1
|
Li G, Wang X, Wang Q, Han L, Bai J, Wang F, Yu B, Liu Z, Long X, Cheng Y. Coumarins rather than alkylamides evoke the numbing orosensation of pomelo peel. Food Chem 2025; 463:141502. [PMID: 39368197 DOI: 10.1016/j.foodchem.2024.141502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Liangpingyou, a well-known Chinese pomelo (Citrus grandis L.) variety, elicits a unique and uncharacterized numbing aftertaste. To understand the molecular bases and characteristics of the pomelo-induced numbing sensation, we first determined that hydroxyl sanshools, the major Sichuan pepper chemosensates, were not responsible via silylation-GC-MS analysis. Pomelo peel juice was then subjected to solid-phase extraction to form 4 fractions, and key sensory-active substances were screened via taste dilution analysis. Three simple coumarins, meranzin hydrate, isomeranzin, and marmin, were identified to induce numbing, which has not been previously reported. Sensory studies via extensively modified half-tongue tests and verification steps revealed recognition thresholds within 0.49-1.78, 0.32-1.56, and 0.43-1.46 μmol/L for numbness, pungency, and astringency, respectively. The temporal dominance trends showed the following taste notes: Meranzin hydrate-numbing dominated, isomeranzin-numbing and pungent, and marmin-astringent and numbing. Molecular docking analysis suggested that coumarins target the receptors TRPV1, TPRA1, and KCNK3.
Collapse
Affiliation(s)
- Guijie Li
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Xuting Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qundi Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Leng Han
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Fusheng Wang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| | - Bo Yu
- Sichuan Dan Orange Modern Fruit Industry Co., Ltd, Danling, 620200, China
| | - Zhaojun Liu
- Chongqing Liangping District Agriculture and Rural Committee, Chongqing, 405200, China
| | - Xingyao Long
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, 400067, China.
| | - Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China.
| |
Collapse
|
2
|
Keshavarzi Z, Amiresmaili S, Nazari M, Jafari E, Chahkandi M, Sindhu RK. Synergistic effects of auraptene and 17-β estradiol on traumatic brain injury treatment: oxidant/antioxidant status, inflammatory cytokines and pathology. Int J Neurosci 2024; 134:1477-1489. [PMID: 37815366 DOI: 10.1080/00207454.2023.2269478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Despite significant advances that have been made in the treatment of traumatic brain injury (TBI), it remains a global health issue. This study aimed to investigate the synergistic effects of 17-β estradiol (E2) and auraptene (AUR) on TBI treatment. METHODS In total, 70 adult male Wistar rats were divided randomly into ten main groups: Sham, TBI, TBI + DMSO, TBI + AUR (4 mg/kg), TBI + AUR (8 mg/kg), TBI + AUR (25 mg/kg), TBI + E2 group, TBI + AUR (4 mg/kg) + E2 group, TBI + AUR (8 mg/kg) + E2 group and TBI + AUR (25 mg/kg) + E2 group. Diffuse TBI was caused by the Marmarou process in male rats. The brain's tissues were harvested to check the parameters of oxidative stress and levels of inflammatory cytokine. RESULTS The finding revealed that TBI induced a significant increase in brain edema, pro-inflammatory cytokines and oxidant levels [MDA and NO], and also a decrease in the brain's antioxidant biomarkers [GPx, SOD]. We also found that E2 and AUR (25 mg/kg) significantly preserved the levels of these biomarkers. The combination of AUR concentrations and E2 showed that this treatment efficiently preserved the levels of these biomarkers. Furthermore, the combination of E2 and AUR (25 mg/kg) c could cause the most effective synergistic interaction. CONCLUSION AUR could act synergistically with E2 to treat brain injury complications.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Masoud Nazari
- College of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Chahkandi
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| |
Collapse
|
3
|
Hadipour E, Khodadadi M, Emami SA, Haghighi SR, Ramazani E, Tayarani-Najaran Z. Protective effect of Auraptene, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced cell toxicity in PC12 cells. Toxicol Res (Camb) 2024; 13:tfae217. [PMID: 39712640 PMCID: PMC11655956 DOI: 10.1093/toxres/tfae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (ad) is a progressive and degenerative disorder of the central nervous system that is associated with cognitive and memory impairment. The main factors which have been implicated in neurodegeneration of ad are oxidative stress and cholinergic neurons dysfunction. Here, we examined the effects of auraptene, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (H2O2)-induced cell death in PC12 cells. METHODS Thereby, we measured cell viability, intracellular reactive oxygen species (ROS) production, AChE inhibitory activity, cell damage and apoptosis with AlmarBlue, 2', 7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Ellman method, lactate dehydrogenase (LDH) release, propidium iodide (PI) staining and western blot analysis, respectively. RESULTS H2O2 (150 μM) resulted in the cell death and apoptosis while, pretreatment with auraptene (10, 20 and 50 μM) significantly increased the viability (P < 0.01), and at 5-50 μM decreased ROS amount (P < 0.05 and P < 0.001). Pretreatment with auraptene (10, 20 and 50 μM) lessened AChE activity (P < 0.001), and at 20 and 50 μM reduced the release of LDH (P < 0.001), and at (10, 20 and 50 μM) diminished the percentage of apoptotic cells (P < 0.001). Also, pretreatment with auraptene at 10,20 and 50 μM prevented from poly (ADP-ribose) polymerase (PARP) cleavage (P < 0.001), and cytochrome c release (P < 0.01 and P < 0.001). The amount of caspase 3 activity (P < 0.001) and survivin (P < 0.001) were elevated after pretreatment of cells with auraptene at 10-50 μM and 10 and 50 μM. CONCLUSION It seems that auraptene has the ability to slow down or stop H2O2-induced nerve cells death by reducing the activity of AChE and suppression of internal pathway of apoptosis.
