1
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
2
|
Dremencov E, Oravcova H, Grinchii D, Romanova Z, Dekhtiarenko R, Lacinova L, Jezova D. Maternal treatment with a selective delta-opioid receptor agonist during gestation has a sex-specific pro-cognitive action in offspring: mechanisms involved. Front Pharmacol 2024; 15:1357575. [PMID: 38689666 PMCID: PMC11059060 DOI: 10.3389/fphar.2024.1357575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background: There is growing evidence that the treatment of several mental disorders can potentially benefit from activation of delta-opioid receptors. In the future, delta-agonists with a safe pharmacological profile can be used for the treatment of mood disorders in pregnant women. However, the data on prenatal exposure to delta-opioid agonists are missing. The present study is aimed to test the hypothesis that the activation of delta-opioid receptors during gravidity has positive effects on the behaviour accompanied by changes in glutamate and monoamine neurotransmission. Methods: Gestating Wistar rats were chronically treated with a selective delta-agonist SNC80 or vehicle. Adult male and female offspring underwent novel object recognition (for the assessment of cognition) and open field (for the assessment of anxiety and habituation) tests, followed by in vivo electrophysiological examination of the activity of hippocampal glutamate and midbrain serotonin (5-HT) and dopamine neurons. Results: We found that the maternal treatment with SNC80 did not affect the offspring's anxiety, habituation, and 5-HT neuronal firing activity. Female offspring of SNC80-treated dams exhibited improved novelty recognition associated with decreased firing rate and burst activity of glutamate and dopamine neurons. Conclusion: Maternal treatment with delta-opioid agonists during gestation may have a pro-cognitive effect on offspring without any negative effects on anxiety and habituation. The putative pro-cognitive effect might be mediated via mechanism(s) involving the firing activity of hippocampal glutamate and mesolimbic dopamine neurons.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Henrieta Oravcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Romanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Dekhtiarenko
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Zhang G, Lai Z, Gu L, Xu K, Wang Z, Duan Y, Chen H, Zhang M, Zhang J, Zhao Z, Wang S. Delta Opioid Receptor Activation with Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin Contributes to Synaptic Improvement in Rat Hippocampus against Global Ischemia. Cell Transplant 2021; 30:9636897211041585. [PMID: 34470528 PMCID: PMC8419564 DOI: 10.1177/09636897211041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zelin Lai
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Lingling Gu
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhenlu Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yale Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital
| | - Min Zhang
- Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital.,Tongji University School of Medicine, Shanghai 201204, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
4
|
Dezfulian C, Orkin AM, Maron BA, Elmer J, Girotra S, Gladwin MT, Merchant RM, Panchal AR, Perman SM, Starks MA, van Diepen S, Lavonas EJ. Opioid-Associated Out-of-Hospital Cardiac Arrest: Distinctive Clinical Features and Implications for Health Care and Public Responses: A Scientific Statement From the American Heart Association. Circulation 2021; 143:e836-e870. [PMID: 33682423 DOI: 10.1161/cir.0000000000000958] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Opioid overdose is the leading cause of death for Americans 25 to 64 years of age, and opioid use disorder affects >2 million Americans. The epidemiology of opioid-associated out-of-hospital cardiac arrest in the United States is changing rapidly, with exponential increases in death resulting from synthetic opioids and linear increases in heroin deaths more than offsetting modest reductions in deaths from prescription opioids. The pathophysiology of polysubstance toxidromes involving opioids, asphyxial death, and prolonged hypoxemia leading to global ischemia (cardiac arrest) differs from that of sudden cardiac arrest. People who use opioids may also develop bacteremia, central nervous system vasculitis and leukoencephalopathy, torsades de pointes, pulmonary vasculopathy, and pulmonary edema. Emergency management of opioid poisoning requires recognition by the lay public or emergency dispatchers, prompt emergency response, and effective ventilation coupled to compressions in the setting of opioid-associated out-of-hospital cardiac arrest. Effective ventilation is challenging to teach, whereas naloxone, an opioid antagonist, can be administered by emergency medical personnel, trained laypeople, and the general public with dispatcher instruction to prevent cardiac arrest. Opioid education and naloxone distributions programs have been developed to teach people who are likely to encounter a person with opioid poisoning how to administer naloxone, deliver high-quality compressions, and perform rescue breathing. Current American Heart Association recommendations call for laypeople and others who cannot reliably establish the presence of a pulse to initiate cardiopulmonary resuscitation in any individual who is unconscious and not breathing normally; if opioid overdose is suspected, naloxone should also be administered. Secondary prevention, including counseling, opioid overdose education with take-home naloxone, and medication for opioid use disorder, is important to prevent recurrent opioid overdose.
