen Gong
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050016, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA.
| |
Collapse
|
42
|
Zhang Y, Yang WX. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:675-84. [PMID: 27335757 PMCID: PMC4902068 DOI: 10.3762/bjnano.7.60] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 05/18/2023]
Abstract
Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens)) proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.
Collapse
Affiliation(s)
- Yue Zhang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
43
|
Miah MK, Shaik IH, Bickel U, Mehvar R. Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood-brain barrier permeability of sodium fluorescein in rats. Brain Res 2015; 1618:249-60. [PMID: 26051428 DOI: 10.1016/j.brainres.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Liver diseases are known to affect the function of remote organs. The aim of the present study was to investigate the effects of Pringle maneuver, which results in hepatic ischemia-reperfusion (IR) injury, and partial hepatectomy (Hx) on the pharmacokinetics and brain distribution of sodium fluorescein (FL), which is a widely used marker of blood-brain barrier (BBB) permeability. Rats were subjected to Pringle maneuver (total hepatic ischemia) for 20 min with (HxIR) or without (IR) 70% hepatectomy. Sham-operated animals underwent laparotomy only. After 15 min or 8h of reperfusion, a single 25-mg/kg dose of FL was injected intravenously and serial (0-30 min) blood and bile and terminal brain samples were collected. Total and free (ultrafiltration) plasma, total brain homogenate, and bile concentrations of FL and/or its glucuronidated metabolite (FL-Glu) were determined by HPLC. Both IR and HxIR caused significant reductions in the biliary excretions of FL and FL-Glu, resulting in significant increases in the plasma AUC of the marker. Additionally, the free fraction of FL in plasma was significantly increased by HxIR. Although the brain concentrations of FL were increased by almost twofold in both IR and HxIR animals, the brain concentrations corrected by the free FL AUC (and not the total AUC) were similar in both groups at either time points. It is concluded that Pringle maneuver and/or partial hepatectomy substantially alters the hepatobiliary disposition, plasma AUC, plasma free fraction, and brain accumulation of FL without altering the BBB permeability to the marker.
Collapse
Affiliation(s)
- Mohammad K Miah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Reza Mehvar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
44
|
De Jesús-Cortés H, Miller AD, Britt JK, DeMarco AJ, De Jesús-Cortés M, Stuebing E, Naidoo J, Vázquez-Rosa E, Morlock L, Williams NS, Ready JM, Narayanan NS, Pieper AA. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson's disease. NPJ PARKINSONS DISEASE 2015; 1. [PMID: 27158662 PMCID: PMC4859442 DOI: 10.1038/npjparkd.2015.10] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background: There are currently no therapeutic options for patients with Parkinson's disease that prevent or slow the death of dopaminergic neurons. We have recently identified the novel P7C3 class of neuroprotective molecules that blocks neuron cell death. AIMS: The aim of this study was to determine whether treatment with highly active members of the P7C3 series blocks dopaminergic neuron cell death and associated behavioral and neurochemical deficits in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Methods: After unilateral injection of 6-OHDA into the median forebrain bundle, rats were assessed for behavioral function in the open field, cylinder test, and amphetamine-induced circling test. Thereafter, their brains were subjected to neurochemical and immunohistochemical analysis of dopaminergic neuron survival. Analysis was conducted as a function of treatment with P7C3 compounds, with administration initiated either before or after 6-OHDA exposure. Results: Animals administered P7C3-A20 or P7C3-S243, two of the most advanced agents in the P7C3 series of neuroprotective compounds, both before and after 6-OHDA exposure showed evidence of protective efficacy in all measures. When P7C3-S243 administration was initiated after 6-OHDA exposure, rats also showed protective efficacy in all measures, which included blocking dopaminergic neuron cell death in ipsilateral substantia nigra pars compacta, preservation of dopamine and its metabolites in ipsilateral striatum, and preservation of normal motor behavior. Conclusions: The P7C3 series of compounds may form the basis for developing new therapeutic agents for slowing or preventing progression of Parkinson's disease.
Collapse
Affiliation(s)
- Héctor De Jesús-Cortés
- Graduate program of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Adam D Miller
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jeremiah K Britt
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Anthony J DeMarco
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Emily Stuebing
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Andrew A Pieper
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; The Iowa City Department of Veterans Affairs, Iowa City, IA, USA
| |
Collapse
|