Collapse
Affiliation(s)
- Elham Hadipour
- Department of Biology, Faculty of Sciences, University of Guilan, Gilan Province, Rasht, Namjou Blvd, 7H7P+4WF, 193833697, Iran
| | - Mahdi Khodadadi
- Department of Pharmacology, Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Azadi Square, Ferdowsi University Campus, Faculty of Medicine, Floor 1+, 9177948564, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| | - Samaneh Rahamouz Haghighi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| | - Elham Ramazani
- Department of Biology, Yazd University, R9Q4+69H Safaeih, Yazd, Yazd Province, 8915818411, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| |
Collapse
|
4
|
Galluzzi S, Marizzoni M, Gatti E, Bonfiglio NS, Cattaneo A, Epifano F, Frisoni GB, Genovese S, Geviti A, Marchetti L, Sgrò G, Solorzano CS, Pievani M, Fiorito S. Citrus supplementation in subjective cognitive decline: results of a 36-week, randomized, placebo-controlled trial. Nutr J 2024; 23:135. [PMID: 39482712 PMCID: PMC11529263 DOI: 10.1186/s12937-024-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Developing interventions for older adults with subjective cognitive decline (SCD) has the potential to prevent dementia in this at-risk group. Preclinical models indicate that Citrus-derived phytochemicals could benefit cognition and inflammatory processes, but results from clinical trials are still preliminary. The aim of this study is to determine the effects of long-term supplementation with Citrus peel extract on cognitive performance and inflammation in individuals with SCD. METHODS Eighty participants were randomly assigned to active treatment (400 mg of Citrus peel extract containing 3.0 mg of naringenin and 0.1 mg of auraptene) or placebo at 1:1 ratio for 36 weeks. The primary endpoint was the change in the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) total score across the 36-week trial period. Other cognitive outcomes included tests and scales evaluating verbal memory, attention, executive and visuospatial functions, and memory concerns. The secondary endpoint was the change of interleukin-8 (IL-8) levels over the 36-week trial period in a subsample of 60 consecutive participants. An Intention-to-treat approach with generalized linear mixed models was used for data analysis. RESULTS The RBANS total score showed significant improvement in both Citrus peel extract and placebo groups at 36 weeks (p for time < .001, d = 0.36, p time x treatment = .910). Significant time effects were also found in cognitive domains of short- and long-term verbal memory (p < .001) and scales of subjective memory (p < .01), with no significant time x treatment interaction. The largest effect sizes were observed in verbal memory in the placebo group (d = 0.69 in short-term, and d = 0.78 in long-term verbal memory). Increased IL-8 levels were found at 36-week follow-up in both Citrus peel extract and placebo groups (p for time = .010, d = 0.21, p time x treatment = .772). Adverse events were balanced between groups. CONCLUSIONS In this randomized clinical trial, long-term Citrus peel extract supplementation did not show cognitive benefits over placebo in participants with SCD, possibly due to high placebo response. These findings might have specific implications for designing future nutraceutical trials in individuals experiencing SCD. TRIAL REGISTRATION The trial has been registered at the United States National Library of Medicine at the National Institutes of Health Registry of Clinical Trials under the code NCT04744922 on February 9th, 2021 ( https://www. CLINICALTRIALS gov/ct2/show/NCT04744922 ).
Collapse
Affiliation(s)
- Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
| | - Elena Gatti
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | | | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesco Epifano
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giovanni B Frisoni
- Memory Center, Geneva University and University Hospitals, Geneva, Switzerland
| | - Salvatore Genovese
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Lorenzo Marchetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giovanni Sgrò
- Clinical Trial Service, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Singh Solorzano
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Serena Fiorito
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Hashem MA, Alotaibi BS, Elsayed MMA, Alosaimi ME, Hussein AK, Abduljabbar MH, Lee KT, Abdelkader H, El-Mokhtar MA, Hassan AH, Abdel-Rheem AA, Belal A, Saddik MS. Characterization and Bio-Evaluation of the Synergistic Effect of Simvastatin and Folic Acid as Wound Dressings on the Healing Process. Pharmaceutics 2023; 15:2423. [PMID: 37896183 PMCID: PMC10610475 DOI: 10.3390/pharmaceutics15102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Wound healing is a significant healthcare problem that decreases the patient's quality of life. Hence, several agents and approaches have been widely used to help accelerate wound healing. The challenge is to search for a topical delivery system that could supply long-acting effects, accurate doses, and rapid healing activity. Topical forms of simvastatin (SMV) are beneficial in wound care. This study aimed to develop a novel topical chitosan-based platform of SMV with folic acid (FA) for wound healing. Moreover, the synergistic effect of combinations was determined in an excisional wound model in rats. The prepared SMV-FA-loaded films (SMV-FAPFs) were examined for their physicochemical characterizations and morphology. Box-Behnken Design and response surface methodology were used to evaluate the tensile strength and release characteristics of the prepared SMV-FAPFs. Additionally, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction pattern (XRD), and animal studies were also investigated. The developed SMV-FAPFs showed a contraction of up to 80% decrease in the wound size after ten days. The results of the quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant upregulation of dermal collagen type I (CoTI) expression and downregulation of the inflammatory JAK3 expression in wounds treated with SMV-FAPFs when compared to control samples and individual drug treatments. In summary, it can be concluded that the utilization of SMV-FAPFs holds great potential for facilitating efficient and expeditious wound healing, hence presenting a feasible substitute for conventional topical administration methods.
Collapse
Affiliation(s)
- Mahmoud A. Hashem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
| | - Maram H. Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Life and Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hamdy Abdelkader
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Amany A. Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| |
Collapse
|
6
|
Galluzzi S, Zanardini R, Ferrari C, Gipponi S, Passeggia I, Rampini M, Sgrò G, Genovese S, Fiorito S, Palumbo L, Pievani M, Frisoni GB, Epifano F. Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: a 36-week, randomized, placebo-controlled trial. Nutr J 2022; 21:64. [PMID: 36253765 PMCID: PMC9575277 DOI: 10.1186/s12937-022-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Auraptene (AUR) and naringenin (NAR) are citrus-derived phytochemicals that influence several biological mechanisms associated with cognitive decline, including neuronal damage, oxidative stress and inflammation. Clinical evidence of the efficacy of a nutraceutical with the potential to enhance cognitive function in cohorts at risk of cognitive decline would be of great value from a preventive perspective. The primary aim of this study is to determine the cognitive effects of a 36-week treatment with citrus peel extract standardized in levels of AUR and NAR in older adults experiencing subjective cognitive decline (SCD). The secondary aim is to determine the effects of these phytochemicals on blood-based biomarkers indicative of neuronal damage, oxidative stress, and inflammation. Methods Eighty older persons with SCD will be recruited and randomly assigned to receive the active treatment (400 mg of citrus peel extract containing 0.1 mg of AUR and 3 mg of NAR) or the placebo at a 1:1 ratio for 36 weeks. The primary endpoint is a change in the Repeatable Battery for the Assessment of Neuropsychological Status score from baseline to weeks 18 and 36. Other cognitive outcomes will include changes in verbal and nonverbal memory, attention, executive and visuospatial functions. Blood samples will be collected from a consecutive subsample of 60 participants. The secondary endpoint is a change in interleukin-8 levels over the 36-week period. Other biological outcomes include changes in markers of neuronal damage, oxidative stress, and pro- and anti-inflammatory cytokines. Conclusion This study will evaluate whether an intervention with citrus peel extract standardized in levels of AUR and NAR has cognitive and biological effects in older adults with SCD, facilitating the establishment of nutrition intervention in people at risk of cognitive decline. Trial registration The trial is registered with the United States National Library of Medicine at the National Institutes of Health Registry of Clinical Trials under the code NCT04744922 on February 9th, 2021 (https://www.clinicaltrials.gov/ct2/show/NCT04744922).