Collapse
|
5
|
Chen M, Wu S, Shen B, Fan Q, Zhang R, Zhou Y, Zhang P, Wang L, Zhang L. Activation of the δ opioid receptor relieves cerebral ischemic injury in rats via EGFR transactivation. Life Sci 2021; 273:119292. [PMID: 33667516 DOI: 10.1016/j.lfs.2021.119292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022]
Abstract
Delta opioids are thought to relieve ischemic injury and have tissue-protective properties. However, the detailed mechanisms of delta opioids have not been well identified. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), have been shown to mediate downstream signals of δ opioid receptor (δOR) activation through the metalloproteinase (MMP)-dependent EGF-like growth factor (HB-EGF) excretion pathway, which is called transactivation. In this study, to investigate the role of EGFR in δOR-induced anti-ischemic effects in the brain, we applied the middle cerebral artery occlusion (MCAO) model followed by reperfusion to mimic ischemic stroke injury in rats. Pre-treatment with the δOR agonist [D-ala2, D-leu5] enkephalin (DADLE) improved the neurologic deficits and the decreased infarct volume caused by cerebral ischemia/reperfusion injury, which were blocked by the EGFR inhibitor AG1478 and the MMP inhibitor GM6001, respectively. Further results indicated that DADLE activated EGFR, Akt and ERK1/2 and upregulated EGFR expression in the hippocampus in a time-dependent manner, which were inhibited by AG1478 and GM6001. The enzyme-linked immunosorbent assay (ELISA) results showed that δOR activation led to an increase in HB-EGF release, but HB-EGF in tissue was downregulated at the mRNA and protein levels. Moreover, this protective action caused by δOR agonists may involve attenuated hippocampal cellular apoptosis. Overall, these results demonstrate that MMP-mediated transactivation of EGFR is essential for δOR agonist-induced MCAO/reperfusion injury relief. These findings provide a potential molecular mechanism for the neuroprotective property of δOR and may add new insight into mitigating or preventing injury.
Collapse
Affiliation(s)
- Meixuan Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuo Wu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingquan Fan
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Kim W, Jung HY, Yoo DY, Kwon HJ, Hahn KR, Kim DW, Yoon YS, Choi SY, Hwang IK. Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation. Nutrients 2021; 13:nu13010181. [PMID: 33435613 PMCID: PMC7828071 DOI: 10.3390/nu13010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of GPE-R in brain damages, for example following brain ischemia. In the present study, we screened the neuroprotective effects of GPE-R against ischemic damage and neuroinflammation in the hippocampus based on behavioral, morphological, and biological approaches. Gerbils received oral administration of GPE-R (30 and 300 mg/kg) every day for three weeks and 2 h after the last administration, ischemic surgery was done by occlusion of both common carotid arteries for 5 min. Administration of 300 mg/kg GPE-R significantly reduced ischemia-induced locomotor hyperactivity 1 day after ischemia. Significantly more NeuN-positive neurons were observed in the hippocampal CA1 regions of 300 mg/kg GPE-R-treated animals compared to those in the vehicle-treated group 4 days after ischemia. Administration of GPE-R significantly reduced levels of pro-inflammatory cytokines such as interleukin-1β, -6, and tumor necrosis factor-α 6 h after ischemia/reperfusion. In addition, activated microglia were significantly decreased in the 300 mg/kg GPE-R-treated group four days after ischemia/reperfusion compared to the vehicle-treated group. These results suggest that GPE-R may be one of the possible agents to protect neurons from ischemic damage by reducing inflammatory responses.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (S.Y.C.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (W.K.); (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Correspondence: (S.Y.C.); (I.K.H.)