Collapse
Affiliation(s)
- Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Service of Statistics, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Sara Gipponi
- Laboratory Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Ilaria Passeggia
- Laboratory Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Michela Rampini
- Laboratory Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Sgrò
- Clinical Trial Service, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Salvatore Genovese
- Laboratory of Phytochemistry and Chemistry of Natural Products, Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Serena Fiorito
- Laboratory of Phytochemistry and Chemistry of Natural Products, Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lucia Palumbo
- Laboratory of Phytochemistry and Chemistry of Natural Products, Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | | | - Francesco Epifano
- Laboratory of Phytochemistry and Chemistry of Natural Products, Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
8
|
Development and Optimization of Nanoemulsion from Ethanolic Extract of Centella asiatica (NanoSECA) Using D-Optimal Mixture Design to Improve Blood-Brain Barrier Permeability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3483511. [PMID: 35295926 PMCID: PMC8920630 DOI: 10.1155/2022/3483511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
The evidence on the neuroprotective impact of Centella asiatica (C. asiatica) has been greatly documented in recent years. However, a major obstacle that remains to be overcome is the capacity of the active molecules in C. asiatica to cross the blood-brain barrier (BBB). In this study, we explored the possibilities of using a D-optimal mixture design to fabricate nanoemulsion of C. asiatica (NanoSECA) for better brain bioavailability. The parameters for optimization were the percentage of water (10–80% w/v) and virgin coconut oil (VCO) (10–80% w/v). Nanoemulsions were formulated using a high-pressure homogenization approach and were characterized for their physicochemical properties. The optimal VCO-based nanoemulsion (VBN: F2) conditions were found at 80% (w/v) of water and 10% (w/v) of VCO. Subsequently, viability tests were conducted on neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines. NanoSECA was distinguished for its antioxidant, acetylcholinesterase (AChE), anti-inflammatory, and parallel artificial membrane permeability assay (PAMPA) activities in vitro. The NanoSECA has a particle size of 127.833 ± 8.280 nm, zeta potential (ZP) of −24.9 ± 0.011 mV, polydispersity index (PDI) of 0.493 ± 4.681, percentage prediction error (PPE) of −12.02%, and pH of 6.0 ± 0.006 and is also stable under different storage conditions. Cell viability was improved in a dose-dependent manner on SH-SY5Y and RAW 264.7 cell lines. In addition, NanoSECA significantly reduced the AChE activity, suppressing the level of proinflammatory mediators and oxidative stress. Moreover, NanoSECA showed high BBB permeation with a high value of experimental permeability to cross the BBB. Thus, NanoSECA could efficiently potentiate the central nervous system (CNS) therapeutic activities through enhanced penetration of BBB. These nano-delivery systems are crucial to unlock the full potential of C. asiatica for treating numerous CNS disorders.
Collapse
|
9
|
Zheng W, Zhang J, Zhou B, Chang H. MiR-322-5p Alleviates Cell Injury and Impairment of Cognitive Function in Vascular Dementia by Targeting TSPAN5. Yonsei Med J 2022; 63:282-291. [PMID: 35184431 PMCID: PMC8860938 DOI: 10.3349/ymj.2022.63.3.282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE As the population ages, the incidence of clinical dementia has been rising around the world. It has been reported that microRNAs act as key diagnostic biomarkers and targets for various neurological conditions, including dementia. MiR-322-5p has been revealed to play an important role in multiple diseases. In this study, we aimed to investigate the role and regulatory mechanism of miR-322-5p in vascular dementia. MATERIALS AND METHODS In this study, neonatal rat neurons (NRNs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce cell injury. The animals were subjected to permanent bilateral occlusion of the carotid arteries (2-vessel occlusion, 2VO) to induce the model of chronic brain hypoperfusion. RESULTS MiR-322-5p expression was significantly downregulated in the neurons exposed to OGD/R and the hippocampi of 2VO rats. Overexpression of miR-322-5p ameliorated cell apoptosis and the inflammatory response in vitro. In a mechanistic study, miR-322-5p was confirmed to directly target and negatively regulate tetraspanin 5 (TSPAN5) in cultured NRNs. Moreover, overexpression of TSPAN5 could counteract the effects of miR-322-5p overexpression on cell apoptosis and the inflammatory response in OGD/R-treated neurons. More importantly, miR-322-5p improved cognitive ability and inhibited inflammatory production in 2VO rats. CONCLUSION Overall, the results suggest that miR-322-5p alleviates vascular dementia development by targeting TSPAN5. This discovery may provide a potential therapeutic target for dementia.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Jie Zhang
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China.
| | - Bin Zhou
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Huanxian Chang
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
10
|
Amini-Khoei H, Nasiri Boroujeni S, Maghsoudi F, Rahimi-Madiseh M, Bijad E, Moradi M, Lorigooini Z. Possible involvement of l-arginine-nitric oxide pathway in the antidepressant activity of Auraptene in mice. Behav Brain Funct 2022; 18:4. [PMID: 35164803 PMCID: PMC8842875 DOI: 10.1186/s12993-022-00189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Depression is one of the most common mental illnesses worldwide. Nitric oxide (NO) is involved in the pathophysiology of depression. Auraptene (a coumarin derivative) has been shown to possess pharmacological effects on neurological diseases. Purpose The present study aimed to investigate the possible role of the NO pathway in Auraptene antidepressant effects in male mice. Methods Behavioral tests were used to assess depression-like behaviors. The mice received Auraptene at 10, 30, and 100 mg/kg, the combination of the sub-effective (ineffective) dose of Auraptene (10 mg/kg) and L-NAME, and the combination of the effective dose of Auraptene (30 mg/kg) and L-arginine. Finally, OFT, TST, FST, brain, serum MDA level, antioxidant capacity, hippocampus, and serum NO level were measured. Results The data analysis showed that Auraptene (30 mg/kg) improved depression-like behaviors. Auraptene (30 mg/kg) also significantly reduced serum NO levels (P < 0.05) and significantly increased serum MDA (10 mg/kg, P < 0.05). Auraptene at 30 mg/kg also increased serum antioxidant capacity (P < 0.01). Co-administration of L-NAME and the sub-effective dose of Auraptene enhanced the effects of Auraptene. However, co-administration of the effective dose of Auraptene and L-arginine reduced the impacts of Auraptene. Conclusions The results showed that Auraptene causes antidepressant effects in a dose-dependent manner and acts as a prooxidant at 100 mg/kg, and exacerbates oxidative stress. The antidepressant effects of this active molecule are exerted by reducing the NO level in the hippocampus and serum, increasing the antioxidant capacity, and reducing the MDA level in the serum.
Collapse
|
11
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
12
|
Ghasemi Z, Rezaee R, Aslani MR, Boskabady MH. Anti-inflammatory, anti-oxidant, and immunomodulatory activities of the genus Ferula and their constituents: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1613-1623. [PMID: 35432802 PMCID: PMC8976906 DOI: 10.22038/ijbms.2021.59473.13204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022]
Abstract
Ferula is a genus of the family Apiaceae and it includes around 170 species of flowering plants mostly native to the Mediterranean region and eastern to central Asia. In Iran, Ferula spp. are widely used in cuisine and traditional medicine. This review discusses the anti-inflammatory, anti-oxidant, and immunomodulatory activities of different species of Ferula. To prepare the present review, Scopus, Google Scholar, PubMed, and Web of Science scientific databases were searched to retrieve relevant articles published from 1985 until December 2020. Based on our literature review, Ferula plants and their derivatives decrease the levels of inflammatory mediators and exert anti-apoptotic effects. Under oxidative stress conditions, these plants and their constituents were shown to decrease oxidative markers such as malondialdehyde, reactive oxygen species, and nitric oxide but increase superoxide dismutase, glutathione peroxidase, catalase activity, and glutathione level. Ferula plants and their constituents also showed immunomodulatory effects by affecting various cytokines. Besides, in vivo and in vitro studies showed hypotensive, neuroprotective, memory-enhancing, anti-oxidant, hepatoprotective, antimicrobial, anticarcinogenic, anticytotoxic, antiobesity, and anthelmintic effects for various species of Ferula and their constituents. These plants also showed a healing effect on gynecological issues such as miscarriage, unusual pain, difficult menstruation, and leukorrhea. All these beneficial effects could have resulted from the anti-inflammatory, anti-oxidant, and immunomodulatory effects of these plants and their constituents. Based on the available literature, members of the genus Ferula can be regarded as potential therapeutics against inflammatory conditions, oxidative stress, and immune dysregulation.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Almukadi H, Eid BG, Shaik RA, Abdel-Naim AB, Esmat A. Auraptene nanoparticles ameliorate testosterone-induced benign prostatic hyperplasia in rats: Emphasis on antioxidant, anti-inflammatory, proapoptotic and PPARs activation effects. Biomed Pharmacother 2021; 143:112199. [PMID: 34649341 DOI: 10.1016/j.biopha.2021.112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a disease that commonly strikes the majority of aged men. Developing new therapies to manage BPH with improved efficacy and safety is strongly needed. In this regard, auraptene is a natural compound with multiple pharmacological effects, but with poor oral bioavailability. This investigation aimed to assess the possible protection offered by auraptene-nanostructured lipid carrier (auraptene-NLC) in a BPH model induced by testosterone in rats. Auraptene-NLC had optimum particle size and drug release profile compared to raw auraptene. At doses (5 and 10 mg/kg), it hampered the rise in prostatic weights & indices relative to rats challenged with testosterone. Moreover, auraptene-NLC alleviated histopathological abnormalities in prostate architecture and decreased the glandular epithelial height. Additionally, testosterone-induced oxidative stress was alleviated by auraptene-NLC and inhibited raised lipid peroxidation, catalase and superoxide dismutase exhaustion as well as enhanced glutathione content. Moreover, it significantly reduced the prostate content of nuclear factor κB, Interleukins1β & 6, as well as transforming growth factor β, compared to testosterone group. The proapoptotic activity of auraptene-NLC (10 mg/kg) was confirmed by a significant increase of prostate cleaved caspase-3, boosted Bax/Bcl2 mRNA ratio that was further confirmed by assessing their protein expressions. Furthermore, the beneficial effects of auraptene-NLC against BPH were substantiated by ameliorating testosterone-induced decline of nuclear PPARα & PPARγ and inhibiting the increased expression of cyclin D1 protein. In conclusion, auraptene-NLC offers a protective effect in rats whereby BPH was induced by testosterone, via its anti-inflammatory, antioxidant and proapoptotic activities, and PPAR family activation.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
14
|
Keshavarzi Z, Amiresmaili S, Shahrokhi N, Bibak B, Shakeri F. Neuroprotective effects of auraptene following traumatic brain injury in male rats: The role of oxidative stress. Brain Res Bull 2021; 177:203-209. [PMID: 34624461 DOI: 10.1016/j.brainresbull.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