| |
Collapse
|
7
|
Abstract
Current experimental stroke research has evolved to focus on detailed understanding of the brain’s self-protective and restorative mechanisms, and harness this knowledge for development of new therapies. In this context, the role of peptidases and neuropeptides is of growing interest. In this focused review, peptidase neurolysin (Nln) and its extracellular peptide substrates are briefly discussed in relation to pathophysiology of ischemic stroke. Upregulation of Nln following stroke is viewed as a compensatory cerebroprotective mechanism in the acute phase of stroke, because the main neuropeptides inactivated by Nln are neuro/cerebrotoxic (bradykinin, substance P, neurotensin, angiotensin II, hemopressin), whereas the peptides generated by Nln are neuro/cerebroprotective (angiotensin-(1–7), Leu-/Met-enkephalins). This notion is confirmed by experimental studies documenting aggravation of stroke outcomes in mice after inhibition of Nln following stroke, and dramatic improvement of stroke outcomes in mice overexpressing Nln in the brain. The role of Nln in the (sub)chronic phase of stroke is less clear and it is likely, that this peptidase does not have a major role in neural repair mechanisms. This is because, the substrates of Nln are less uniform in modulating neurorestorative mechanisms in one direction, some appearing to have neural repair enhancing/stimulating potential, whereas others doing the opposite. Future studies focusing on the role of Nln in pathophysiology of stroke should determine its potential as a cerebroprotective target for stroke therapy, because its unique ability to modulate multiple neuropeptide systems critically involved in brain injury mechanisms is likely advantageous over modulation of one pathogenic pathway for stroke pharmacotherapy.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
8
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
9
|
Soo E, Welch A, Marsh C, McKay DB. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant Rev (Orlando) 2019; 34:100512. [PMID: 31648853 DOI: 10.1016/j.trre.2019.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- E Soo
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - A Welch
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - C Marsh
- Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - D B McKay
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America.
| |
Collapse
|
10
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
11
|
He Z, Guo Q, Yang Y, Wang L, Zhang S, Yuan W, Li L, Zhang J, Hou W, Yang J, Jia R, Tai F. Pre-weaning paternal deprivation impairs social recognition and alters hippocampal neurogenesis and spine density in adult mandarin voles. Neurobiol Learn Mem 2018; 155:452-462. [DOI: 10.1016/j.nlm.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
|
12
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
13
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Min JW, Liu Y, Wang D, Qiao F, Wang H. The non-peptidic δ-opioid receptor agonist Tan-67 mediates neuroprotection post-ischemically and is associated with altered amyloid precursor protein expression, maturation and processing in mice. J Neurochem 2017; 144:336-347. [PMID: 29193080 DOI: 10.1111/jnc.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Tan-67 is a selective non-peptidic δ-opioid receptor (DOR) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)-caused neuronal injury in pre-treated animals. In this study, we examined whether post-ischemic administration of Tan-67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan-67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan-67 treatment. Our results showed that post-ischemic administration of Tan-67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan-67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan-67 neuroprotection in infarct volume. Tan-67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan-67-induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan-67 attenuated BACE-1 expression, β-secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan-67 is a promising DOR-dependent therapeutic agent for treating I/R-caused disorder and that Tan-67-mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.
Collapse
Affiliation(s)
- Jia-Wei Min
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - David Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Fangfang Qiao
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
15
|
Zhou Y, Zhang J, Lei B, Liang W, Gong J, Zhao C, Yu J, Li X, Tang B, Yuan S. DADLE improves hepatic ischemia/reperfusion injury in mice via activation of the Nrf2/HO‑1 pathway. Mol Med Rep 2017; 16:6214-6221. [PMID: 28901476 DOI: 10.3892/mmr.2017.7393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/11/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common pathophysiological process that occurs following liver surgery, which is associated with oxidative stress, and can cause acute liver injury and lead to liver failure. Recently, the development of drugs for the prevention of hepatic I/R injury has garnered interest in the field of liver protection research. Previous studies have demonstrated that [D‑Ala2, D‑Leu5]‑Enkephalin (DADLE) exerts protective effects against hepatic I/R injury. To further clarify the specific mechanism underlying the effects of DADLE on hepatic I/R injury, the present study aimed to observe the effects of various doses of DADLE on hepatic I/R injury in mice. The results indicated that DADLE, at a concentration of 5 mg/kg, significantly reduced the levels of alanine aminotransferase and aspartate aminotransferase in the serum, and the levels of malondialdehyde in the liver homogenate. Conversely, the levels of glutathione, catalase and superoxide dismutase in the liver homogenate were increased. In addition, DADLE was able to promote nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation and upregulate the expression of heme oxygenase (HO)‑1, which is a factor downstream of Nrf2, thus improving hepatic I/R injury in mice. In conclusion, the present study demonstrated that DADLE was able to significantly improve hepatic I/R injury in mice, and the specific mechanism may be associated with the Nrf2/HO‑1 signaling pathway.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jing Zhang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Biao Lei
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Wenjin Liang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jianhua Gong
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Chuanxiang Zhao
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jidong Yu
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xuan Li
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
16
|
Grant Liska M, Crowley MG, Lippert T, Corey S, Borlongan CV. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb Exp Pharmacol 2017; 247:277-299. [PMID: 28315071 DOI: 10.1007/164_2017_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.
Collapse
Affiliation(s)
- M Grant Liska
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|