AIM Traumatic Brain Injury (TBI) is widely acknowledged as a significant risk factor for death and disability. Our goal in this experiment was to see if Auraptene (AUR) could help rats recover from TBI-induced disability by measuring of oxidative stress parameters. MATERIAL AND METHODS Adult male Wistar rats were randomly assigned to one of six groups: sham, TBI, Vehicle (DMSO), TBI+ AUR (4 mg/kg), TBI + AUR (8 mg/kg), TBI + AUR (25 mg/kg). The animals were anesthetized. After that, diffuse TBI was done by Marmarou model in male rats. Then, the brain tissues were harvested. Some of oxidative stress parameters, and TNFα levels were evaluated. RESULTS TBI-induced brain damage was significantly inhibited by AUR (25 mg/kg), as evidenced by decreased Malondialdehyde (MDA) and Nitric Oxide (NO) levels, oxidative stress inhibition and reduced levels of pro-inflammatory cytokine tumor necrosis factor (TNF-α) in the brain. CONCLUSION This study showed that probably the AUR prevents complications of TBI through decreases in brain edema, modulating oxidative stress, and reductions in the levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nader Shahrokhi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzane Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
15
|
Influence of moxibustion on NR2B and PKMζ after neural stem cell transplantation in the rats with vascular dementia. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
17
|
Maleki MF, Nadri H, Kianfar M, Edraki N, Eisvand F, Ghodsi R, Mohajeri SA, Hadizadeh F. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: Molecular dynamic, in vitro and in vivo studies. Bioorg Chem 2021; 109:104684. [PMID: 33607363 DOI: 10.1016/j.bioorg.2021.104684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
As anandamide (N-arachidonoylethanolamine, AEA) shows neuroprotective effects, the inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH) has been considered as a hopeful avenue for the treatment of neurodegenerative diseases, like Alzheimer's disease (AD). Memory loss, cognitive impairment and diminution of the cholinergic tone, due to the dying cholinergic neurons in the basal forebrain, are common hallmarks in patients with AD. By taking advantage of cholinesterase inhibitors (ChEIs), the degradation of acetylcholine (ACh) is decreased leading to enhanced cholinergic neurotransmission in the aforementioned region and ultimately improves the clinical condition of AD patients. In this work, new carbamates were designed as inhibitors of FAAH and cholinestrases (ChEs) (acetylcholinestrase (AChE), butyrylcholinestrase (BuChE)) inspired by the structure of the native substrates, structure of active sites and the SARs of the well-known inhibitors of these enzymes. All the designed compounds were synthesized using different reactions. All the target compounds were tested for their inhibitory activity against FAAH and ChEs by employing the Cayman assay kit and Elman method respectively. Generally, compounds possessing aminomethyl phenyl linker was more potent compared to their corresponding compounds possessing piperazinyl ethyl linker. The inhibitory potential of the compounds 3a-q extended from 0.83 ± 0.03 μM (3i) to ˃100 μM (3a) for FAAH, 0.39 ± 0.02 μM (3i) to 24% inhibition in 113 ± 4.8 μM (3b) for AChE, and 1.8 ± 3.2 μM (3i) to 23.2 ± 0.2 μM (3b) for BuChE. Compound 3i a heptyl carbamate analog possessing 2-oxo-1,2-dihydroquinolin ring and aminomethyl phenyl linker showed the most inhibitory activity against three enzymes. Also, compound 3i was investigated for memory improvement using the Morris water maze test in which the compound showed better memory improvement at 10 mg/kg compared to reference drug rivastigmine at 2.5 mg/kg. Molecular docking and molecular dynamic studies of compound 3i into the enzymes displayed the possible interactions of key residues of the active sites with compound 3i. Finally, kinetic study indicated that 3i inhibits AChE through the mixed- mode mechanism and non-competitive inhibition mechanism was revealed for BuChE.
Collapse
Affiliation(s)
- Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Furukawa Y, Okuyama S, Amakura Y, Sawamoto A, Nakajima M, Yoshimura M, Igase M, Fukuda N, Tamai T, Yoshida T. Isolation and Characterization of Neuroprotective Components from Citrus Peel and Their Application as Functional Food. Chem Pharm Bull (Tokyo) 2021; 69:2-10. [PMID: 33390517 DOI: 10.1248/cpb.c20-00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elderly experience numerous physiological alterations. In the brain, aging causes degeneration or loss of distinct populations of neurons, resulting in declining cognitive function, locomotor capability, etc. The pathogenic factors of such neurodegeneration are oxidative stress, mitochondrial dysfunction, inflammation, reduced energy homeostatis, decreased levels of neurotrophic factor, etc. On the other hand, numerous studies have investigated various biologically active substances in fruit and vegetables. We focused on the peel of citrus fruit to search for neuroprotective components and found that: 1) 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) and auraptene (AUR) in the peel of Kawachi Bankan (Citrus kawachiensis) exert neuroprotective effects; 2) both HMF and AUR can pass through the blood-brain barrier, suggesting that they act directly in the brain; 3) the content of AUR in the peel of K. Bankan was exceptionally high, and consequently the oral administration of the dried peel powder of K. Bankan exerts neuroprotective effects; and 4) intake of K. Bankan juice, which was enriched in AUR by adding peel paste to the raw juice, contributed to the prevention of cognitive dysfunction in aged healthy volunteers. This review summarizes our studies in terms of the isolation/characterization of HMF and AUR in K. Bankan peel, analysis of their actions in the brain, mechanisms of their actions, and trials to develop food that retains their functions.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University
| | - Michiya Igase
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine
| | | | | | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University.,Department of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
19
|
Shenmayizhi Formula Combined with Ginkgo Extract Tablets for the Treatment of Vascular Dementia: A Randomized, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8312347. [PMID: 32774430 PMCID: PMC7397431 DOI: 10.1155/2020/8312347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
Shenmayizhi formula (SMYZF) has been shown to have an effect on vascular dementia (VaD) in previous studies. The aim of this study was to evaluate whether a combination of SMYZF with Ginkgo extract tablets improves mild-to-moderate VaD. In this 12-week, randomized, double-blind, controlled study, we randomly assigned 196 patients with VaD (aged 50-85 years) to either the SMYZF group (n = 98) or the Ginkgo group (n = 98). All patients received Ginkgo extract tablets as a basic treatment, while the SMYZF group also received SMYZF treatment. We evaluated the participants at baseline and after 12 weeks of the intervention for the following: the Mini-Mental State Examination (MMSE), National Institutes of Health Stroke Scale (NIHSS), activities of daily living (ADL), Chinese Medicine Symptom Scale (CM-SS) scores, serum endothelin-1 (ET-1), nitric oxide (NO), vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), and homocysteine (Hcy) serum levels. Both interventions significantly increased MMSE scores and decreased NIHSS, ADL, and CM-SS scores. The SMYZF group showed greater improvement in MMSE, NIHSS, and CM-SS scores. Both groups showed a significant decrease in serum ET-1 and an increase in serum VEGF. Furthermore, serum NO increased, and vWF decreased significantly in the SMYZF group. Changes in serum ET-1 and NO were greater in the SMYZF group. Both groups showed a significant increase in serum BDNF and a decrease in serum NSE and Hcy. Improvement in serum NSE and BDNF was greater in the SMYZF group. SMYZF combined with Ginkgo extract tablets improved vascular endothelial and cognitive functions, as well as the syndromes diagnosed based on the traditional Chinese medicine in patients with VaD.
Collapse
|
20
|
Etemad L, Zamani M, Iranshahi M, Roohbakhsh A. The Protective Effect of Auraptene Against Oxidative Stress and Pentylenetetrazol-Induced Chemical Kindling in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1395-1402. [PMID: 32641949 PMCID: PMC6934955 DOI: 10.22037/ijpr.2019.1100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is believed that some pitfalls in the treatment of epilepsy such as serious side effects of medications and drug resistance may be resolved by natural compounds. Auraptene belongs to coumarins and is found in citrus peel. We hypothesized that auraptene might have anticonvulsant properties. Kindling was induced by repeated intraperitoneal (IP) injections of pentylenetetrazol (PTZ, 35 mg/kg) with two-day intervals for 24 days in male albino mice. Three groups received IP injections of auraptene (12.5, 25, and 50 mg/kg). Three control groups received vehicle, diazepam (3 mg/kg, IP), and vitamin E (150 mg/kg, IP). Seizure-related behaviors were recorded for 30 min after PTZ injection. Moreover, malondialdehyde and reduced glutathione (GSH) were measured in the brain. The results indicated that auraptene at the dose of 12.5 mg/kg and vitamin E significantly prolonged the latency to stage 2 of seizures (P < 0.01). Auraptene at the doses of 25 mg/kg and 50 mg/kg, prolonged the latency to stage 4 (P < 0.01) and reduced stage 5 duration of seizures (P < 0.01). All doses of auraptene reduced median of seizure scores (P < 0.01). The kindled control group had MDA levels similar to intact animals but had a lower concentration of GSH (P < 0.001). None of the tested compounds changed the malondialdehyde concentration significantly. However, auraptene at the dose of 50 mg/kg and vitamin E increased GSH levels (P < 0.05). The results suggest that auraptene had anticonvulsant effects in PTZ-induced chemical kindling that was mediated by mechanisms other than the antioxidant effect of auraptene.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Zamani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Tian A, Li W, Zai Q, Li H, Zhang RW. 3‑N‑Butyphthalide improves learning and memory in rats with vascular cognitive impairment by activating the SIRT1/BDNF pathway. Mol Med Rep 2020; 22:525-533. [PMID: 32377741 PMCID: PMC7248482 DOI: 10.3892/mmr.2020.11106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a type of cerebral vascular disorder that leads to learning and memory decline. VCI models can be induced by chronic cerebral hypoperfusion via permanent bilateral common carotid artery occlusion. 3-N-Butylphthalide (NBP) is a neuroprotective drug used for the treatment of ischemic cerebrovascular diseases. Silent information regulator 1 (SIRT1) plays an important role in memory formation and cognitive performance, and its abnormal reduction is associated with cognitive dysfunction in neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor that plays critical roles in promoting neuronal growth and injury repair. The present study was performed to investigate the effects and the underlying mechanism of NBP on learning deficits in a rat model of VCI. Rats were divided into a control group, model group, low-NBP-dose group (30 mg/kg/day), high-NBP-dose group (60 mg/kg/day), NBP + SIRT1 inhibitor group and NBP + BDNF inhibitor group. Rats were then subjected to Morris water maze and T-maze tests, which identified that NBP treatment significantly attenuated memory impairments in VCI rats. Molecular examination indicated that SIRT1 and BDNF expression levels in the hippocampus were increased by NBP treatment. However, NBP failed to ameliorate cognitive function after inhibition of the SIRT1/BDNF signaling pathway. In addition, NBP in combination with a SIRT1 inhibitor suppressed BDNF protein expression, but inhibition of BDNF did not inhibit SIRT1 protein expression in rats with VCI. The present results suggested that the neuroprotective effects of NBP on learning deficits in a rat model of VCI may be via regulation of the SIRT1/BDNF signaling pathway, in which SIRT1 may be the upstream signaling molecule. Therefore, the SIRT1/BDNF pathway could be a potential therapeutic target for VCI.
Collapse
Affiliation(s)
- Ayong Tian
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wan Li
- Department of Neurology, The Ninth People's Hospital of Shenyang, Shenyang, Liaoning 110024, P.R. China
| | - Qing Zai
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui Li
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rong-Wei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol Rep 2020; 73:154-162. [PMID: 32166733 DOI: 10.1007/s43440-020-00083-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Inflammation is characterized as a defensive response of our body against endogenous or exogenous stimuli. Chronic inflammation and oxidative stress play an important role in the pathogenesis of various disorders such as asthma, cancers, and multiple sclerosis. Recently, diverse pharmacological activities of auraptene, a natural prenyloxycoumarin, were reported. In the present study, we aimed to evaluate the anti-oxidative and anti-inflammatory effects of auraptene on human isolated lymphocytes. METHOD The effects of auraptene (10, 30 and 90 μM) and dexamethasone (0.1 mM) were evaluated on cell viability, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and total glutathione content (GSH) as well as the secretion of interleukin 6 (IL-6) and tumor necrosis factor (TNF)-α in phytohemagglutinin (PHA)-stimulated human lymphocytes. RESULTS Auraptene (10-90 μM) did not affect lymphocytes' viability after 48 h incubation. PHA markedly elevated ROS, MDA, IL-6, and TNF-α levels, while diminished the GSH content, and CAT and SOD activities in human lymphocytes (p < 0.001 for all cases). Treatment with auraptene (10-90 µM) significantly ameliorated ROS, MDA, IL-6, and TNF-α levels, and markedly increased GSH content, and CAT and SOD activities (p < 0.5-0.001). CONCLUSION Auraptene may possess promising healing effects in the different inflammatory disorders associated with activation of the acquired immune system such as multiple sclerosis and asthma.
Collapse
|
23
|
Metabolic profiling deciphering the potential targets of Yi-Gan San against vascular dementia in rat. Brain Res 2020; 1727:146512. [DOI: 10.1016/j.brainres.2019.146512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
24
|
Bibak B, Shakeri F, Barreto GE, Keshavarzi Z, Sathyapalan T, Sahebkar A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors 2019; 45:867-879. [PMID: 31424600 DOI: 10.1002/biof.1550] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022]
Abstract
There is a growing awareness in herbal medications as they are usually safe and devoid of significant adverse effects. Auraptene is a natural bioactive monoterpene coumarin ether and is consumed all over the world. There is growing evidence of the therapeutic benefits of auraptene. Auraptene, also known as auraptene and 7-geranyloxycoumarin, is a bioactive monoterpene coumarin from Rutaceae family, which is isolated from Citrus aurantium (Seville orange) and Aegle marmelos (bael fruit). Auraptene is a highly pleiotropic molecule, which can modulate intracellular signaling pathways that control inflammation, cell growth, and apoptosis. It has a potential therapeutic role in the prevention and treatment of various diseases due to its anti-inflammatory and antioxidant activities as well as its excellent safety profile. In the present article, various pharmacological and therapeutic effects of auraptene were reviewed. Different online databases using keywords such as auraptene, therapeutic effects and pharmacological effects were searched until the end of September 2018, for this purpose. Auraptene has been suggested to be effective in the treatment of a broad range of disorders including inflammatory disorders, dysentery, wounds, scars, keloids, and pain. In addition, different studies have demonstrated that auraptene possesses numerous pharmacological properties including anti-inflammatory, anti-oxidative, anti-diabetic, anti-hypertensive and anti-cancer as well as neuroprotective effects. The present review provides a detailed survey of scientific researches regarding pharmacological properties and therapeutic effects of auraptene.
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Ghanbarabadi M, Falanji F, Rad A, Chazani Sharahi N, Amoueian S, Amin M, Molavi M, Amin B. Neuroprotective effects of clavulanic acid following permanent bilateral common carotid artery occlusion in rats. Drug Dev Res 2019; 80:1110-1119. [PMID: 31482584 DOI: 10.1002/ddr.21595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 11/05/2022]
Abstract
We investigated whether clavulanic acid could improve learning and memory, in rats underwent bilateral occlusion of common carotid artery (2VO). Seventy male Wistar rats were subjected to 2VO, with a 1-week interval between right and left artery occlusions. After 2VO, animals received clavulanic acid (10, 20, 40 mg/kg, intraperitoneally), from day 8 to 20. Spatial memory was assessed in the Morris water maze, 1 week after the induction of 2VO (day 15). The mRNA expression levels of bcl-2, bcl2-associated x protein (bax), caspase-3, inducible nitric oxide synthase (iNOS), and amyloid beta precursor protein (APP) were measured in the neocortex and hippocampus. Clavulanic acid significantly decreased the escape latency and swimming time in the training trial days. As well, it increased time and distance percentage in the target quadrant, while it decreased such factors in the opposite quadrant in the final trial day, compared to 2VO + normal saline animals. Real time-PCR data showed a significant higher mRNA expression of bax, caspase 3, and iNOS in the hippocampus and neocortex of 2VO animal compared to nonoccluded rats. APP increased in the neocortex but not hippocampus. Compared with 2VO animals, clavulanic acid significantly down-regulated the expression of iNOS, caspase 3, and APP, accompanied by diminishing the bax/bcl2 ratio. Our results reveal a potential therapeutic use of clavulanic acid for cognitive dysfunction associated with cerebral hypoperfusion in vascular dementia and Alzheimer disease.
Collapse
Affiliation(s)
- Mustafa Ghanbarabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Department of Biochemistry and Nutrition, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Sakineh Amoueian
- Pathology Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamadreza Amin
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mehdi Molavi
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
26
|
Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF. Neuroprotective Potential of Secondary Metabolites from Melicope lunu-ankenda (Rutaceae). Molecules 2019; 24:E3109. [PMID: 31461914 PMCID: PMC6749319 DOI: 10.3390/molecules24173109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zeinab Abdulwanis Mohamed
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Enas Mohamed Eliaser
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, El-Mergib University, El Khums, Libya
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Gwendoline Cheng Lian Ee
- Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Liu B, Liu J, Zhang J, Mao W, Li S. Effects of autophagy on synaptic-plasticity-related protein expression in the hippocampus CA1 of a rat model of vascular dementia. Neurosci Lett 2019; 707:134312. [PMID: 31163225 DOI: 10.1016/j.neulet.2019.134312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
|
28
|
Jang Y, Choo H, Lee MJ, Han J, Kim SJ, Ju X, Cui J, Lee YL, Ryu MJ, Oh ES, Choi SY, Chung W, Kweon GR, Heo JY. Auraptene Mitigates Parkinson's Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20143409. [PMID: 31336718 PMCID: PMC6679046 DOI: 10.3390/ijms20143409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Current therapeutics for Parkinson’s disease (PD) are only effective in providing relief of symptoms such as rigidity, tremors and bradykinesia, and do not exert disease-modifying effects by directly modulating mitochondrial function. Here, we investigated auraptene (AUR) as a potent therapeutic reagent that specifically protects neurotoxin-induced reduction of mitochondrial respiration and inhibits reactive oxygen species (ROS) generation. Further, we explored the mechanism and potency of AUR in protecting dopaminergic neurons. Treatment with AUR significantly increased the viability of substantia nigra (SN)-derived SN4741 embryonic dopaminergic neuronal cells and reduced rotenone-induced mitochondrial ROS production. By inducing antioxidant enzymes AUR treatment also increased oxygen consumption rate. These results indicate that AUR exerts a protective effect against rotenone-induced mitochondrial oxidative damage. We further assessed AUR effects in vivo, investigating tyrosine hydroxylase (TH) expression in the striatum and substantia nigra of MPTP-induced PD model mice and behavioral changes after injection of AUR. AUR treatment improved movement, consistent with the observed increase in the number of dopaminergic neurons in the substantia nigra. These results demonstrate that AUR targets dual pathogenic mechanisms, enhancing mitochondrial respiration and attenuating ROS production, suggesting that the preventative potential of this natural compound could lead to improvement in PD-related neurobiological changes.
Collapse
Affiliation(s)
- Yunseon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyosun Choo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jeongsu Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jianchen Cui
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yu Lim Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eung Seok Oh
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Song-Yi Choi
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and pain medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and pain medicine, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
29
|
Tabrizian K, Musavi SS, Rigi M, Hosseindadi F, Kordi S, Shamshirgaran F, Bazi A, Shahraki J, Rezaee R, Hashemzaei M. Behavioral and molecular effects of intrahippocampal infusion of auraptene, resveratrol, and curcumin on H-89-induced deficits on spatial memory acquisition and retention in Morris water maze. Hum Exp Toxicol 2019; 38:775-784. [PMID: 30943761 DOI: 10.1177/0960327119839160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our aim was to investigate the effects of resveratrol, auraptene, and curcumin on the spatial learning and spatial memory retention in the Morris water maze (MWM). The effects of 4-day bilateral intrahippocampal (i.h.) infusions of dimethyl sulfoxide (DMSO), H-89 as a protein kinase AII inhibitor, auraptene/H-89, resveratrol/H-89, and curcumin/H-89 were investigated on spatial memory acquisition in MWM. The rats were trained for 4 days; each day included one block of four trials. Post-training probe tests were performed on day 5 in acquisition test. For retention assessments, different animals were trained for 4 days and then infused (i.h.) with either DMSO, H-89, auraptene/H-89, resveratrol/H-89, or curcumin/H-89. The retention test was performed 48 h after the last training trial. The bilateral infusion of H-89 led to a significant impairment in spatial memory in acquisition and retention tests accompanied with a significant decrease in expressions of cAMP response-element binding (CREB) and pCREB proteins in hippocampus. Resveratrol and curcumin reversed the H-89-induced spatial memory acquisition and retention impairments with significant increases in both CREB and pCREB proteins expressions compared to H-89-treated animals. Auraptene showed significant effects in reversing H-89-induced impairments in spatial memory retention but not spatial memory acquisition.
Collapse
Affiliation(s)
- K Tabrizian
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- 2 Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - S S Musavi
- 3 Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - M Rigi
- 3 Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - F Hosseindadi
- 3 Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - S Kordi
- 3 Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - F Shamshirgaran
- 3 Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - A Bazi
- 4 Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - J Shahraki
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - R Rezaee
- 5 Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- 6 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- 7 Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 8 HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - M Hashemzaei
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
30
|
Lee SY, Hur SJ. Mechanisms of Neuroprotective Effects of Peptides Derived from Natural Materials and Their Production and Assessment. Compr Rev Food Sci Food Saf 2019; 18:923-935. [DOI: 10.1111/1541-4337.12451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Seung Yun Lee
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| | - Sun Jin Hur
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| |
Collapse
|
31
|
Askari VR, Baradaran Rahimi V, Rezaee SA, Boskabady MH. Auraptene regulates Th 1/Th 2/T Reg balances, NF-κB nuclear localization and nitric oxide production in normal and Th 2 provoked situations in human isolated lymphocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:1-10. [PMID: 29747740 DOI: 10.1016/j.phymed.2018.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/17/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Auraptene as member of dietary coumarins, is found in citrus fruits. Former studies have demonstrated its anti-inflammatory and anti-cancer activity. PURPOSE The mechanism of action and immune-modulatory property of this compound on human lymphocytes are greatly unknown. STUDY DESIGN/METHODS The effect of three concentrations (10, 30 and 90 µM) of auraptene or dexamethasone (0.1 mM) were evaluated on percentage of cell proliferation and nitric oxide (NO) production as well as secretion and gene expression of cytokines, and NF-κB level in PHA-stimulated and non-stimulated lymphocytes. RESULTS In non-stimulated cells, all three concentrations of auraptene significantly increased the gene expression index of IL-10 (P < 0.05-0.001). The IFN-γ gene expression index, IFN-γ/IL-4 and IL-10/IL-4 gene expression ratio were significantly increased due to the high concentration (90 µM) of auraptene treatment compared to control group (P < 0.05-0.001). In PHA stimulation, all three concentrations of the extract significantly decreased proliferation, cytokines (IL-4, IL-10 and IFN-γ) and NF-κB level as well as NO production, but IFN-γ/IL-4 and IL-10/IL-4 ratio were significantly increased compared control group (P < 0.05-0.001). Gene expression of IL-10 and IL-4 was decreased but that of IFN-γ as well as FN-γ/IL-4 and IL-10/IL-4 ratio were significantly increased due to all three concentrations of auraptene. CONCLUSION The results showed promoting effects of auraptene on T cell subsets toward Th1 (IFN-γ) and Treg (IL-10), which suggest its therapeutic value for treatment of Th2 cells predominant diseases including allergic disease such as asthma and atopic dermatitis as well as cancers.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Pinkas A, Gonçalves CL, Aschner M. Neurotoxicity of fragrance compounds: A review. ENVIRONMENTAL RESEARCH 2017; 158:342-349. [PMID: 28683407 DOI: 10.1016/j.envres.2017.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Fragrance compounds are chemicals belonging to one of several families, which are used frequently and globally in cosmetics, household products, foods and beverages. A complete list of such compounds is rarely found on the ingredients-list of such products, as "fragrance mixtures" are defined as "trade secrets" and thus protected by law. While some information regarding the general toxicity of some of these compounds is available, their neurotoxicity is known to a lesser extent. Here, we discuss the prevalence and neurotoxicity of fragrance compounds belonging to the three most common groups: phthalates, synthetic musks and chemical sensitizers.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300, Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, United States.
| | - Cinara Ludvig Gonçalves
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300, Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, United States
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300, Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, United States
| |
Collapse
|
33
|
Okuyama S, Semba T, Toyoda N, Epifano F, Genovese S, Fiorito S, Taddeo VA, Sawamoto A, Nakajima M, Furukawa Y. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17101716. [PMID: 27763495 PMCID: PMC5085747 DOI: 10.3390/ijms17101716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 12/02/2022] Open
Abstract
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Tomoki Semba
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Nobuki Toyoda
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Francesco Epifano
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Salvatore Genovese
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Serena Fiorito
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Vito Alessandro Taddeo
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|